用户名: 密码: 验证码:
声控激光打孔技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光加工技术是涉及光学、机械学、电子学、计算机等多种学科的高新技术,激光打孔是较早达到实用化的激光加工技术,但是目前还有许多问题需要进一步深入研究。由于激光打孔时激光焦点和打孔对象的相对位置、材料反射率的变化,激光峰值功率调节都影响到打孔速度和质量。因此,为了对不同材料进行有效地打孔,需要对激光束的能量、脉冲宽度和激光焦点相对位置等打孔参数进行综合控制。
     本课题的任务是在对激光打孔过程物理机理研究分析的基础上,研发用于金刚石拉丝模激光自动打孔的数控加工系统。
     本文主要研究了在激光与材料相互作用下声波信号随时间变化关系,高频超声波Q调制方法,以及配合计算机研究出声控激光打孔系统。
     一、首先论述了激光打孔技术目前国内外的发展状况,并结合激光与物质相互作用的原理,在理论上深入分析了激光打孔过程的物理机理,研究了在激光脉冲作用时材料升温、熔化、气化以及产生冲击波的条件。本文提出了一种具有创新性的用于对金刚石拉丝模打孔的方案。
     二、为获得快速打孔的效果,在激光器上也做了创新性的改进,采用高频超声技术控制压电陶瓷换能器,把谐振腔Q值的调制频率提高到150kHz,在200W以上的高功率激光器上获得了高峰值功率的激光脉冲。
     三、通过打孔过程伴生声波现象的研究,分析了大量的实验数据和曲线,发现了打孔产生的声波信号能反映打孔过程的状态,证明用声波能够控制打孔过程,同时还证明了打孔过程产生的红外光不适合控制打孔,并提出了按照材料的特性改变打孔速度的加工方法。
     四、综合上述研究成果,结合计算机技术,研究出了激光打孔专用的声控打孔控制系统,这套系统是通过声波传感器在线测量,按照打孔工艺要求,控制工作台的移动,激光束焦点始终处于最佳正确位置,使打孔过程精确而快捷。这种方法在国内外均未见报道。大量的实验表明,对金刚石拉丝模打孔有很好效果。
     文章最后也提出了今后研究方向,以及需要进一步解决的技术问题,对于完善这项新方法指出了方向。
Laser machining processing is a high technology related to lots of branches of sciences and technologies, such as optics, machinery, electronics and computer, laser drilling is one of the old applications of laser machining processes. Yet many issues remain to be solved when high quality holes are to be drilled in various materials today. Because of laser drilling speed and quality is effected by the changing in laser’s focus position, reflectivity and laser peak value power. Therefore, laser power, pulse width, laser focus position and some other parameters should be set differently to drill different materials with high quality and speed.
     The objective of this Dissertation was to study digitally controlled laser machining system for diamond drilling for wire drawing dies, on the basis of study and theoretical analysis of physical mechanism for laser drilling process.
     The investigations performed in this Dissertation were focused on the time dependence of audible sound signals under laser beam and material interaction, developments of a high frequency Q-modulation method using ultrasound and a acoustically controlled laser drilling system in combination of computer.
     1. We introduced the development situation of laser drilling technology at home and abroad. And we analyzed theoretically the laser drilling physical process, in which detailed considerations of the material temperature increase, formation of melt, vaporization and introduction of recoil pressure under the condition when materials are exposed to the laser beam. An innovative solution was proposed in diamond drilling for wire drawing dies.
     2. To improve further the drilling speed, an innovative improvement was performed at laser resonator, the use of a high frequency of ultrasonic vibration in total reflection mirror enables Q-modulation frequency in laser resonator up to 150 kHz, high laser peak power pulses were obtained at 200 W and it meets the requirements of laser drilling process.
     3, We found this sound signals represented drilling process and concluded that drilling process could be controlled using sound signals, whereas infrared signals met control requirement of the process, through the study of phenomena of sound produced in laser drilling and analysis of massive data of experiments and graphs, and methods to improve drilling speed were proposed according to material properties.
     4, Bringing together all our research data, an acoustically controlled laser drilling system for special purpose was developed in combination of computer. On the basis of on-line detection of acoustic transducer and process schedule, this system controlled the worktable movement so that the laser focus can be put on a so correct position, this method makes laser drilling process precise and quickly. The method has not reported yet. Lots of experiments showed good results at diamond drilling for wire drawing dies.A future improvement of this method was proposed in the end of this dissertation.
引文
[1]张国顺,现代激光制造技术,北京:化学工业出版社,2006,23~43
    [2]虞钢,虞和济,集成化激光智能加工工程,北京:冶金工业出版社,2002, 37~66
    [3]閻吉祥, 激光原理技术及应用,北京:北京理工大学出版社,2006,265~275
    [4]劉信宏,我國電路板機械鑽孔機進口概況,ITIS 產業評析,2004,1~3
    [5] F. Dausinger,Drilling of High Quality Micro Holes, ICALEO’2000, Section B, 1~10
    [6]P. W. French, D.P.Hand, C.Peters, G.J.Shannon, P.byrd, W.M.Steen, Inestigation of the Nd:YAG Laser Percussion Drilling Process using High Speed Filming,CLF Annual Repot 1998/1999; 162~166
    [7] D. Karnakis, G..Rutterford, M.knowles, A.Webb, Laser Micromaching, 2005 South West Test Workshop, San Diego, June 2005
    [8]M. D. T. Fox, P French, C Peters, D P Hand, J D C Jones,Applications of Optical Sensing for Laser Cutting, ICALEO’ 1999,Section C:106~114
    [9] F. Gruber, A Combination of Laser Drilling and Laser Erosion, Enhances Turbine efficiency, Industrial Laser Solutions 2007,6:10~12
    [10] M. D. T. Fox, , F.M. Haran, C. Peters, S.A. Morgan, W.M. Steen, Optical focus control for laser percussion drilling, ICALEO’ 1999,Section C:1~10
    [11]张国顺,现代激光制造技术,北京:化学工业出版社,2006. 235~259
    [12]虞钢,虞和济,集成化激光智能加工工程,北京:冶金工业出版社,2002. 37~66
    [13]徐坤元,激光数字纸制品加工技术,中国包装工业,2002,(99):60~61
    [14] V. Tornari, V. Zafiropulos, A. Bonarou, N.A. Vainos, C. Fotakis, Modern technology in artwork conservation: a laser-based approach for process control and evaluation , Optics and Lasers in Engineering, 2000, 34 (4-6), 309-326
    [15] M D T Fox, P French, C Peters, D P Hand, J D C Jones, Applications of Optical Sensing for Laser Cutting and Drilling, Applied Optics, 2002, 41, 4988-4995
    [16]朱企业等,激光精密加工,机械工业出版社,1990:39~41
    [17] W. W .Duley,.CO2 Laser: Effects and Applications, Academic Press,1976
    [18]Kroos, J., Gratzke, U., and Simon, G.,Towards a self-consistent model of the keyhole on laser beam welding, J.Phys.D:Appl.Phys.,1993,26: 474-480
    [19] 雷卡林等著,王绍水(译),材料的激光加工,科学出版社,1982
    [20]朱裕栋译,激光在工艺中的应用, 机械工业出版社,1980
    [21] V. Semak, B. Damkroger, and S. Kempka, Temporal evolution of the temperature field in the beam interaction zone during laser material processing, J. Phys. D: Appl.Phys., 1999, 32,1819-1825
    [22] G. Herziger, Physics of laser materials processing, Proc. SPIE, 1986, 650, 188-194
    [23] V. Semak, X. Chen, K. Mundra, and J. Zhao, Numerical simulation of hole profile in high beam intensity laser drilling, Proc. of Laser Materials Processing Conf., 1997, 81-90
    [24] S. I. Anisimov , V. A. Khokhlov, 1995, Instabilities in laser-matter interaction, CRC, Boca Raton, FL
    [25] 吕百达,固体激光器件,北京邮电大学出版社,2002
    [26]S. Schmidt, Stencil cutting, Industrial Laser Solutions, 2007, 6, 23-26
    [27]Guoshun Zhang, Fuqing Huang, Jian Zhang, Study on the series-resonant inverter for pulse laser supply, International Society for Optical Engineering, 2002, 10, 378~380
    [28]任玉田,焦振学,王宏甫,机床计算机数字控制技术. 北京理工大学出版社,1996,90 - 100
    [29] T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, 1990.
    [30] H. W. Katz, .Solid State Magnetic and Dielectric Devices,. John Wiley & Sons, New York, 1959.
    [31] R. L. Lin, F. C. Lee, E. M. Baker and D. Y. Chen, .Inductor-Less Piezoelectric Transformer Ballast Circuit.. Proceedings of Power Electronics Seminar at Virginia Tech, 2000, September 19-21,. 309~314.
    [32] 林仲茂,超声变幅杆的原理和设计,北京:科学出版社,1987,36-163
    [33] 王敏慧 鲍善惠 江长青.粗细端不等长阶梯形变幅杆谐振频率的实验研究,陕西师范大学学报;自然科学版, 2004, 32(3), 47-49
    [34] 周凤梅,吴胜举,黄利波,改进的余弦形超声变幅杆,湖南科技学院学报,2005,26(5),76-78
    [35] MC14046B Data Sheet, Motorola Inc., 1997.
    [36] SG3525A Data Sheet, STMicroelectronics,2000
    [37] M. Kazimierczuk and D. Czarkowski, Resonant Power Converters, John Wiley & Sons, Inc., 1995.
    [38] T. Ninomiya et al,Static and Dynamic Analysis of ZVS Half-bridge Converter with PWM Control, PESC 91 Record,22nd Annual 1EEE Conference,1991:60—70
    [39] M.Jovanovic et al, Evaluation of Synchronous -rectification Eficiency Improvement Limits in Forward Converters, IEEE Transactions on Industrial Electronics,1995,42(4),387—395.
    [40] P.Holmberg, Robust ultrasonic range finder-an FFT analysis. Meas Sd Teemol, 1992, 1025-1037.
    [41] TL494A Data Sheet, Texas Instruments,1993
    [42] 李贵山,PCI局部总线开发指南,西安,西安电子出版社,1995
    [43] 范大鹏,刘刚,方兴未艾的开放式运动控制技术,机床与自动化加工技术,1999(9), :1-2
    [44] 周明德,徽型计算机系统原理及应用(第三版),北京,清华大学出版社,1999
    [45] PCI9052 Data Sheet, PLX Technology, 2001
    [46] 武安河,邰铭,于洪涛,WDM 设备驱动程序开发, 北京,电子工业出版社 1998
    [47] 张增辉,沈激,陈子瑜,韦东山,核电子学与探测技术,2006,.26 (3),367-369
    [48] R.Liptai,H.Dunegan,C.Tatro, Acoustic Emissions Generated During Phase Transformations in Metals and Alloys, International Journal of Nondestructive Testing, 1969, 1, 213-221
    [49] H.Gu, W,W,Duley, Resonat Acoustic Signals During Laser Welding of Metals, Journal of Physics D: Applied Physics, 1996, 29(3), 550-555
    [50] S.Nafarajan, B.A.Chin, Infrared Image Analysis for Online Monitoring of Arc Misalignement in Gas Tungsten Arc Welding Processes, Materials Evaluation, 1990, 48,1469-1472
    [51] D.Maischner, Monitoring the Degree of Full Penetration in Laser Beam Welding,Proceedings of the 10th Interntional Congress Laser91, Munchen, 1991,515-518
    [52]C.Fortunko,R.Schramm, Ultrasonic Nondestructive Evaluations of Butt Welds Using Electromagnetic-Acoustic Transducers, Welding Journal, 1982, 2, 39-46
    [53]K.Hogverg, Ultrasonic Testing Using the EMAT Technique, Materials & design, 1992, 14(4), 923-928
    [54]W.Jolly, Acoustic Emission Exposes Cracks During Welding,Welding Journal,1969,1, 328-331
    [55]W.Chan et al, Classification of Acoustic Emission Signals Generated During Welding, Journal of Acoustic Emission, 1985, 4 (4), 115-123
    [56]G.Habenicht et al, Quality Assurance of Laser Spot Welds with Acoustic Emission Analysis Using the Example of Selected Copper Alloys, Welding and Cutting, 1991, 43(10), 213-215
    [57]C. Fang, E.Kannatey-Asibu, J.Barber, Acoustic Emission Investigation of Cold Crackong in Gas Metal Arc Welding of AISI4340 Steel, Welding Journal, 1995, 177-184
    [58]G.Speich, A.Schwoble, Acoustic Emission During Phase Transformation in Steel, ASTMSTP 1975, 571, 40-58
    [59]E.Kannatey-Asibu, D.Pingsha, Analysis of Acoustic Emission Signal Generation During Martensitic Transformation, ASME Journal of Engineering for Industry, 1986, 108(11), 328-331
    [60]O.Bartenev et al, Acoustic Emission Monitoring of Joints Made by Laser Welding, Russian Ultrasonics, 1988,18(6), 369-372
    [61]W.Shimada et al, A Study on in-Process Assessment of Join Efficiency in Laser Welding Process, Proceedings of the 4th International Symposium of the Japan Welding Society, 1982, 175-180
    [62]R.Dixon, G.Lewis, The Influence of a Plasma During Laser Beam Welding, Welding Journal, 64, 43-48
    [63]L.Li, W.M.Steen, Non-contact Acoustic Emission Monitoring During Laser Processing, ICALEO’92, 1992, 75, 719-728
    [64]J.C.Mombo-Caristan et al, Seam Geometry Monitoring for Tailored Welded Blanks, ICALEO’91, 1991, 74, 123-132
    [65] H.Gu, W.W.Duley, Acoustic Emission and Optimized CO2 Laser welding of Steel Sheets, ICALEO’94, 1994, 79, 77-85
    [66] 姜焕中,电弧焊及电渣焊,北京,机械工业出版社,1988.9-14
    [67] N.Abe, Y.Kunugita, Dynamic Observation of High Speed Laser-Arc Combination Welding of Thick Steel Plates. Section G.ICALEO’97 1997.155-163
    [68] 刘金和, 杨德才, 陆开静. 激光等离子体负透镜效应. 第八届全国光电 技术与系统学术会议论文专辑, 138-141.
    [69] M.Aden, E.W. Kreutz, O.Hausen,. Influence of the laser radiation on the plasma dynamics during arc-laser welding, Section C-ICALEO’98, 1998, 139-148
    [70] 史俊峰, 肖荣诗, 左铁钏, 激光深熔焊光致等离子体行为与控制. 激光 杂志, 2000, 21(5), 40-42
    [71] H.Gu, W.W.Duley, Acoustic Emission from Modulated Laser Beam Welding of Materials, Journal of Laser Applications, 1996, 8, 205-210
    [72]M. K. Apalak, K. Aldas, F. Sen, Thermal non-linear stresses in an adhesively bonded and laser spot welded single-lap joint during laser-metal interaction, J. Materials Processing Technology, 2003,142,1-19.
    [73]S. Baik, S. Park, C. Kim, S. Kim, Holographic visualization of laser-inducedplume in pulsed laser welding, Optics and Laser Technology, 2001, 33, 67-70.
    [74]J. R. Barber, Thermoelastic displacements and stresses due to a heat srouce moving over the surface of half plane, J. Appl. Mech., 1984, 51, 36-640.
    [75]C. Chaleard, V. Detalle, S. Kocon, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, P. Palianov, M. Perdrix, G. Petite, B. Salle, B., and A. Semerok, Influence of laser pulse duration on the ablation efficiency of metals, Proc. SPIE, 1986, 3404, 441-448.
    [76]C. Chan, J. Mazumder, and M. M. Chen, Effect of surface tension gradient driven convection in a laser melt pool: three-dimensional perturbation, J. Appl. Phys. 1988,, 64, 6166-6174.
    [77]R. T. C. Choo, J. Szekely, The possible role of turbulence in GTA weld pool Behavior, Welding J, 1994, 73, 25-31.
    [78]Y. Dain, P. D. Kapadia, J. M. Dowden, The distortion gap width and stresses in laser welding of thin elastic plates, J. Phys. D: Appl. Phys., 1999, 32, 168-175.
    [79]R. Ducharme, K. Williams, P. Kapadia, J. Dowden, B. Steen, and M. Glowacki, The laser welding of thin metal sheets: an integrated keyhole and weld pool model with supporting experiments, J. Phys. D: Appl. Phys., 1994,27, 1619-1627.
    [80]A. M. El-Batahgy, Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels, Materials Letters, 1997, 32, 155-163.
    [81]G. Fan, Y. Guan, J. Zhang, and H. Wang, Finite element method analysis for temperature field influence by applied stress during laser processing, Proc. SPIE, 1998,3550,357-365.
    [82]B. R. Finke, P. D. Kapadia, and J. M. Dowden, A fundamental plasma based model for energy transfer in laser material processing, J. Phys. D: Appl. Phys. 1990,, 23:643-654.
    [83]M. R. Frewin and D. A. Scott, Finite element model of pulsed laser welding, Welding J., 1999,78:15-22.
    [84]S. Fujii, N. Takahashi, S. Sakai, T. Nakabayashi, M. Muro, Development of 2D simulation model for laser welding, Proc. SPIE, 2000, 3888:115-214.
    [85]C. Furlong, R. J. Pryputniewicz, J. S. Yokum, Sensitivity, accuracy, and precision considerations of quantitative optical metrology based on high-spatial and highdigital resolution cameras, Proc. SPIE, 2002, 4777, 74-82.
    [86]C. Furlong, J. S. Yokum, R. J. Pryputniewicz, Confocal optoelectronic holography for shape characterization of nanoindentation sites, Proc. 4th Internat. Symp.on MEMS and Nanotechnology (4th-ISMAN), Charlotte, NC, 2003,325-332.
    [87]M. Ghoreishi, D. K. Y. Low, L. Li, Comparative statistical analysis of hole taper and circularity in laser percussion drilling, Int. J. Machine Tools & Manufacture, 2002,42, 1985-995.
    [88]Y. Guan, Numerical analysis of temperature field during laser heating and Cooling, Proc. SPIE, 1998, 3550, 223-228.
    [89]W. Han and R. J. Pryputniewicz, Study of a laser microwelding process for microelectronics and packaging, Proc. 2001 IMAPS International Symposium on Microelectronics, 2001, 713-716.
    [90]W. Han, Investigations of high power laser percussion drilling of small holes in thin metal sheets for microelectronic packaging, Proc. 2004 Graduate Student Symposium on Mechanics and Packaging, 2004, 61-62.
    [91]G. Herziger, Physics of laser materials processing, Proc. SPIE, 1986, 650, 188-194. G. Herziger, E. W. Kreutz, K. Wissenbach, Fundamentals of laser processing of materials, Proc. SPIE, 1986, 658, 2-10. R. B. Hetnarski, 1986, Thermal stresses I, North-Holland, New York, NY.
    [92]X. Jin, L. Li, An experimental study on the keyhole shapes in laser deep penetration welding, Optics and Lasers in Engineering, 2003, 40, 239-246.
    [93]J. Kroos, U. Gratzke, M. Vicanek, and G. Simon, Dynamic behavior of the keyhole in laser, J. Phys. D: Appl. Phys., 1992,26, 481-485.
    [94]D. K. Y. Low, L. Li, A. G. Corfe, Effects of assist gas on the physicalcharacteristics of spatter during laser percussion drilling of NIMONIC 263 alloy, Appl.Surface Science, 2000, 154, 689-695.
    [95]C. Marley, Laser welding photonic devices, Industrial Laser Solutions, pp. 2002, 9-14.
    [96]B. Martin, A. Loredo, M. Pilloz, D. Grevey, Characterization of CW Nd:YAG laser keyhole dynamics, Optics and Laser Technology, 2001, 33, 201-207.
    [97]J. M. Ruselowski, Laser selection for drilling, Proc. SPIE, 1987, 744, 106-123.
    [98]V. Semak and A. Matsunawa, The role of recoil pressure in energy balance during laser materials processing, J. Phys. D: Appl. Phys., 1997, 30, 2541-2552.
    [99] 朱企业等,激光精密加工,北京,机械工业出版社,1990
    [100] 虞钢等,集成化激光智能加工工程,北京,冶金工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700