用户名: 密码: 验证码:
常温及火灾后轻骨料钢管混凝土柱的轴压力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内外对普通钢管混凝土柱的抗火性能开展了较多的研究,而对轻骨料钢管混凝土柱火灾行为的研究还比较少,尤其对自应力及钢纤维增强轻骨料钢管混凝土柱的火灾响应及火灾后力学性能的研究更加薄弱。本文以页岩陶粒做为粗骨料,通过在混凝土中分别掺入一定量的膨胀剂和钢纤维制作了两种不同性质的轻骨料钢管混凝土柱,并以此为对象开展了一系列轻骨料钢管混凝土柱的抗火性能研究。由于钢纤维的加入可有效抑制核心混凝土微裂缝的发展,改善轻骨料钢管混凝土的力学性能;而膨胀剂的加入可在一定程度上提高轻骨料混凝土刚度较低的问题。因此,对自应力及钢纤维增强轻骨料钢管混凝土力学性能的研究具有重要的理论意义和工程应用价值。
     本文首先以含钢率和膨胀剂掺量为变化参数对9组钢管约束下的自应力轻骨料混凝土的膨胀性能进行了试验研究。在此基础上,对6个自应力轻骨料钢管混凝土中长柱开展了承载下的火灾响应及火灾后轴压力学性能试验研究,并用Marc有限元软件对其火灾下的温度场进行了模拟。为了对比分析,制作了18个自应力轻骨料钢管混凝土短柱和24个钢纤维增强轻骨料钢管混凝土短柱,并分别开展了常温及火灾后轴压力学性能的试验研究。其中受火条件考虑了700℃受火(1.5h)和900℃受火(1.5h)两种情况。基于试验结果,对各组钢纤维轻骨料钢管混凝土柱及自应力轻骨料钢管混凝土柱的实验现象、破坏形态进行了观测与分析。得到了各组试件受火后的荷载-位移曲线及荷载-应变曲线,分析了各个参数对火灾后自应力轻骨料钢管混凝土柱及钢纤维轻骨料钢管混凝土柱的承载能力和变形能力的影响。同时对试件常温下的极限承载力及火灾后的剩余承载力进行了分析比较。
     试验结果表明,在轴压力作用下的自应力轻骨料钢管混凝土中长柱火灾后剩余承载力下降幅度与无荷载作用的轻骨料钢管混凝土短柱火灾后剩余承载力下降幅度相差不大。轻骨料钢管混凝土柱火灾后轴压破坏形态与常温下的情况基本一致。根据常温试件和火灾后试件的试验结果,钢纤维的掺量和膨胀剂的掺量对轻骨料钢管混凝土短柱承载力均有一定的影响。随着试件含钢率的增加,钢纤维和膨胀剂的增强效果逐渐减弱。初始自应力和钢纤维掺量对火灾后轻骨料钢管混凝土柱的承载力提高作用效果随火灾温度的升高而降低。根据试验结果,进一步分析了火灾温度对剩余承载力的影响规律,并基于普通钢管混凝土设计规程,提出了考虑自应力影响的轻骨料钢管混凝土短柱承载力计算方法。给出了考虑含钢率影响的钢纤维轻骨料钢管混凝土短柱承载力修正系数,经修正后的公式可用于常温下钢纤维轻骨料钢管混凝土柱承载力计算。
At present, the mechanical property of ordinary concrete filled steel tubes after firehas been studied by many researchers, but the research on lightweight aggregateconcrete filled steel tube is less, Especially to after stress and fire response and fire ofsteel fiber enhancement lightweight aggregate steel pipe concrete column the researchof mechanical properties is weaker. This shale ceramsite as coarse aggregate, made upinto a certain amount of steel fiber reinforced or expansive agent in lightweightaggregate concrete filled steel tube, formed of two kind of lightweight aggregateconcrete filled steel tube column. And objects carried out a series of study on fireresistance of lightweight aggregate concrete filled steel tube column. Core concrete ofsteel fiber can restrained the development of micro-cracks, improving themechanicalproperties of lightweight aggregate concrete filled steel tube. Lower stiffness oflightweight aggregate concrete expansive agent added can be improved to some extentTherefore, self--stress and mechanical properties of steel fiber reinforced lightweightaggregate concrete filled steel tube research is of great theoretical significance andapplication value.
     This article first of steel ratio and expansion agent fly to change parameters on the9groups of steel pipe under constraint stress study on expansion properties oflightweight aggregate concrete. On this basis,6from the SLCFST Middle long columnsunder the host of fire response and fire rear axle experimental study on mechanicalproperties and.the temperaturfield is simulated and analyzed by FEM software Marc Forcomparison,18SLCFST short columns and24SFCFST short columns, and were conducted at room temperature and fire-axle experimental study of mechanicalperformance. Under fire conditions taking into account the700°c under fire (1.5h) and900°c under fire (1.5h) two situations. Based on the experimental results, the group ofSFCFST column and SLCFST columns phenomena, failure modes observation andanalysis. After obtaining the loads of various group of test samples by fire-positioncurve and load-strain curve, analyzed each parameter to get a light from another lightafter the disaster from the SLCFST column and SFCFST column the influence ofbearing capacity and deformability. Ultimate bearing capacity and the fire in the roomtemperature of the specimen, the remaining carrying capacity compared
     Experimental results show that, under the top load fire testing of Middle longcolumns of SLCFST residual strength is close to the short columns of SLCFSTwithout loads of fire-residual strength. The axial compression damage form of SFCFSTand SLCFST after exposure to fire is in basic agreement with that of the columns atroom temperature, Based on specimens at room temperature and after fire test piece testresult, steel fiber volumn and expansive agent volumn had an impact on bearingcapacity of lightweight aggregate concrete filled steel tube Effect of steel fiber andexpansive agent volumn on the mechanical performance of SFCFST decreased withincrease of the steel ratio. The initial self-stress and steel fiber content is reduced toimprove bearing capacity of the column of CFST after the fire temperaturerising.The effect of fire temperature on the residual bearing capacity of the shortcolumns presented here was discussed based on the experimental results obtained here,and the method of calculation of axial compressive bearing capacity of SLCFST wasput forward based on the design guideline of ordinary concrete filled steel tubes, inwhich the effect of self-stress is especially considered. The revised formula can be usedfor calculation of axial compressive bearing capacity of SFCFST not subjected to fireload, Under the amended formula can be used for room temperature calculation ofbearing capacity of steel fiber reinforced lightweight aggregate concrete
引文
[1-1]钟善桐.钢管混凝土结构.[M]北京:清华大学出版社,2003
    [1-2]韩林海.钢管混凝土结构-理论与实践.[M]北京:科学出版社,2004
    [1-3]韩林海.钢管混凝土结构.[M]北京:科学出版社,2000
    [1-4]钟善桐.高层钢管混凝土结构[M]哈尔滨:黑龙江科学出版社,1999
    [1-5]蔡绍怀.现代钢管混凝土结构.[M]北京:人民交通出版社2003
    [1-6] Baant Z P, Zhou Y. Why did the world trade center collapse-simple analysis[J]. Journal ofEngineering Mechanics,2002,128(1):2-6..
    [1-7] Kitada T.Ultimate strength and ductility of state of the art concrete-filled steel bridgepiers inJapan[J].Engineering Structures,1998,20,4-6:347-354
    [1-8]杨杰,税强.钢管混凝土的研究发展状况.工程结构,2008(25),174-175
    [1-9] Morishita,Y.,Tomii,M.and Yoshimura,K..Experimental studies on bond strength in concretefilledcircular steel tubular columns subjected to axial loads.[J] Transactions of JapanConcrete Institute,1979a,(1):351-358.
    [1-10] Neogi P.K., Sen H.K., Chapman J.C.Concrete-filled tubular steel columns under eccentricloading.[J] The Structural Engineer.1969,47(3):187-195
    [1-11] Tomii M., Toshimra K. and Morshita Y. Experimental studies on concrete filled steel tubularstub columns under static and dynamic loads.[R] Wahingdon DC, May1977,718-741
    [1-12] Kato B., Kanatani H. Experimental studies on the CFST columns. Steel StructuresLaboratory Report.[R] Tokyo University. Oct.1966
    [1-13] Richard W. Furlong. Design of steel encased concrete beam-columns.[J] Journal of theStructural Division, ASCE.1968,94(1):267-281
    [1-14] Robert B. Knowles, Robert Park. Axial load design for concrete-filled steel tubes[J]. Journalof the Structural Division, ASCE.1970,96(10):2125-2153
    [1-15] Philip F. Boyd, William F. Cofer and David I. Mclean. Seismic performance of thesteel-encased concrete under flexural loading.[J] ACI Journal.1995,92(3):355-364
    [1-16] T. Ninakawa and K. Sakino. Inelastic behavior of concrete filled circular steel tubularcolumnx subjected to uniform cyclic bending moment.[R] Eleventh World Conference onEarthquake Engineering. Paper No.1538
    [1-17]左明生,张正国.方钢管混凝土轴压短柱在短期一次静载下的基本性能研究.[J]郑州工学院学报.1985,2
    [1-18]张正国.方钢管混凝土中长轴压柱稳定分析和实用设计方法.[J]建筑结构学报1993
    [1-19] Burr.W.H.,Composite columns of concrete and steel,[J] Proceedings ICE Vol.188,1912,P114-126
    [1-20] Swain.F.W.and Holmes.A.F..An Investigation of Strength and Elastic PropertiesofConcrete-Filled pipe Columns [J].Proc.ASTM.1919.15.PartII,pp.230-244
    [1-21] Lally Handbook of Lally Column Construction(Steel Column-Concrete Filled)[J].Tenthedition.New York:Lally Column Companies.1926
    [1-22] Kloppel,V.K.and Goder,W..An investigation of the load carrying capacity of concrete-filledsteel tubesand development of design formula.[J] DerStahlbau,1957a,26(1):1-10.
    [1-23] Kloppel,V.K.and Goder,W..An Investigation of the load carrying capacity of concrete-filledsteel tubesand development of design formula [J].Der Stahlbau,1957b,26(2):44-50.
    [1-24] Gardner.N.J.and Jacobson.E.R..Structural Behaviour of Concrete Filled Steel Tubes[J].Journal of American Concrete Institute,1967,64(7):404-412
    [1-25] Gardner.N.J..Useof Spiral Welded Steel Tubes in Pipe Columns [J].Journal ofAmericanConcrete Institute,1968,65(11):937-942
    [1-26] Furlong,R.W..Strength of steel-encased concrete beam-columns [J].Journal of StructuralDivision,ASCE,1967,93(ST5):113-124.
    [1-27] Knowles,R.B.and Park,R..Axial load design for concrete filled steel tubes.[J] Journal ofStructuralDivision,ASCE,1970,96(ST10):2125-2153.
    [1-28] Knowles,P.R..Composite steel and concrete construction.John Wiley and Sons,[R] Inc.,NewYork,U.S.A,1973.
    [1-29] Bode,H..Columns of steel tubular sections filled with concrete-design and application[J].Acier Stahl Steel,1973,11-12:388-393.
    [1-30] Bridge,R.Q..Concrete filled steel tubular columns [C].Report No.R283,School of CivilEngineering,University of Sydney,Sydney,Australia,1976.
    [1-31] Furlong,R.W..Columns rules of ACI,SSLC,and LRFD compared.[J] Journal of StructuralDivision,ASCE,1983,109(10):2375-2386.
    [1-32] Ghosh,R.S..Strengthening of slender hollow steel columns by filling with concrete [J].Canadian Journal ofCivil Engineering,1977,4(2):127-133.
    [1-33] Knowles,R.B.and Park,R..Strength of concrete filled steel tubular columns [J].Journal ofStructuralDivision,ASCE,1969,95(ST12):2565-2587.
    [1-34] Knowles,R.B.and Park,R..Axial load design for concrete filled steel tubes.[J] Journal ofStructuralDivision,ASCE,1970,96(ST10):2125-2153.
    [1-35] Knowles,P.R..Composite steel and concrete construction.John Wiley and Sons,Inc.,NewYork,U.S.A,1973.
    [1-36] Morishita,Y.,Tomii,M.and Yoshimura,K..Experimental studies on bond strength in concretefilledsquare and octagonal steel tubular columns subjected to axial loads.[J] Transactions ofJapan ConcreteInstitute,1979b,(1):359-366.
    [1-37]TaskGroup20,SSRC..Aspecificationforthedesignofsteel-concretecompositecolumns[J].EngineeringJournal,AISC,1979,16(4):101-145.
    [1-38] Tomii,M.and Sakino,K..Experimental studies on the ultimate moment of concrete filledsquare steeltubular beam-columns[J].Trans.of AIJ,No.275,Tokyo,Japan,1979a:55-63.
    [1-39] Tomii,M.and Sakino,K..Elasto-plastic behavior of concrete filled square steel tubularbeam-columns[J].Trans.of AIJ,No.280,Tokyo,Japan,1979b:111-120.
    [1-40]Tomii,M.andSakino,K.Experimentalstudiesonconcretefilledsquaresteeltubularbeam-columnssubjectedtomonotonicshearingforceandconstantaxialforce.[J]Trans.ofAIJ,No.281,Tokyo,Japan,1979c:81-90.
    [1-41] Tomii,M.,Yoshimaro,K.and Morishita,Y..Experimental studies on concrete filled steel tubularstubcolumn under concentric loading.Proceedings of the International Colloquium onStabilityofStructuresunderStatic and Dynamic Loads[J], SSRC/ASCE/(Washington),1977:718-741.
    [1-42] Virdi,K.S.and Dowling,P.J..Bond strength in concrete filled circular steel tubes[C].CESLICReportCC11,Department of Civil Engineering,Imperial College,London,1975.
    [1-43] Sakino,K.and Tomii,M..Hysteretic behavior of concrete filled square steel tubularbeam-columns failedin flexure.[J]Transactions of the Japan Concrete Institute,1981,(3):439-446.
    [1-44] Morishita,Y.and Tomii,M..Experimental studies on bond strength between square steel tubeandencased concrete core under cyclic shearing force and constant axial force.[J]Transactions of JapanConcrete Institute,1982,(4):363-370.
    [1-45] Tomii,M.,Yoshimura,K.and Morishita,Y..A method of improving bond strength in betweensteel tubeand concrete core cast in circular steel tubular columns.[J]Transactions of JapanConcrete Institute,1980a,(2):319-326
    [1-46] Tomii,M.,Yoshimura,K.and Morishita,Y..A method of improving bond strength in betweensteel tubeand concrete core cast in square and octagonal steel tubular columns.[J]Transactions of Japan ConcreteInstitute,1980b,(2):327-334
    [1-47]Virdi,K.S.andDowling,P.J..Bondstrengthinconcretefilledsteeltubes.[J]IABSEProceeding,P-33/80,1980:125-139
    [1-48] Ichinose,L.H.,Watanabe,E.and Nakai,H..An experimental study on creep of concrete filledsteel pipes.[J]Journal of Constructional Steel Research,2001,57(4):453-466.
    [1-49]Morino,S.,Kswanguchi,J.andCao,Z.S..Creepbehaviorofconcretefilledsteeltubularmembers.Proceedingsofanengineeringfoundationconferenceonsteel-concretecompositestructure,[J]ASCE,Irsee,1996:514-525.
    [1-50] Nakai,H.,Kurita,A.and Ichinose,L.H..An experimental study on creep of concrete filled steelpipes.[C]Proceedingsof3rdInternationalConferenceonSteelandConcreteCompositeStructures,Fukuoka,Japan,1991:55-60.
    [1-51] ACI318-99.Building code requirements for structural concrete and commentary.FarmingtonHills(MI,)[R]AmericanConcreteInstitute,Detroit,U.S.A,1999.
    [1-52]AISC.LoadandResistanceFactorDesign(LRFD).SpecificationforStructuralSteelBuildings.[R]American Institute of Steel Construction,Inc.,Chicago,Sept.1994.
    [1-53] Architectural Institute of Japan(AIJ)[R].RecommendationsforDesignand ConstructionofConcrete Filled Steel Tubular Structures.Oct.,1997.
    [1-54] Eurocode4."DesignofSteelandConcreteStructures,Partl.l,GeneralRules an Rules doeBuilding." DD ENV1994-1-1:1996,[R]British Standards Institution,London WIA2BS
    [1-55] Kato,B.Column curves of steel-concrete composite members[J].Journal ofConstructionalSteel Research,1996,39(2):121-135
    [1-56] Matsui,C,.Tsuda,K.and Ishibashi,Y..Slender concrete filled steel tubular columns undercombinedcompressionandbending[C].StructuralSteel,PSSC95,4thPacificStructuralSteelConference,Vol.3,Steel-Concrete Composite Structures,Singapore,1995,29-36.
    [1-57] O’shea,M,D,and Bridge,R.D..Tests on circular thin-walled steel tubes filled with medium andhigh strength concrete[R].Department of Civil Engineering Research Report No. R755,theUniversity of Sydney,Sydney, Australia,1997a.
    [1-58] Lakshmi,B.and Shanmugam,N.E..Nonlinear analysis of in-filled steel-concretecompositecolumns[J].Journal of Structural,ASCE,2002,128(7):922-933
    [1-59] Bradford,M.A.,Loh,H.Y.and Uy,B..Slenderness limits for filled circular steel tubes[J].Journalof Constructional Steel Research,2002,58(2):243-252.
    [1-60] Johansson,M.and Gylltoft,K..Structural behavior of slender circular steel-concrete compositecolumns under various means of load application[J].Steel and Composite Structures,2001,1(4):393-410.
    [1-61]汤关祚、招炳泉、竺惠仙、沈希明.钢管混凝土基本力学性能的研究[J]建筑结构学报,1982,(1):13-31.
    [1-62]蔡绍怀、焦占拴.钢管混凝土短柱的基本性能和强度计算[J]..建筑结构学报,1984,5(6):13-29.
    [1-63]蔡绍怀.钢管混凝土结构的计算与应用[M]..北京:中国建筑工业出版社,1989.
    [1-64]蔡绍怀、邸小坛.钢管混凝土偏压柱的性能和强度计算.[J].建筑结构学报,1985,6(4):32-41.
    [1-65]蔡绍怀、顾万黎.钢管混凝土长柱的性能和强度计算[J]..建筑结构学报,1985a,6(1):32-40.
    [1-66]蔡绍怀、顾万黎.钢管混凝土抗弯强度的试验研究.[J].建筑技术通讯(建筑结构),1985b,(3):28-29.
    [1-67]蔡绍怀、陆群.钢管混凝土悬臂柱的性能和承载能力计算[J]建筑结构学报,1992,13(4):2-11.
    [1-68]顾维平、蔡绍怀、冯文林,.钢管高强混凝土长柱性能和承载能力的研究[J].建筑科学1991,(3):3-8.
    [1-69]顾维平、蔡绍怀、冯文林.钢管高强混凝土偏压柱性能与承载能力的研究[J]..建筑科学,1993,(3):8-12.
    [1-70]蔡绍怀.我国钢管混凝土结构的最新进展.[J].土木工程学报,1999,32(4):16-26
    [1-71]韩林海、钟善桐.钢管混凝土力学[M]..大连:大连理工大学出版社,1996.
    [1-72]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报,2001,34(4):22-31.
    [1-73]韩林海,杨有福.现代钢管混凝土结构技术.[M]中国建筑工业出版社,2007
    [1-74]钢壳混凝土的试验研究[M].哈尔滨:中国科学院土木建筑研究所,1960:124
    [1-75]韩林海,钢管混凝土结构理论与实践[M].北京,科学出版社,2004
    [1-76]蔡绍怀.现代钢管混凝土结构(修订版)[M].人民交通出版社,2007
    [1-77]钟善桐.钢管混凝土统一理论研究和应用.北京[M]:清华大学出版社,2006
    [1-78]钟善桐.钢管混凝土在我国的应用和发展[J].建筑结构,2001,(2)
    [1-79]钟善桐.钢管混凝土结构(第二版)[M].哈尔滨:黑龙江科学技术出版社,1994.
    [1-80]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1999.
    [1-81]李继诗钢管混凝土轴压承载力的研究.[J].工业建筑,1985,(2):25-31.
    [1-82]吕西林.余勇.陈以一轴心受压方钢管混凝土短柱的性能研究试验[J]..建筑结构,1999,(10):41-43.
    [1-83]谭克锋和蒲心诚.钢管超高强混凝土长柱及偏压柱的性能与极限承载能力的研究[J]..建筑结构学报,2000,21(2):12-19.
    [1-84]谭克锋.蒲心诚和蔡绍怀.钢管超高强混凝土的性能与极限承载能力的研究[J]..建筑结构学报,1999,20(1):10-15.-189
    [1-85]王力尚和钱稼茹.钢管高强混凝土柱轴心受压承载力试验[C]..高强与高性能混凝土及其应用第四届学术讨论会论文集,长沙,2001:455-459.
    [1-86]王力尚.钱稼茹钢管高强混凝土柱轴心受压承载力试验研究.[J].建筑结构,2003,37(7):46-49.
    [1-87]余勇、吕西林轴心受压方钢管混凝土短柱的性能研究:[J].建筑结构,2000,30(2):43-46.
    [1-88]余志武丁发兴.林松钢管高性能混凝土短柱受力性能研究[J].建筑结构学报,2002,23(2):41-47.
    [1-89]张素梅和周明.方钢管约束下混凝土的抗压强度[c]..哈尔滨建筑大学学报(中国钢协钢-混凝土组合结构协会第七次年会论文集),1999,(3):14-18.
    [1-90]贺锋,周绪红,唐昌辉.钢管高强混凝土轴压短柱承载力性能的试验研究[J].工程力学,2000,17(4):61-66.
    [1-91]国家建筑材料工业局标准JCJ01-89.钢管混凝土结构设计与施工规程.[S].上海:同济大学出版社,1989.
    [1-92]中国工程建设标准化协会标准CECS28:90.钢管混凝土结构设计与施工规程[s]北京:中国计划出版社,1992.
    [1-93]中华人民共和国电力行业标准DL-5085/T-1999.钢-混凝土组合结构设计规程[s]北京:中国电力出版社,1999.
    [1-94]中华人民共和国国家军用标准GJB4142-2000.战时军港抢修早强型组合结构技术规程.
    [s]北京:中国人民解放军总后勤部,2001.
    [1-95]中国工程建设标准化协会标准CECS159:2004.矩形钢管混凝土结构技术规程.[s]北京:中国计划出版社,2004
    [1-96]福建省工程建设地方标准DBJ13-51-2003.钢管混凝土结构技术规程,[s]福州,2003.
    [1-97]天津市工程建设标准DB29-57-2003.天津市钢结构住宅设计规程[s].天津,2003.
    [1-99]张素梅,刘界鹏,马乐,邢涛.圆钢管约束高强混凝土轴压短柱的试验研究与承载力分析[J].土木工程学报,2007,40(3):24-31.
    [1-100]张素梅,王玉银.圆钢管高强混凝土轴压短柱的破坏模式[J].土木工程学报,2004,37(9):1-10.
    [1-101]丁发兴,余志武钢管混凝土短柱力学性能研究[J].工程力学,2005,22(3):134-138.
    [1-102]康希良,赵鸿铁,薛建阳,仵建斌.钢管混凝土套箍机理及组合弹性模量的理论分析[J].工程力学,2007,24(11):121-125.
    [1-103] Klingsch,W..New developments in fire resistance of hollow section structures.Symposiumon HollowStructural Sections in Building Construction[R],ASCE,Chicago Illinois, U.S.A,1985.
    [1-104]Klingsch,WOptimizationofcrosssectionsofsteelcompositecolumns.ProceedingsoftheThirdInternationalConferenceonSteel-ConcreteCompositeStructures(II)[R],ASCCS,Fukuoka,1991:99105
    [1-105] Hass, R.,1991. On realistic testing of the fire protectiontechnology of steel and cementsupport s [R]. TranslationBHPR/NL/T/1444,Melbourne,Australia
    [1-106] Kodur,V.K.R..Design equations for evaluating fire resistance of SFRC-filled HSS columns.
    [J]Journal ofStructural Engineering,1998a,124(6):671-677.
    [1-107] Kodur,V. K. R.,1998b. Performance of high st rength concrete-filled steel columnsexposed to fire [J]. CanadianJournal of Civil Engineering,25:975-981
    [1-108] Kodur,V. K. R.,1999. Performance-based fire resistancedesign ofconcrete-filled steelcolumns[J]. Journal of Constructional Steel Research,51(1):21-26
    [1-109] Kodur,V. K. R. and Lie, T. T.,1997. Evaluation of fire resistance of rectangular steelcolumns filled with fibre-reinforced concrete [J]. Canadian Journal of Civil Engineering,24:339-349
    [1-110] Kodur,V. K. R. and Sultan,M. A.,2000. Enhancing the fireresistance of steel columnsthrough composite construction[C]. Proceedings of the6th ASCCS Conference,ASCCS,Los Angeles,U. S. A.,279–286
    [1-111] Lie, T. T.,1994. Fire resistance of circular steel columnsfilled with bar-reinforcedconcrete[J]. Journal of St ructural Engineering,120(5):1489-1509
    [1-112] Lie, T. T. and Caron,S. E.,1988. Fire resistance of hollowsteel columns filled withsiliceous aggregate concrete: testresult s[R]. NRC-CNRC Internal Report,No.570,Ottawa,Canada
    [1-113] Lie, T. T. and Chabot M.,1988. Fire Resistance of hollowsteel columns filled withcarbonate aggregate concrete: testresult s[R]. NRC-CNRC Internal Report,No.573,Ottawa,Canada
    [1-114] Lie,T. T. and Chabot M.,1992. Experimental studies on the fire resistance of hollow steelcolumns filled with plain concrete[R]. NRC-CNRC Internal Report,No.611,Ottawa,Canada
    [1-115] Lie, T. T. and Stringer,D. C.,1994. Calculation of the fireresistance of steel hollowstructural section columns filledwith plain concrete [J]. Canadian Journal of CivilEngineering,21(3):382-385
    [1-116] Lie,T.T.and Irwin,R.J..Fire resistance of rectangular steel columns filled with bar-reinforcedconcrete.[J] Journal of Structural Engineering,ASCE,1995,121(5):797-805.
    [1-117] Lie,T.T.and Kodur,V.K.R..Fire resistance of steel columns filled with bar-reinforcedconcrete[J].Journalof Structural Engineering,1996,122(1):30-36.
    [1-118] Okada, T. Yamaguchi, T., Sakumoto, Y. and Keira, K.,1991. Load heat test s of full-scale columns ofconcrete-filled tubularsteel st ructure using fire-resistant steelforbuildings[C]. Proceedings oftheThirdInternationalConference on Steel-ConcreteComposite St ructures (I),AS2CCS,Fukuoka,J apan,101-106
    [1-119] Sakumoto Y. Okada T. Yoshida, M. and Tasaka, S.1994. Fire resistance of concrete-filled,fire-resistant steel-tube columns [J]Journal of Material in CivilEngineering,ASCE,6(2):169-184
    [1-120]Kim,D.KChoi,S.M.andChung,K.S..StructuralcharacteristicsofCFTcolumnssubjecttofireloadingandaxialforce[C].Proceedingsofthe6thASCCSConference,ASCCS,LosAngeles,USA,2000:
    [1-121]Bailey,C..Effective lengths of concrete-filled steel square hollow sections in fire.
    [R]ProceedingsoftheInstitutionofCivilEngineers,StructuresandBuildings(UK),2000,140(2)169-178
    [1-122]Baba,S.,Kobayashi,Y.and Tsujita,O..Fire resistance of reinforced concrete columns formedinsteeltube[C].Proceedingsofthe6thpacific structural steel conference. Beijing,China,2001,491-496.
    [1-123]CIDECT.Improvement and extension of the simple calculation method for fire resistance ofunprotectedconcrete filled hollow columns.CIDECT Research Project15Q[C],Finalreport,2004
    [1-124]韩林海.钢管混凝土在高温作用下温度场的非线性有限元分析[J].哈尔滨建筑大学学报,1997a,30(4):15-22
    [1-125]韩林海.恒(高)温下钢管混凝土的轴压力学性能.[J]哈尔滨建筑大学学报,1997b,30(5):64-70
    [1-126]韩林海,贺军利,吴海江等.钢管混凝土柱耐火性能的试验研究[J].土木工程学报,2000,33(3):31-36
    [1-127]韩林海,徐蕾.带保护层方钢管混凝土柱耐火极限的试验研究[J].土木工程学报,2000,33(6):63-69
    [1-128]韩林海,徐蕾,冯九斌等.钢管混凝土柱耐火极限和防火设计实用方法研究[J].土木工程学报,2002,35(6):6-13
    [1-129]冯九斌,韩林海,经建生等.钢管高强混凝土轴压柱耐火极限的试验研究.[J]消防科学与技术,2001,(1):7-9
    [1-130]霍静思.标准火灾作用后钢管混凝土压弯构件力学性能研究[D]哈尔滨:哈尔滨工业大学,硕士论文,2001年.
    [1-131]韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究.[J]工程力学,2001,18(6):100-109
    [1-132]韩林海,杨华,霍静思等.标准火灾作用后矩形钢管混凝土柱剩余承载力的研究[J].工程力学,2002,19(5):78-86
    [1-133] Han L H,Huo J S.Concrete-filled hollow structural steel columns after exposureto ISO-834fire standard.[J]Journal of Structural Engineering,2003,129(1):68-78
    [1-134] Han L H.Fire Resistance of Concrete Filled Steel Tubular Columns[J].Advancesin StructuralEngineering,1998,2(1):35-39
    [1-135] HanLH.Fire performance of concrete filled steel tubular beam-columns[J].Journal ofConstructional Steel Research,2001,57(6):695-709
    [1-136] Han L H,Xu L,Zhao X L.Tests and analysis on the temperature field withinconcrete filledsteeltubeswithorwithoutprotectionsubjectedtoaStandardfire.[J]AdvancesinStructuralEngineering,2003a,6(2):121-133
    [1-137] Han L H,Yang Y F,Xu L.An experimental study and calculation on the fireresistance ofconcrete-filledSHSandRHScolumns[J]JournalofConstructionalSteelResearch,2003b59(4):427-452
    [1-138]HanLH,ZhaoXL,YangYFetal.Experimentalstudyandcalculationoffireresistanceofconcrete-filledhollowsteelcolumns.[J]JournalofStructuralEngineering,2003c,129(3):346-356
    [1-139] GB50045-95.高层民用建筑设计防火规范.国家技术监督局,中华人民共和国建设部.[S]北京:中国计划出版社,1998.
    [1-140]浙江省工程建设地方标准.钢结构防火设计技术规程[S],送审稿,杭州,2003.
    [1-141]齐晗兵.高温(火灾)作用下钢管混凝土温度场研究[D].大庆:大庆石油学院,硕士论文.2003.
    [1-142]王海华.钢管混凝土构件在火灾条件下温度场分布有限元分析[D]天津:天津大学,硕士论文.2003.
    [1-143]侯景军,陈明祥.方钢管混凝土轴心受压柱耐火极限的有限元分析[J].建筑技术开发,2004,31(8):5-6,13.
    [1-144]孔祥谦.有限单元法在传热学中的应用.第三版[M].北京:科学出版社,1998.
    [1-145]余志武,丁发兴,林松.高温后钢管高性能混凝土轴压短柱力学性能研究[J].铁道学报,2003,25(4):71-79.
    [1-146]余志武丁发兴.林松钢管高性能混凝土短柱受力性能研究[J].建筑结构学报,2002,23(2):41-47.
    [1-147]赵文艳,王娜,张文福.火灾后方钢管混凝土侧向力-位移曲线的理论分析.[J]大庆石油学院学报,2003,27(1):74-77,115.
    [1-148]栾波.火灾后钢管混凝土短柱力学性能研究[D]长春:沈阳建筑工程学院:硕士论文.2004.
    [1-149]李明.恒高温后方钢管混凝土双向偏压柱的力学性能研究[D]长春:沈阳建筑工程学院:硕士论文.2005.
    [1-150]霍静思.火灾作用后钢管混凝土柱-钢梁节点力学性能研究[D]福州:福州大学:博士论文,2005.
    [1-151]杨华.火灾作用下(后)钢管混凝土柱力学性能研究.[D].哈尔滨:哈尔滨工业大学:博士论文,2003
    [1-152]杨华,韩林海.高温作用后圆钢管混凝土轴压力学性能研究[J].现代钢结构,2001,31(11):50-54.
    [1-153]栾波,刘明,姜绍飞.恒高温作用后圆钢管混凝土承载力的试验与分析[J].三峡大学学报,2003,25(5):416-420.
    [1-154]李帼昌刘之洋冯国会自应力钢管轻骨料混凝土轴压[J]哈尔滨建筑大学学报中国钢协钢_混凝土组合结构协会第五次年会论文集1995,28(5)34-40
    [1-155]李帼昌,刘之洋,冯国会,等.自应力钢管轻骨料砼轴压短柱的承载力计算[J].东北大学学报(自然科学版),1997,18(6):636-639
    [1-156]李帼昌,刘之洋,冯国会.自应力钢管轻骨料混凝土轴压中长柱的承载力计算[J].工业建筑,1997,27(9):6-9
    [1-157]李帼昌,冯国会,徐术陇,等.自应力钢管轻骨料砼的应力应变曲线分析[J].沈阳建筑工程学院学报,1997,13(3):247-251
    [1-158]李帼昌,刘之洋,于陶然自应力钢管轻骨料混凝土偏压构件的承载力[J]哈尔滨建筑大学学报1999,32(3)11-13
    [1-159]李帼昌,钟善桐,程丽华.自应力钢管轻砼中轻砼的本构关系及强度准则[J].工程力学增刊,1999,2(a02):337-341
    [1-160]李帼昌,刘之洋,向可诚自应力钢管轻骨料混凝土轴压中长柱的实验研究[J].沈阳大学学报(自然科学版),1998,2.2-6
    [1-162]李帼昌,刘之洋,于陶然自应力钢管轻骨料混凝土中核心混凝土的本构关系[J].沈阳建筑大学学报(自然科学版),1998,14(2):136-139
    [1-163]李帼昌,钟善桐.钢管约束下煤矸石混凝土的强度及横向变形系数[J].哈尔滨建筑大学学报,2002,35(3):20-23
    [1-164]李帼昌,曲赜胜,杨华.自应力钢管轻砼组合材料力学性能的试验研究[J].南京建筑工程学院学报,2002,(3):20-25
    [1-165]李帼昌,段长侠.钢管煤矸石砼偏压构件的承载力[J].辽宁工程技术大学学报,2003,22(2):202-204
    [1-166]邵玉梅,李帼昌.轻骨料钢管砼中核心砼的强度准则及本构关系[J].南方建筑,2005,(2):94-95
    [1-167]李帼昌,孙巍,邢忠华.钢管煤研石混凝土梁柱加强环中节点低周反复荷载试验[J1.沈阳建筑大学学报(自然科学版),2005,24(2):200一203
    [1-168]程丽华,秦桂娟,英瑞刚.含钢率对自应力钢管轻骨料砼紧箍力的影响[J].沈阳建筑工程学院学报,1997,13(3):303-305
    [1-169]王琳.自应力钢管轻混凝土组合材料的优越性能[J].混凝土,2002,(3):58
    [1-170]郑璇,赵均海,魏雪英,等.自应力钢管轻骨料混凝土柱的极限承载力分析[J].混凝土,2007(7):31-33.
    [1-171]蒋志超,郑璇,贾宝钢管轻骨料混凝土中长柱的极限承载力分析[J]山西建筑,2009,35(16)67-68
    [1-172]傅中秋,吉伯海,胡正清,等.钢管轻集料混凝土长柱轴压性能试验研究[J].东南大学学报(自然科学版),2009,39(3):546一551
    [1-173]傅中秋,吉伯海.长细比对钢管轻集料混凝土轴压柱受力性能的影响[J].工业建筑,2010,40(1):112一115
    [1-174]吉伯海,傅中秋,胡正清.钢管轻集料混凝土短柱偏心受压性能的试验[J]..交通科学与工程,2009,25(3):22一28
    [1-175]傅中秋,吉伯海,陈晶晶,等.钢管轻集料混凝土组合界面勃结滑移性能[J].河海大学学报(自然科学版),2009,37(3):317一322
    [1-176]吉伯海,陈甲树,王晓亮,等.受荷方式对钢管轻集料混凝土短柱轴压性能的影响[J].东南大学学报(自然科学版),2006,36(4):590-595.
    [1-177]吉伯海,王晓亮,马敬海,等钢管高强轻集料混凝土短柱轴压性能的试验研究[J].建筑结构学报,2005,26(5):6065.
    [1-178]吉伯海,胡正清,陈甲树,等.圆钢管轻集料混凝土构件抗弯性能的试验研究[J].土木工程学报,2007,40(8):3642.
    [1-179]吉伯海,周文杰,王晓亮.钢管轻集料混凝土中长柱轴压性能的试验研究[J].建筑结构学报,2007,28(5):118123.
    [1-180]傅中秋,吉伯海,胡正清,等.钢管轻集料混凝土长柱轴压性能试验研究[J].东南大学学报:自然科学版,2009,39(3):546551.
    [1-181]吉伯海,杨明,陈甲树,等.钢管约束下轻集料混凝土的紧箍效应及强度准则[J].桥梁建设,2006(4):11-14.
    [1-182]姜绍飞刘之洋自应力钢管轻骨料混凝土轴压短柱的性能分析[J]工业建筑19971-5
    [1-183]丁发兴,应小勇,余志武,欧进萍圆钢管轻骨料混凝土轴压短柱的力学性能分析[J]深圳大学学报理工版2011,28(3)207-211
    [1-184]雷崇,丁发兴圆钢管轻骨料混凝土轴压柱非线性有限元分析[J] 铁道工程学报,2011(6)68-71 
    [1-185] Kodur,V.K.R.and Lie,T.T..Fire resistance of circular steel columns filled with fiber-reinforcedconcrete.[J]Journal of Structural Engineering,ASCE,1996,122(7):776-782.
    [1-186] Kodur,V.K.R..Design equations for evaluating fire resistance of SFRC-filled HSS columns.[J]Journal oStructural Engineering,1998a,124(6):671-677.
    [1-187] Kodur,V.K.R..Performance of high strength concrete-filled steel columns exposed to fire.[J]CanadianJournal of Civil Engineering,1998b,25:975-981.
    [1-188] Kodur,V.K.R.and Sultan,M.A..Enhancing the fire resistance of steel columns throughcompositeconstruction[C].Proceedingsofthe6thASCCSConference,ASCCS,LosAngeles,U.S.A.,2000:279-286.
    [1-189] Kodur,V.K.R..Performance-based fire resistance design of concrete-filled steel columns.[J]Journal oConstructional Steel Research,1999,51(1):21-36.
    [1-190] Kodur V K R,Cheng F P,Wang T C. Effect of strengthand fiber reinforcement on fireresistance of highstrengthconcrete columns[J]Journal of StructuralEngineering,2003,129(2):253-259.
    [1-191] Gopal S R.Tests on reinforced concrete filled steeltubular columns [J]. Steel and CompositeStructures,2004,4(1):37―48.
    [1-192] Gopal S R,.Manoharan P D.Experimental behaviour ofeccentrically loaded slender circularhollow steelcolumns in-filled with fibre reinforced concrete [J].Journal of ConstructionalSteel Research,2006,62(5):513―520.
    [1-193] Campione G, Mendola L L, Sanpaolesi L, Scibilia N,Zingone G. Behavior of fiberreinforced concrete-filledtubular columns in compression [J]. Materials andStructures,2002,35:332―337.
    [1-194]高文博,王晓光,何正勇.钢纤维钢管混凝土短柱受压试验研究[J].武汉大学学报,2002,35(3):70―72.
    [1-195]陈娟.钢管钢纤维高强混凝土柱基本力学性能研究[D].武汉:武汉大学,2008.
    [1-196]余志伟,邓洪洲.钢纤维矩形钢管混凝土梁的研究[J]特种结构,2001,18(4):
    [1-197] DevadasM anoh aran P, Ram ana Gopal S. Experim en tal bahaviou r ofeccen trically loaded slender circu lar hollow steel co lumn s in-filledw eith fib re reinforced cocrete[J].Journal of Con structional SteelResearch,2006,62(5):513-520.
    [1-198] Ram an a Gopal S. Tests on rein forced con crete f illed steel tubu larcolumns[J]. Steel andComposite Stru ctures,2004,4(1):37-48.
    [1-199] Lin-H aiH an Zhong Tao, Dong-YeW ang. Experim ental behaviou rof con crete-filled stiffened thin-w al led steel tubular column s[J].Thin-Walled Structu res,2007,45(4):517-527.
    [1-200]卢亦焱,陈娟,李杉钢管钢纤维高强混凝土短柱轴心受压试验研究[J]建筑结构学报。2011,32(10)166-172
    [1-201]陈娟,卢亦焱,李杉钢管钢纤维高强混凝土轴压短柱的受力分析[J]工程力学28(9)115-121
    [1-202]王玉宝,姚汝方.大流动度钢纤维钢管混凝土配制技术[J]水利水电科技进展,2003,23(2):30-32.
    [2-1]李帼昌,刘之洋,向可诚.自应力钢管轻骨料硷轴压中长柱的实验研究[J].沈阳大学学报,1998(2):1-6.
    [2-2]李帼昌,曲赜胜,杨华.自应力钢管轻砼组合材料力学性能的试验研究[J].南京建筑工程学院学报,2001,58(3):20-25.
    [2-3]李悦,丁庆军,胡曙光,马立军,胡小庄,陈光新.钢管膨胀混凝土力学性能及其膨胀模式的研究[J].武汉工业大学学报,2000,22(6):25-28.
    [2-4]齐甦,彭少民.钢管膨胀混凝土轴压短柱试验研究[J].武汉理工大学学报,2007,29(Ⅱ):61-65.
    [2-5]程丽华,秦桂娟,英瑞刚.含钢率对自应力钢管轻骨料砼紧箍力的影响[J].沈阳建筑工程学院学报,1997,13(3):303-305.
    [2-6]姜绍飞,刘之洋.自应力钢管轻骨料混凝土轴压短柱的性能分析[J].工业建筑,1997,27(9):1-5.
    [2-7]尚作庆.钢管自应力自密实混凝土柱力学性能研究[D].大连:大连理工大学,2007.
    [2-8]刘江宁.不同限制条件下的膨胀混凝土变形行为力学特性及微观结构的研究[D].北京:中国建筑科学研究院,1991.
    [3-1]李国强,韩林海等.钢结构及钢-混凝土组合结构抗火设计[M].北京:中国建筑工业出版社,2006.
    [3-2] ECCS-Technical Committee3-Fire Safety of Steel Structures[S]. EuropeanRecommendations for the Fire Safety of Steel Structures. Elsevier Scientific PublishingCompany New York,1983.
    [3-3] BS5950. Structural use of steelwork in buildings, part8: Code of practice for fire resistancedesign[S]. London: British Standard Institution BSI,1990.
    [3-4] CECS200:2006建筑钢结构防火技术规范[S].北京:中国计划出版社,2006.
    [3-5] GB50010-2002钢筋混凝土设计规范[S].北京:中国建筑工业出版社,2002.
    [3-6] GB50017-2003钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [3-7] American Society of Civil Engineering(ASCE), Manuals and Reports on EngineeringPractice No.78, Structural Fire Protection[S], ASCE, New York,1992.
    [3-8]孙金香,高伟译:建筑物综合防火设计[S].天津:天津科技翻译出版公司.1994年.
    [3-9] AS4100Australia Standards (AS). Steel structures[S], Sydney, Australia.1998.
    [3-10] Eurocode3: Design of steel structures, part1.2: General rules structural fire design (drafts)
    [3-11] The Steel Construction Institute(SCI):Fire Resistant Design of Steel Structures-A handbookto BS5950: Part8,1990.
    [3-12] Hass, R.,1991. On realistic testing of the fire protectiontechnology of steel and cementsupport s [R]. TranslationBHPR/NL/T/1444,Melbourne,Australia
    [3-13] Kodur,V.K.R..Design equations for evaluating fire resistance of SFRC-filled HSS columns.[J]Journal ofStructural Engineering,1998a,124(6):671-677.
    [3-14] Kodur,V. K. R.,1998b. Performance of high st rength concrete-filled steel columns exposedto fire [J]. CanadianJournal of Civil Engineering,25:975-981
    [3-15] Kodur,V. K. R.,1999. Performance-based fire resistancedesign ofconcrete-filled steelcolumns[J]. Journal of Constructional Steel Research,51(1):21-26
    [3-16]陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社,2002.
    [3-17]韩林海.钢管混凝土在高温作用下温度场的非线性有限元分析[J].哈尔滨建筑大学学报,1997a,30(4):15-22
    [3-18]韩林海.恒(高)温下钢管混凝土的轴压力学性能.[J]哈尔滨建筑大学学报,1997b,30(5):64-70
    [3-19]韩林海,贺军利,吴海江等.钢管混凝土柱耐火性能的试验研究[J].土木工程学报,2000,33(3):31-36
    [3-20]韩林海,徐蕾.带保护层方钢管混凝土柱耐火极限的试验研究[J].土木工程学报,2000,33(6):63-69
    [3-21]韩林海,徐蕾,冯九斌等.钢管混凝土柱耐火极限和防火设计实用方法研究[J].土木工程学报,2002,35(6):6-13
    [3-22]冯九斌,韩林海,经建生等.钢管高强混凝土轴压柱耐火极限的试验研究.[J]消防科学与技术,2001,(1):7-9
    [3-23]霍静思.标准火灾作用后钢管混凝土压弯构件力学性能研究[D]哈尔滨:哈尔滨工业大学,硕士论文,2001年.
    [3-24]韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究.[J]工程力学,2001,18(6):100-109
    [3-25]韩林海,杨华,霍静思等.标准火灾作用后矩形钢管混凝土柱剩余承载力的研究[J].工程力学,2002,19(5):78-86
    [3-26]齐晗兵.高温(火灾)作用下钢管混凝土温度场研究[D].大庆:大庆石油学院,硕士论文.2003.
    [3-27]温海林,余志武,丁发兴.高温下钢管混凝土温度场的非线性有限元分析[J].铁道科学与工程学报,2005,2(5):32-35.
    [3-28]张丽霞,吴晓东.高温下轴压钢管混凝土柱耐火极限的理论计算[J].山西建筑,2008,34(14):68-71.
    [3-29]王海华.钢管混凝土构件在火灾条件下温度场分布有限元分析[D]天津:天津大学,硕士论文.2003.
    [3-30]孔祥谦.有限单元法在传热学中的应用.第三版[M].北京:科学出版社,1998.
    [3-31]余志武,丁发兴,林松.高温后钢管高性能混凝土轴压短柱力学性能研究[J].铁道学报,2003,25(4):71-79.
    [3-32] Lie.T.T.Fire resistance of circular steel columns filled with bar-reinforced concrete[J].Journalof the Structural Engineering,1994,120(5):1489-1509.
    [3-33] Design of Concrete Structures,Eurrocode2,Part10: Structure Fire Design,Commison of theEuropean Communities,April1990.
    [3-34] Kodur V K R,Sultan M A.Effect of temperature on thermal propertier of high-strengthconcrete. Journal of Materials in Civil Engineering,ASCE,2003,15(2):101-107.
    [3-35]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [4-1]李国强,韩林海等.钢结构及钢-混凝土组合结构抗火设计[M].北京:中国建筑工业出版社,2006.
    [4-2] ECCS-Technical Committee3-Fire Safety of Steel Structures[S]. EuropeanRecommendations for the Fire Safety of Steel Structures. Elsevier Scientific PublishingCompany New York,1983.
    [4-3] BS5950. Structural use of steelwork in buildings, part8: Code of practice for fire resistancedesign[S]. London: British Standard Institution BSI,1990.
    [4-4] CECS200:2006建筑钢结构防火技术规范[S].北京:中国计划出版社,2006.
    [4-5] GB50010-2002钢筋混凝土设计规范[S].北京:中国建筑工业出版社,2002.
    [4-6] GB50017-2003钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [4-7] American Society of Civil Engineering(ASCE), Manuals and Reports on EngineeringPractice No.78, Structural Fire Protection[S], ASCE, New York,1992.
    [4-8]孙金香,高伟译:建筑物综合防火设计[S].天津:天津科技翻译出版公司.1994年.
    [4-9] AS4100Australia Standards (AS). Steel structures[S], Sydney, Australia.1998.
    [4-10] Eurocode3: Design of steel structures, part1.2: General rules structural fire design (drafts)
    [S], document CEN, European Committee for Standardization;1995.
    [4-11] The Steel Construction Institute(SCI):Fire Resistant Design of Steel Structures-A handbookto BS5950: Part8,1990.
    [4-12]陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社,2002.
    [4-13]韩林海.钢管混凝土在高温作用下温度场的非线性有限元分析[J].哈尔滨建筑大学学报,1997a,30(4):15-22
    [4-14]韩林海.恒(高)温下钢管混凝土的轴压力学性能.[J]哈尔滨建筑大学学报,1997b,30(5):64-70
    [4-15]韩林海,贺军利,吴海江等.钢管混凝土柱耐火性能的试验研究[J].土木工程学报,2000,33(3):31-36
    [4-16]韩林海,徐蕾.带保护层方钢管混凝土柱耐火极限的试验研究[J].土木工程学报,2000,33(6):63-69
    [4-17]韩林海,徐蕾,冯九斌等.钢管混凝土柱耐火极限和防火设计实用方法研究[J].土木工程学报,2002,35(6):6-13
    [4-18]齐晗兵.高温(火灾)作用下钢管混凝土温度场研究[D].大庆:大庆石油学院,硕士论文.2003.
    [4-19]温海林,余志武,丁发兴.高温下钢管混凝土温度场的非线性有限元分析[J].铁道科学与工程学报,2005,2(5):32-35.
    [4-20]孔祥谦.有限单元法在传热学中的应用.第三版[M].北京:科学出版社,1998.
    [4-21]余志武,丁发兴,林松.高温后钢管高性能混凝土轴压短柱力学性能研究[J].铁道学报,2003,25(4):71-79.
    [4-22]王海华.钢管混凝土构件在火灾条件下温度场分布有限元分析[D]天津:天津大学,硕士论文.2003.
    [4-23]孔祥谦.有限单元法在传热学中的应用.第三版[M].北京:科学出版社,1998.
    [4-24] Lie.T.T.Fire resistance of circular steel columns filled with bar-reinforced concrete[J].Journalof the Structural Engineering,1994,120(5):1489-1509.
    [4-25] Design of Concrete Structures,Eurrocode2,Part10: Structure Fire Design,Commison of theEuropean Communities,April1990.
    [4-26] Kodur V K R,Sultan M A.Effect of temperature on thermal propertier of high-strengthconcrete. Journal of Materials in Civil Engineering,ASCE,2003,15(2):101-107.
    [5-1] Eurocode3: Design of steel structures, part1.2: General rules structural fire design (drafts)[S], document CEN, European Committee for Standardization;1995.
    [5-2] The Steel Construction Institute(SCI):Fire Resistant Design of Steel Structures-A handbookto BS5950: Part8,1990.
    [5-3]丁发兴,余志武.钢管混凝土短柱力学性能研究-理论分析[J].工程力学,2005(1):175-181.
    [5-4]卢亦焱,陈娟,李杉钢管钢纤维高强混凝土短柱轴心受压试验研究[J]建筑结构学报。2011,32(10)166-172
    [5-5]陈娟,卢亦焱,李杉钢管钢纤维高强混凝土轴压短柱的受力分析[J]工程力学28(9)115-121
    [5-6]丁发兴.钢管混凝土结构受力性能与设计方法研究[M].长沙:中南大学,2006.
    [5-7]蔡绍怀,焦占栓.钢管混凝土短柱的基本性能和强度计算的研究[J].建筑学报,1984(4):13-17.
    [5-8]吉伯海,胡正清,陈甲树,周文杰.圆钢管轻集料混凝土构件抗弯性能的试验研究[J].土木工程学报,2007,40(8):35-40.
    [5-9]吉伯海,周文杰,王晓亮.钢管轻集料混凝土中长柱轴压性能的试验研究[J].建筑学报,2007,28(5):118-123.
    [5-10]傅中秋,吉伯海,孙媛媛,胡正清.钢管轻集料混凝土偏心受压构件承载力分析[J].中南大学学报,2010,41(5):1961-1966.
    [5-11] NS Ottosen Constitutive model for short-time loading concrete of ASCE [J].1979,105(EMI):127-141
    [5-12]赵国藩,彭少民,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999.
    [5-13]张兴武.钢管混凝土短柱承载工作机理与强度计算[J].陕西建筑,1991(4):37-41.
    [5-14]蔡绍怀.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,1994,6(3):18-24.
    [5-15]钟善桐.钢管混凝土轴心受压构件的计算[J].建筑结构学报,1984,6(5):16-23.
    [5-16]丁发兴,应小勇,余志武,欧进萍圆钢管轻骨料混凝土轴压短柱的力学性能分析[J]深圳大学学报理工版2011,28(3)207-211
    [5-17]雷崇,丁发兴圆钢管轻骨料混凝土轴压柱非线性有限元分析[J] 铁道工程学报,2011(6)68-71 
    [5-18]张素梅,王玉银.圆钢管高强混凝土轴压短柱的破坏模式[J].土木工程学报,2004,37(9):1-10.
    [5-19]成洪涛,钟善桐,张素梅.钢管混凝土中混凝土的三向本够关系[J].哈尔滨建筑大学学报,2000,33(6):13-16.
    [5-20]《钢-混凝土组合结构设计规程》(DL/T5080-1999)[S].北京:中国电力出版社,1999.
    [5-21]《钢管混凝土结构设计与施工规程》(JCJ01-89)[S].上海:同济大学出版社,1989.
    [5-22]钢管混凝土结构设计与施工规程(CECS28:90)[S].北京:中国计划出版社.1990.
    [5-23]李帼昌刘之洋冯国会自应力钢管轻骨料混凝土轴压[J]哈尔滨建筑大学学报中国钢协钢_混凝土组合结构协会第五次年会论文集1995,28(5)34-40
    [5-24]李帼昌,刘之洋,冯国会,等.自应力钢管轻骨料砼轴压短柱的承载力计算[J].东北大学学报(自然科学版),1997,18(6):636-639
    [5-25]李帼昌,刘之洋,冯国会.自应力钢管轻骨料混凝土轴压中长柱的承载力计算[J].工业建筑,1997,27(9):6-9
    [6-1]姜绍飞,刘明.高温后不同截面钢管混凝土轴压构件的试验研究[J].东北大学学报,2002,23(9):891-894.
    [6-2]李国强,韩林海,楼国彪等.钢结构及钢-混凝土组合结构抗火设计[M].北京:中国建筑工业出版社,2006.
    [6-3]冯九斌,韩林海,经建生,冯玉成.钢管高强混凝土轴压柱耐火极限的试验研究[J].消防理论研究,2001(1):7-9.
    [6-4]韩林海,徐蕾,冯九斌,杨有福.钢管混凝土柱耐火极限和防火设计实用方法研究[J].土木工程学报,2002,35(6):6-13.
    [6-5]杨华,韩林海.高温作用后圆钢管混凝土轴压力学性能研究[J].现代钢结构,面2001,31(11):50-54.
    [6-6]韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究[J].工程力学,2001,18(6):100-109.
    [6-7]余志武,丁发兴,林松.高温后钢管高性能混凝土轴压短柱力学性能研究[J].铁道学报,2003,25(4):71-79.
    [6-8]栾波,刘明,姜绍飞.恒高温作用后圆钢管混凝土承载力的试验与分析[J].三峡大学学报,2003,25(5):416-420.
    [6-9]丁发兴,余志武.恒高温后圆钢管混凝土轴压短柱弹塑性分析[J].建筑科学与工程学报,2006,23(1):34-38.
    [6-10]杨华,韩林海.圆钢管混凝土柱全过程火灾作用后剩余承载力实用计算方法[J].工程建设与设计,2005(2):26-29.
    [6-11]张丽霞,吴晓东.高温下轴压钢管混凝土柱耐火极限的理论计算[J].山西建筑,2008,34(14):68-71.
    [6-12]霍静思,韩林海.ISO一834标准火灾作用后钢管混凝土的轴压刚度和抗弯刚度[J].地震工程与工程震动,2002,22(5):143-151.
    [6-13]韩林海,杨华,霍静思等.标准火灾作用后矩形钢管混凝土柱剩余承载力的研究[J].工程力学,2002,19(5):78-86
    [6-14]栾波.火灾后钢管混凝土短柱力学性能研究[D]长春:沈阳建筑工程学院:硕士论文.2004.
    [6-15]霍静思.火灾作用后钢管混凝土柱-钢梁节点力学性能研究[D]福州:福州大学:博士论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700