用户名: 密码: 验证码:
多枝分子材料合成以及双光子吸收性能与聚集态发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有共轭大π键的有机多枝分子具有较强的分子内电荷转移,枝与枝之间的耦合作用表现出强荧光行为。本文围绕“分子核,端基,聚集态与多枝分子荧光之间的关系以及发光机理”进行了研究。
     首先合成了十个新型具有共轭大π键的有机多枝化合物WF1-WF9,并确认了这十种分子的结构。其次,系统测试了十种新型化合物分子的溶液态荧光光谱和聚集态荧光光谱;纳米粒子SEM谱图。最后,详细讨论了分子结构,聚集态对有机分子荧光性能的影响。得出如下研究结果:
     1、在研究端基效应时发现,对于三苯胺系列化合物来说,随着枝的增加,吸光度并没有增大,反而,单枝的WF1,荧光强度最高。对于咔唑系列化合物来说,随着枝的增加,分子共轭度增大,多枝WF5相对于单枝WF4来说,吸光度明显增大。在研究核效应时发现,WF1分子的吸光度明显高于WF4,,三苯胺核类化合物的吸光度要高于咔唑类化合物。从发光强度来分析,WF1的荧光强度远远高于WF4的荧光强度。所以,从荧光光谱来分析,三苯胺系列化合物的发光性能要好于咔唑系列化合物。通过对WF1、WF2、WF4、WF5四种分子的双光子测试发现,随着枝的增加,荧光强度增大,由于核效应的影响,使WF1具有大的双光子荧光强度。
     2、温度对几种分子的聚集态发光起到了促进的作用。随着温度的降低,溶液的吸光度不断减小,发生红移,证明随着温度的降低溶液发生了聚集。随着温度的降低,荧光发射强度也相应升高,证明了温度的降低提高了辐射跃迁几率,降低了非辐射跃迁几率,降低了分子内转动速度。从有机分子溶液态和聚集态的光谱测试可知,从溶液态和聚集态,溶液的吸光度不断减小,发生红移,证明在不良溶液中发生了J-聚集。除WF3和WF9之外,其他物质在不良溶液中的荧光发射峰均得到不同程度的提高。说明十种化合物在不良溶液中均发生了不同程度的聚集,聚集的结果一般来说对于发光起到了积极的作用,但不是绝对的促进作用。
     3、从有机分子溶液态和聚集态的辐射衰减寿命测试和荧光量子产率计算以及表格分析可知,从溶液态到聚集态,查儿酮枝类化合物荧光量子产率均有增长,其中增加最多的为WF1分子。所以,不良溶液不但帮助发光分子聚集成颗粒,提高荧光发光强度,同时也降低了吸光度,提高了荧光量子产率,从而提高了荧光物种的光学稳定性。而且,Φf的提高离不开查儿酮基团的作用。从溶液态到聚集态,荧光衰减寿命增大,主要是因为辐射衰减速率增加,非辐射衰减速率降低所致。
Organic materials with large“π”conjugation possess strong intramolecular charge transfer and usually, result in strong fluorescence emission. Based on this idea, we designed and synthesized several chalcone-triphenylamine/carbazole chromophores that have obvious intramolecular charge transfer characteristic. Optical properties including absorption, one-photon fluorescence and two-photon fluorescence properties of chalcone-triphenylamine/carbazole chromophores in solution and aggregation as well as the state and the mechanism of aggregation luminous property.
     Firstly, ten new chromophores, named as WF1-WF9, have been synthesized and their structures have been confirmed. And their absorption, one-photon fluorescence or two-photon fluorescence properties in solution state have been measured. Secondly, we studied comparatively the fluorescence properties of newly synthesized chalcone-triphenylamine/carbazole chromophores in aggregation states and made nano particles.
     Finally, we discussed in detail the organic molecular fluorescence performance influence due to molecular structure and the state of aggregation
     The results have shown as follows:
     1、When we discussed group effect we found that, the molecular material owing the highest fluorescence intensity was the single branch molecular material WF1 in the chalcone-triphenylamine chromophores; multi-branched molecular material WF5 had the highest absorbance in chalcone-carbazole chromophores. At the same time, when we discussed nuclear effect we found that , the absorbance and fluorescence intensity of chalcone-triphenylamine chromophores were higher than chalcone-carbazole chromophores . So, we had the conclusion that luminescent properties of triphenylamine chromophore materials was more excellent than carbazole chromophore materials. And WF1 had good two-photon fluorescence intensity attributing the success to the nuclear effect
     2、Temperature had an effective promotion state to aggregation illumination. When dilute solutions were cooled from 50°C to -3°C, By recording emission spectra, it was found that emission efficiencies were increased as the temperature decreased. It indicated that the rotation of chromophores were effectively limited when the temperature decreased. Restricted molecular rotation resulted in the enhanced emission efficiency. From the solution state to the aggregation state , absorbance was weaker and red shift, it indicated that materials existed J-type aggregation in bad solutions.
     Fluorescence intensity was higher in bad solutions except for WF4 and WF9. It made a point that ten materials had varied aggregation in bad solutions and the result of the aggregation played an active role but not an absolutely stimulative effect 3、Fluorescent quantum yield of the materials increased from the solution state to the aggregation state and WF1 was most salient according to data analysis. So, the bad solutions did not only help glowing molecules gather the pellet, but also increase fluorescence intensity and fluorescent quantum yield, decrease absorbance. Thus it enhanced the fluorescence species optics stability. Futhermore, enhance ofΦf was concerned with chalcone group. The increment of the time was but for the most part center on radiation attenuation rate increase and non radiation attenuation rate decrease.
引文
[1] Zyss J., Chemla D.S., Academic, Orlando, Fla. 1987, Vol. 1:24
    [2] Hong Ma , Alex K-Y.Jen, [J] Advanced Materials, 2001,13, No.15:1201.
    [3] N. Bloembergen, in Nonlinear Spectroscopy, ed by N. Bloembergen, North-Holland, Amsterdam 1977
    [4]钱士雄,王恭明编著,非线性光学-原理与进展,复旦大学出版社,2001
    [5] Khoo. I. C., Chen. P. H., Wood. M. V., et.al. Chemical Physics[J], 1999, 245(1-3): 517
    [6]费逸伟,唐卫红,材料科学与工程[J], 1998, 16(2): 27
    [7] Beltrani. T., Bosch. M., Centore. R., et.al. Polymer[J], 2001, 42(9): 4025
    [8]姚华文,陈仲裕,侯立松等,材料报道[J], 2002, 16(1): 54
    [9] He G. S., Gvishi R., Prasad P. N. et.al. Optical Communications[J]. 1995, 117(1-2): 133
    [10] Sakai Y., Ueda M., Yahagi A. et.al. Polymers[J], 2002; 43(12): 3497
    [11]王筱梅,周玉芳,刘志强,蒋民华等,中国科学(E) [J], 2002, 32(1): 20
    [12] Debuigne F, Jeunieau L, Winme M., et al. Langmir, 2000, 16: 7605-7611.
    [13] Hu F Q, Hong Y, Yuan H. International Journal of Pharmaceutics, 273:29-35.
    [14] Magdassi S, Moshe M. Langmuir. 2003, 19: 939-942.
    [15] Bo Li, Kawakami T, Hiramatsu M. Applied Surface Sciense. 2003, 210: 171-176
    [16] Tamaki Y, Asahi T, Masuhara H. Applied Surface Science. 2000, 168: 85-88
    [17] LiS, HeL, xiongF., et al. Phys. Chem. B. 2004, 108: 10887-10892.
    [18] Hoshino N, Inahe T, Mitani T Maruyama, Y Bull. Chem. Soc. Jpn. 1988, 61: 4207-4214.
    [19] Fu H B, Yao J N, Size. J. Am. Chem. Soc. 2001, 123: 1434-1439.
    [20] Kim H Y, Bjorklund T G, Lim S H., et al. Longmuir. 2003, 19: 3941-3946.
    [21] Goppert-Mayer M.Ann.Physik. 1931,9:273
    [22] Kaiser W,Garrett C G B. Phys. Rev. Lett. 1961, 7: 229
    [23] Xu. C; Zipfel. W; Shear. J. B, et al. Proc. Nat .Acad. Sci. 1996, 93: 10763~10768.
    [24] Albota M, Beljonne D, Bredas J L et al. J Science. 1998,281:1653
    [25] Parthnopoulos D. A., Rentzepis P.. Science[J], 1989, 245: 843
    [26]汪国平,双光子技术的应用研究进展,物理[J], 2000,29(9): 546
    [27]雷虹,黄振立,汪河洲,有机材料的双光子吸收物理特性及其应用,物理[J], 2003, 32(1): 19
    [28]潘科君,王筱梅,闻荻江,非线性吸收激光光限幅材料研究进展,功能材料[J], 2003, 2: 143
    [29] Leite R. C. C., Proto S. P. S., Damen P. C., Appl. Phys. Lett.[J], 1967, 100(3):100
    [30]杨在富等,激光防护器材的研究现状及进展,激光杂志[J], 1999, 20(1):4
    [31] Cumpston B. H., Ananthaval S. P., Bsrlow S.. Nature[J], 1999, 398: 51
    [32] Kawata S., Sun H. B., Tanaka T.. Nature[J], 2001, 412: 697
    [33]袁大军,蒋中伟,徐藻等,双光子三维微细加工的进展,纳米技术与精密工程[J], 2004, 2(1): 50
    [34] Denk W., Strickler J., Webb W.. Science[J], 1990, 248: 73
    [35] Gu M.. Three dimensional confocal microscopy, World Scientific[J], 1996, 46: 563
    [36] He G S , Yuan L , Cui Y P , et al . J . Appl . Phys. 1997 ,81(6): 2529~2537
    [37] Prasad P N ,Bhawalkar J D , He GS , et al . US 6 402 037 , 2002
    [38] G S. He, R. Gvishi, P. N. Prasad et al. Opt. Comm. 1995, 117:133.
    [39] Lei H, Wei ZC and Wang XM. Chinese Journal of Lasers, 2001, 28(8): 761~763.
    [40] Wang C, Wang XM, Shao ZS, et al. Journal of Function Materials and Devices. 2001,7(4): 373~378.
    [41] Wang XM,Zhou Y F,Wang C, et al. Science in China (SeriesE). 2001,44(6):631~639.
    [42] Reinhardt B.A., Brott L.L, Clarson S.J., Dillard AG, Bhatt J.C, Kannan R, Yuan L, He G S, Prasad P N, Chem. Mater. 1998, 10:1863
    [43] Albota M, Beljonne D, Bredas J-L, Ehrlich J.E, Fu J-Y, Heikal A.A, Hess S.E, Kogej T., Levin MD,Marder S R, McCord-Maughon D., Perry J.W., Rockel H, Rumi M, Subramaniam G, Webb WW, Wu X-L, Xu C, J Science. 1998, 281: 1653.
    [44] Kim O. K., Lee K. S., Woo H. Y., Kim KS, He G. S., Swiatkiewicz J, Prasad P.N., J Chem. Mater. 2000, 12: 284.
    [45] Chung S J, RumiM, Alain V, et al. Strong, J Am Chem Soc. 2005, 127 (31): 10844 ~10845.
    [46] Chung S-J, Kim K-S, Lin T-C, He G S, Swiatkiewicz J, Prasad P.N, J Phys Chem B. 1999, 103: 10741~10745.
    [47] J. Yoo, S. K. Yang, M.Y. Jeong, H.C. Ahn, et al.Org. Lett. 2003, 5: 645.
    [48] Feng K, Mendonca C R, Bu X R, et al. J.Chem Commun.2004,10:1178~1180.
    [1] Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990; 248: 73-76.
    [2] Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee I-Y, McCord-Maughon D, Qin J, Rockel H, Rumi M, Wu X-L, Marder SR, Perry JW. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 1999; 398: 51-54.
    [3] Kawata S, Sun H-B, Tanaka T, Takada K. Finer features for functional microdevices. Nature 2001; 412: 697-698.
    [4] Straub M, Nguyen LH, Fazlic A, Gu M. Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography. Optical Materials 2004; 27: 359-364.
    [5] Parthenopoulos DA, Rentzepis PM. Three-dimensional optical storage memory. Science 1989; 245: 843-845.
    [6] Bhawalkar JD, He GS, Park C-K, Zhao CF, Ruland G, Prasad PN. Efficient, two-photon pumped green upconverted cavity lasing in a new dye. Optics Communications 1996; 124: 33-37.
    [7] He GS, Xu GC, Prasad PN, Reinhardt BA, Bhatt JC, Dillard AG. Two-photon absorption and optical-limiting properties of novel organic compounds. Optics Letters 1995; 20: 435-437.
    [8] Bhawalkar JD, Kumar ND, Zhao CF, Prasad PN. Two-photon photodynamic therapy. Journal of Clinical Laser Medicine and Surgery 1997; 15: 201-204.
    [9] Albota M, Beljonne D, Bredas J-L, Ehrlich JE, Fu J-Y, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Rockel H, Rumi M, Subramaniam G, Webb WW, Wu X-L, Xu C. Design of organic molecules with large two-photon absorption cross sections. Science 1998; 281: 1653-1655.
    [10] Mongin O, Porres L, Moreaux L, Mertz J, Blanchard-Desce M. Synthesis andPhotophysical Properties of New Conjugated Fluorophores Designed for Two-Photon-Excited Fluorescence. Organic Letters 2002; 4: 719-722.
    [11] Chung S-J, Kim K-S, Lin T-C, He GS, Swiatkiewicz J, Prasad PN. Cooperative Enhancement of Two-Photon Absorption in Multi-branched Structures. Journal of Physical Chemistry B 1999; 103: 10741-10745.
    [12] Yoo J, Yang SK, Jeong M-Y, Ahn HC, Jeon S-J, Cho BR. Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene Derivatives with Large Two-Photon Absorption Cross-Sections. Organic Letters 2003; 5: 645-648.
    [13] Brousmiche DW, Serin JM, Frechet MJ, He GS, Lin TC, Chung SJ, Prasad PN, Kannan R, Tan LS. Fluorescence Resonance Energy Transfer in Novel Multiphoton Absorbing Dendritic Structures. Journal of Physical Chemistry B 2004; 108: 8592-8600.
    [14] Pond SK, Rumi M, Levin MD, Parker TC, Beljonne D, Day MW, Bredas J-L, Marder SR, Perry JW. One- and two-photon spectroscopy of donor-acceptor-donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity. Journal of Physical Chemistry A 2002; 106: 11470-11480.
    [15] Ventelon L, Morel Y, Baldeck P, Moreaux L, Mertz J, Blanchard-Desce M. Novel quadrupolar extended biphenyl derivatives with enhanced nonlinear absorptivities for optical limiting applications. Nonlinear Optics, Principles, Materials, Phenomena, and Devices 2001; 27: 249-258.
    [16] Porres L, Mongin O, Blanchard-Desce MH, Ventelon L, Barzoukas M, Moreaux L, Pons T, Mertz J. Molecular engineering of nanoscale quadrupolar chromophores for two-photon absorption. Proceedings of the SPIE - The International Society for Optical Engineering 2003; 4797: 284-292.
    [17] Blanchard-Desce Mireille (Synthese et Electrosynthese Org., Campus Scientifique de Beaulieu, Universite de Rennes 1), Ventelon L, Moreaux L, Mertz J. Optimization of quadrupolar chromophores for molecular two-photon absorption. Synthetic Metals 2002 ; 127 : 17-21.
    [18] Cho BR, Son KH, Lee SH, Song Y-S, Lee Y-K, Jeon S-J, Choi J-H, Lee H, Cho M. Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives. Journal of the American Chemical Society 2001; 123: 10039-10041.
    [19] Cho BR, Piao MJ, Son KH, Lee SH, Yoon SJ, Jeon S-J, Choi J-H, Lee H, Cho M. Nonlinear Optical and Two-Photon Absorption Properties of1,3,5-Tricyano-2,4,6-tris(styryl)benzene-Containing Octupolar Oligomers. Chemistry - A European Journal 2002; 8: 3907.
    [20] Hua JL, Li B, Meng FS, Ding F, Qian SX, Tian H. Two-photon absorption properties of hyperbranched conjugated polymers with triphenylamine as the core. Polymer 2004; 45: 7143-7149.
    [21] Wang XM, Yang P, Xu GB, Jiang WL, Yang TS. Two-photon absorption and two-photon excited fluorescence of triphenylamine-based multibranched chromophores. Synthetic Metals 2005; 155: 464.
    [22] Wang XM, Yang P, Li B, Jiang WL, Huang W, Qian SX, Tao XT, Jiang MH. Two-photon absorption of new multibranched chromophore with dibenzothiophene core. Chemical Physics Letters 2006; 424: 333.
    [23] Drobizhev M, Karotki A, Dzenis Y, Rebane A, Suo Z, Spangler CW. Strong cooperative enhancement of two-photon absorption in dendrimers. Journal of Physical Chemistry B 2003; 107: 7540-7542.
    [24] Shen L, Wang XM, Li B, Jiang WL, Yang P, Qian SX, Tao XT, Jiang MH. Two-photon absorption properties of substituted porphyrins. Journal of Porphyrins and Phthalocyanines 2006, 10 (3): 160.
    [25] Ren Y, Qian X, Tao XT, Wang L, Yu XQ, Yang JX, Jiang MH. Novel multi-branched organic compounds with enhanced two-photon absorption benefiting from the strong electronic coupling. Chemical Physics Letters 2005; 414: 253.
    [26] Lahankar S-A, West R,, Varnavski O, Xie X-B, Goodson T, Sukhomlinova L, Twieg R. Electronic interactions in a branched chromophore investigated by nonlinear optical and time-resolved spectroscopy. Journal of Chemical Physics 2004; 120: 337-440.
    [27] Drobizhev M, Karotki A, Dzenis Y, Rebane A, Suo Z, Spangler CW. Strong cooperative enhancement of two-photon absorption in dendrimers. Journal of Physical Chemistry B 2003; 107: 7540.
    [28] Zhou X, Feng JK, Ren AM. Theoretical investigation on the one- and two-photon absorption properties of multi-branched oligomers with truxenone center and fluorene branches. Chemical Physics Letters 2004; 397: 500-505.
    [29] Sun YH, Zhao K, Wang CK, Luo Y, Ren Y, Tao XT, Jiang MH. Two-photon absorption properties of multi-branched bis-(styryl)benzene based organicchromophores. THEOCHEM 2004; 682: 185
    [30] Porres L., Mongin O., Katan C., et al.. Org. Lett.[J], 2004, 6 (1): 47.
    [31] Lee H. J., Sohn J., Hwang J., et al.. Chem. Mater.[J], 2004, 16(3): 456.
    [32] Katan C., Terenziani F., Mongin O., et al.. J. Phys. Chem. A[J], 2005, 109(13): 3024.
    [33] Li B., Tong R., Zhu R., et al.. J. Phys. Chem. B[J], 2005, 109(21): 10705.
    [1] Luo J, Xie Z, Lam J W Y, et al. [J]. Chem. Commum., 2001, 1740-1741.
    [2] Tang B Z, Zhan X, Yu G, et al. [J]. J. Mater. Chem., 2001, 11: 2974-2978.
    [3] Chen J W, Xie Z L, Lam J W Y, et al. [J]. Macromolecules, 2003, 36: 1108-1117.
    [4] Ren Y, Lam J W Y, Dong Y Q, et al. [J]. J. Phys. Chem. B, 2005, 109 : 1135-1140.
    [5] Dong Y Q, Lam J W Y, Li Z, et al. [J]. Inorg. Organomet. Polym. Mater., 2005, 15: 287-291.
    [6] Sonoda Y K, Goto M D, Tsuzuki S J, et al. [J]. J. Phys. Chem. A, 2006, 110: 13379-13387.
    [7] Zhang H Q, Yang B, Zheng Y, et al. [J]. J. Phys. Chem. B, 2004, 108: 9571-9573.
    [8] Liu Y, Tao X T, Wang F Z, et al. [J]. J. Phys. Chem. C, 2007, 111: 6544-6549.
    [9]王筱梅,杨平,施琴芬,等,[J].化学学报, 2003, 61(10): 1646-1652.
    [10] Byeong-Kwan An, Soon-Ki Kwon, et al. [J]. J. AM. CHEM. SOC. 2002, 124: 14410-14415.
    [11] Zhijun Ning, Zhao Chen, et al. [J]. Adv. Funct. Mater. 2007, 17: 3799-3807
    [12] Chun-Xue Yuan, Xu-Tang Tao, et al. [J]. J. Phys. Chem. C 2007, 111: 12811-12816.
    [13] Ackroyd R, Kelty C, Brown N, et a1. [J]. Photochem Photobio1. 2001, 74(5): 656—669.
    [14] Huang Z. [J]. Photediag Photodyna Ther, 2006, 3(1): 3—10.
    [15] Guo C C, Ren T G , Song J X, et a1. [J]. Journal of Porphyrin and Phthalocyanine, 2005, 9(12): 830.
    [16] Moskvin L, Bulatov A, Rudenko E, et a1. [J].J Anal Chem, 2006, 6l(1):25-27
    [17] Gurkan R, Akcay M. [J]. Microchem J, 2003, 75: 39—49.
    [18] Bodo Hattendorf, Detlef Gunther. [J]. Spectrochim Acta B, 2003, 58(1):1-l3
    [19] Kim, J. Y.; Osterloh, F. E. J. Am. Chem. Soc. 2005, 127: 10152.
    [20] Peng, A. D.; Xiao, D. B.; M a, Y.; Yang, W . S.; Yao, J. N. et a1. [J]. Adv. Mater. 2005, 17:2070.
    [21] Tong H.; Dong, Y. Q.; et a1. [J]. Chem. Commun. 2006, 10: 1131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700