用户名: 密码: 验证码:
UV胁迫下棉铃虫生殖补偿研究及Hsps基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉铃虫Helicoverpa armigera (Hubner)隶属于鳞翅目夜蛾科,广泛分布于亚洲、欧洲、非洲及澳洲等地。棉铃虫对紫外光(Ultraviolet, UV)具有很强的趋性,是一种典型的趋光性昆虫。因此,本研究以棉铃虫为试验材料,研究了棉铃虫适应UV胁迫的生理生态对策,以及UV胁迫下棉铃虫热激蛋白的表达情况。其主要结果如下:
     1.UV照射对棉铃虫造成的氧化损伤分析
     本研究通过测定丙二醛(MDA)和蛋白羰基含量,分析了UV照射对棉铃虫造成的氧化损伤。当UV照射棉铃虫成虫30、60和90 min时,其体内蛋白质羰基含量显著升高,MDA含量没有发生显著变化。表明UV照射引起的氧化损伤体现在棉铃虫成虫体内蛋白质羰基含量的大幅度增加,进一步证实UV照射对棉铃虫是一种胁迫,可能会导致蛋白质结构功能的破坏,或加快蛋白的氧化进程。
     2.UV照射对棉铃虫成虫寿命、生殖力及子代发育的影响
     本研究测定了UV照射对棉铃虫成虫寿命、生殖力和子代发育的影响。每天对棉铃虫成虫进行不同时间的UV照射(O、1、5、9h/day),直到雌雄蛾全部死亡。研究发现,棉铃虫雌雄蛾的寿命均随着UV照射时间的延长而缩短,且在照射时间为5和9h/day的UV处理组达到显著水平。当UV照射棉铃虫成虫1和5 h/day时,每雌总产卵量与对照相比有所增加,且在5 h/day达到显著水平,相似地,UV处理组雌虫的平均产卵量显著高于对照组的雌虫。UV照射对棉铃虫子代发育影响的结果显示,当棉铃虫接受UV照射后,其子代的卵孵化率、化蛹率和羽化率没有受到显著影响,但是,长时间的UV照射(5和9h/day)会导致子代累计存活率的降低,及子代幼虫的发育历期的显著延长。我们推测,UV照射后,棉铃虫成虫的寿命和生殖之间存在一种补偿效应,而这种生殖补偿正是棉铃虫适应UV胁迫的生态对策。
     3.UV照射对棉铃虫体内保幼激素的影响
     为了研究UV照射对棉铃虫成虫体内保幼激素的影响,本实验采用了高效液相色谱法,测定了不同日龄(1、2、3、4、5日龄)和不同UV照射时间(0、1、5、9h/day)下保幼激素JHI、JHII和JHIII的滴度。棉铃虫体内JHI、JHII和JHIII的滴度随着日龄的变化发生了显著的改变;棉铃虫体内JHI、JHII和JHIII的滴度随着UV照射时间的延长也发生了显著的变化,与对照组相比,5 h/day与9 h/day的UV处理组JHI、JHII和JHⅢ的滴度均显著下降;其中,9 h/day的UV处理组JHII滴度最低;此外,日龄与UV照射的交互作用显著。本章的研究结果说明了UV照射能够影响到棉铃虫体内的保幼激素代谢水平,特别是长时间的UV照射能够显著降低棉铃虫成虫体内的保幼激素含量,可能意味着UV照射对棉铃虫造成的环境胁迫,迫使其改变了体内的激素分泌水平。
     4.棉铃虫hsp90、hsp70和hsc70在热激和UV胁迫下的表达
     本研究采用Northern-blot技术分析了棉铃虫hsp90、hsp70及hsc70在热激和UV胁迫下的表达情况,发现随着热激时间的延长,hsp90和hsp70的表达量都明显上升,hsc70的表达未发生明显变化;当热激处理时间60 min时,hsp90和hsp70的表达量达到最大值,随后表达量逐渐下降。UV照射对棉铃虫体内的Hsps也有影响,随着UV照射时间的延长,hsp90的表达量有上升的趋势,当UV照射时间在120 min时,棉铃虫体内的hsp90的表达量达到最高峰,在150 min和180 min时表达量下降。hsc70的表达则不受UV照射的影响,此外,在UV照射的处理组中均未能检测到hsp70的表达。我们推测hsps的表达升高可能是为了适应环境胁迫因子。
     5.棉铃虫hsp90与hsp70的克隆与序列分析
     本研究利用分子生物学技术得到了棉铃虫hsp90和hsp70两种重要基因的碱基序列全长。通过软件分析,我们推导出hsp90编码区有2154bp,推定的蛋白质序列由717氨基酸残基组成,分子量82.51kDa,等电点为4.92;hsp70编码区有1905bp,推定的蛋白质序列由634个氨基酸残基组成,分子量69.98 kDa,等电点为5.70。基于氨基酸序列全长,我们对Hsp90和Hsp70蛋白进行了多重序列对比,并构建了系统发育树,结果表明Hsp90和Hsp70具有很高的保守性,棉铃虫的Hsp90和Hsp70的氨基酸序列与谷实夜蛾H.zea的同源性最高,同属于鳞翅目夜蛾科。这也证实了本实验所得序列确为棉铃虫相应基因序列,并为深入了解昆虫在抗胁迫环境下的分子适应机制奠定了基础。
The cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) is one of the most serious insect pest in the world. The moths of this nocturnal insect display a conspicuous positive phototactic behaviour to light stimuli, and are especially sensitive to Ultraviolet (UV) light. In the present study, we study the effects of UV light irradiation on adult longevity and reproduction, molecular cloning and characterization of hsp90 and hsp70 and their expression patterns during thermal stress and UV light irradiation in H. armigera. Main results were summarized as follows:
     1. Oxidative damage analysis in H. armigera adults after exposure to UV light
     The effects of UV light irradiation on malondialdehyde (MDA) and protein carbonyl contents were investigated in H. armigera adults. The adults were exposed to UV light for various time periods (0,30,60 and 90 min). We found that exposure to UV light for 30, 60 and 90 min resulted in increased protein carbonyl content. However, there was no significant difference in MDA content in H. armigera adults following UV light exposure. We have confirmed that UV light may disturb the functional activity of protein and intensify the activity of protein oxidation process. This indicates that UV light is threatening to H. armigera adults.
     2. Effects of UV light irradiation on longevity and reproduction of H. armigera, and development of its F1 generation
     The effects of UV light irradiation on adult longevity and reproduction of H. armigera were investigated, as well as the development of the F1 generation. Paired adults were exposed to UV light for various time periods (0,1,5 and 9 h/day), until the end of adult life. The results showed that adult longevity decreased with increasing exposure time for both sexes, and a significant decrease was observed after exposure for 5 and 9 h/day. Fecundity increased when adults were exposed for 1 and 5 h/day, and a significant difference was observed in the 5 h/day group. Oviposition rate of females in all treatments were significantly higher than control. Exposure to UV light for longer periods (5 and 9 h/day) caused a decline in cumulative survival of F1 immature stages, but no significant differences were found in egg hatching, pupation and eclosion. The developmental periods of F1 larvae were significantly prolonged after exposure to UV light for 5 and 9 h/day. UV light irradiation had no significant effects on F1 pupae period. All these physiological effects under UV irradiation may be strategies for insect adaptations.
     3. Effects of UV light irradiation on juvenile hormone titres of H. armigera
     The effect of UV light irradiation and age on juvenile hormone titres from H. armigera were measured with HPLC. The results indicated that JHI, JHII and JHIII titres varied signficantly across age and UV light irradiation. Female H. armigera showed the expected response to age and temperaturs and UV light irradiation. JHI, JHII and JHIII titres in the 5 and 9 h/day group decreased significantly. JHI, JHII and JHIII titres are lowest in the 9 h/day group. This indicates that UV light is threatening to H. armigera adults.
     4. The expresson patterns of hsp90 and hsp70 during thermal stress and UV light irradiation in H. armigera
     Three heat shock protein transcripts, hsp90, hsp70, hsc70, isolated from H. armigera, were evaluated for their responsiveness to thermal stress and UV light irradiation. The expression patterns after heat shock indicated that hsp90 and hsp70 were up-regulated, and hsc70 was indeed a constitutively expressed member of hsp70 family. The expression patterns after UV light irradiation indicated that hsp90 was also up-regulated. Our results also indicated that hsps are responsive to thermal stress and UV light irradiation in H. armigera.
     5. Molecular cloning and characterization of hsp90 and hsp70 cognate cDNAs in H. armigera
     The sequence data of hsp90 and hsp70 indicates a 2476-bp full-length hsp90 cDNA with a 2154-bp ORF starting at nucleotide 163 and terminating at nucleotide 2316, which encodes 717 amino acid residues with a putative molecular mass of 82.51 kDa and a calculated pI of 4.92, a 2246-bp full-length hsp70 cDNA with a 1905-bp ORF starting at nucleotide 159 and stopping at 2063, which encodes 634 amino acid residues with a putative molecular mass of 69.98 kDa and a calculated pI of 5.70. Multiple sequence alignments indicate that the deduced amino acid sequences of H. armigera Hsp90 and Hsp70 show very high homology to their corresponding sequences in other species.Two phylogenetic analysis of Hsp90 and Hsp70 sequences were consistent with well known classification of insects.
引文
1. 陈惠祥,周建荣,陈小波,顾国华.棉铃虫对不同波长光源趋光反应的研究.江西棉花,1999,21:16-18
    2. 陈建,赵德刚.植物萜类物质合成相关酶类及其编码基因的研究进展.分子植物育种,2004,2:757-764
    3. 戴华国,姜金林,李元喜,符文俊.赤眼蜂寄生后亚洲玉米螟卵内保幼激素酯酶活力与蜕皮激素滴度的变化.南京农业大学学报,2002,25:31-34
    4. 丁岩钦,高慰曾,李典谟.夜蛾趋光特性的研究:棉铃虫和烟青虫成虫对单色光的反应.昆虫学报,1974,17:307-317
    5. 高慰曾.夜蛾复眼转化速度与暗适应的时间关系.昆虫学报,1989,32:306-309
    6. 高慰曾,郭炳群.棉铃虫蛾复眼的形态及显微结构.昆虫学报,1983,26:375-378
    6. 龚国玑,杨春龙.HPLC检测粘虫保幼激素以及灭幼脲对保幼激素滴度的影响.南京农业大学学报,1996,19:105-107
    7. 关雪辰.昆虫保幼激素生物合成的调节与测定.昆虫知识,1992:237-239
    8. 关雪辰.保幼激素生物合成的快速检测.现代科学仪器,2000:64
    9. 侯无危.不同照度对棉铃虫蛾活动的影响.昆虫知识,1997,34:1-3
    10. 靖湘峰.夜行性昆虫的趋光行为反应及黑光灯对棉铃虫体内酶系的影响.[硕士学位论文].武汉:华中农业大学图书馆,2004
    11. 靖湘峰,雷朝亮.昆虫趋光性及其机理的研究进展.昆虫知识,2004,41:198-203
    12. 雷朝亮,荣秀兰.普通昆虫学.北京:中国农业出版社,2003
    13. 李典谟,马幼飞.夜蛾趋光特性的研究—复眼反射光的变化和上等概率分析.昆虫学报,1977,20:128-134
    14. 李乾君,龚和,管致和.昆虫卵黄发生研究进展.昆虫学报,1995,32:237-251
    15. 李胜,蒋容静,曹梅讯.保幼激素的代谢.昆虫学报,2004,47:389-399
    16. 李学荣.昆虫人工诱导滞育及其利用的研究进展.森林病虫通讯,1998,1:35-45
    17. 李英梅,仵均祥,成卫宁,李怡萍,侯娟娟.麦红吸浆虫保幼激素含量测定.西北农业学报,2006,15:73-75
    18. 孟庆俭.外源激素对韭菜迟眼蕈蚊卵巢发育和脂肪体与卵巢中可溶性蛋白含量的影响.[硕士学位论文].泰安:山东农业大学图书馆,2007
    19. 欧阳迎春,李胜.保幼激素及其代谢产物的HPLC分离方法的改进和应用.昆 虫学报,2003,46:282-287
    20. 钱明惠,范军祥,秦长生.用HPLC测定松墨天牛体内的保幼激素.广东林业科技,2004,20:51-53
    21. 热孜万,苏力坦,龚和.家蝇卵黄发生及其激素调控研究进展.地方病通报,1997,12:116-117
    22. 胜振涛.蓖麻蚕预成虫咽侧体复活的分子和酶学机理研究.[博士学位论文].上海:中国科学院图书馆,2007
    23. 司丽琴.昆虫保幼激素的研究方法.烟台师范学院学报(自然科学版),1990,6: 76
    24. 苏天运,王仲文,王梅英,苏寿,叶炳辉.淡色库蚊越冬过程中体内保幼激素和蜕皮激素的变化.河南医学研究,1994,3:110-112
    25. 孙卫忠,李斌,王彦文,柴春利,鲁成.热激蛋白研究进展.蚕学通讯,2003,23: 21-27
    26. 王海鸿,雷仲仁.昆虫热休克蛋白的研究进展.中国农业科学,2005,38:2023-2034
    27. 王满囷,李周直.鞭角华扁叶蜂保幼激素滴度的动态.林业科学,2002,38:83-85
    28. 王荫长.昆虫生物化学.北京:中国农业出版社,2001
    29. 王瑜,薛瑞德,董言德.保幼激素与光照对三带喙库蚊滞育发生与解除作用的研究.中国媒介生物学及控制杂志,1994,5:410
    30. 魏国树,张青文,周明群,吴卫国.不同光波及光强度下棉铃虫(Helicoverpa armigera)成虫的行为反应.生物物理学报,2000,16:89-95
    31. 魏国树,张青文,周明牂,吴卫国.棉铃虫蛾复眼光反应特性.昆虫学报,2002,45:323-328
    32. 徐豫松,徐俊良.昆虫保幼激素研究新进展.中国蚕业,2001,22:56-57
    33. 依姆斯AD.昆虫学纲要[M].北京:中华书局,1953,46-47
    34. 张纯胄,杨捷.害虫趋光性及其应用技术的研究进展.华东昆虫学报,2007,16: 131-135
    35. 张永强,王进军,丁伟,赵志模.昆虫热休克蛋白的研究概况.昆虫知识,2004,40: 16-20
    36. Agashe V R, Hartl F U. Roles of molecular chaperones in cytoplasmic protein folding. Semin Cell Dev Biol,2000,11:15-25
    37. Aghdassi A, Phillips P, Dudeja V, Dhaulakhandi D, Sharif R, Dawra R, Lerch M M, Suluja A. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res,2007,67:616-625
    38. Alam Z L, Halliwell B, Jenner P. Noevidence for increased oxidative damage to lipids, proteins, or DNA in huntington's disease. JNeurochem,2000,75:840-846
    39. Amin J, Ananthan J, Voellmy R. Key features of heat shock regulatory elements. Mol Cell Biol,1988,8:3761-3769
    40. Barbe M F, Tytell M, Gower D J, Welch W J. Hyperthermia protects against light damage in the rat retina. Science,1988,241:1817-1820
    41. Beenakers, A M T, Van der Horst D J, Van Marrewijk W J. Insect lipids and lipoproteins, and their role in physiological processes. Prog Lipid Res,1985,24: 19-67
    42. Benjamin I J, Kroger B, Williams R S. Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc Natl Acad Sci USA,1990,87: 6263-6267
    43. Bienz M, Pelham H R. Mechanisms of heat-shock gene activation in higher eukaryotes. Advance Genetics,1987,24:31-72
    44. Bloch G, Borst D W, Huang Z Y, Robinson G E, Cnaani J, Hefetz A. Juvenile hormone titers, juvenile hormone biosynthesis, ovarian development and social environment in Bombus terrestris. J Insect Physiol,2000,46:47-57
    45. Borovsky D, Carlson D A, Hancock R G, Rembold H, Van H E. De novo biosynthesis of juvenile hormone III and I by the accessory glands of the male mosquito. Insect Biochem Mol Biol,1994,24:437-444
    46. Bownes M, Rembold H. The titer of juvenile hormone during the pupal and adult stages of the life cycle Drosophila melanogaster. Eur J Biochem,1987,164: 709-712
    47. Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254
    48. Broquet A H, Thomas G, Masliah J, Trugnan G, Bachelet M. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. JBiol Chem,2003,278:21601-21606
    49. Bruemmer-Smith S, Stuber F, Schroeder S. Protective functions of intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis. Intensive Care Med,2001,27:1835-1841
    50. Bukau B, Horwich A L. The Hsp70 and Hsp60 chaperone machines. Cell,1998,92: 351-366
    51. Busehor J, Lanzrein B. Isolation and quantification of vitellogenin in the haemolymph of the ovoviviparous cockroach Nauphoeta cinerea. Comp Biochem Physiol,1983,76B:65-72
    52. Carper S W, Duffy J J, Gerner E W. Heat shock proteins in thermotolerance and other cellular physiological processes. Cancer Res,1987,47:5249-5255
    53. Chen Z, Linse K D, Taub-Montemayor T E, Rankin M A. Comparison of radioimmunoassay and liquid chromatography tandem mass spectrometry for determination of juvenile hormone titers. Biochem Mol Biol,2007,37:799-807
    54. Cheney C M, Shearn A. Developmental regulation of Drosophila inaginal disc proteins:synthesis of a heat shock protein under non-heat-shock conditions. Dev Biol,1983,95:325-330
    55. Choi D H, Ha J S, Lee W H, Song J K, Kim G Y, Park J H, Cha H J, Lee B J, Park J K. Heat shock protein 27 is associated with irinotecan resistance in human colorectal cancer cell. FEBS Lett,2007,581:1649-1656
    56. Cisper G, Zera A J, Borst D W. Juvenile hormone titer and morph-specific reproduction in the wing-polymorphic cricket, Gryllus firmus. J Insect Physiol, 2000,46:585-596
    57. Comas D, Piulachs M D, Belles X. Fast induction of vitellogenin gene expression by juvenile hormone Ⅲ in the cockroach Blattella germanica (L.) (Dictyoptera, Blattellidae). Insect biochem Mol Biol,1999,29:821-827
    58. Comas D, Piulachs M D, Belles X. Induction of vitellogenin gene transcription in vitro by juvenile hormone in Blattella germanica. Mol Cell Endocrinol,2001,183: 93-100
    59. Corces V, Holmgren R, Freund R, Morimoto R, Meselson M. Four heat shock proteins of Drosophila melanogaster coded within a 12-kilobase region in chromosome subdivision 67B. Proc Natl Acad Sci USA,1980,77:5390-5393
    60. Cowan T, Gries G. Ultraviolet and violet light:attractive orientation cues for the Indian meal moth, Plodia interpunctella. Entomol Exp Appl,2009,131:148-158
    61. Craig E A. The heat shock response. CRC Crit Rev Biochem,1985,18:239-280
    62. Cusson M, Delisle J, Miller D. Juvenile hormone titers in virgin and mated Choristoneura fumiferana and C. rosaceana females:assessment of the capacity of males to produce and transfer JH to the female during copulation. J Insect Physiol, 1999,45:637
    63. Cusson M, Miller D, Goodman W G. Characterization of antibody 444 using chromatographically purified enantiomers of juvenile hormones Ⅰ, Ⅱ, and Ⅲ: implications for radioimmunoassays. Analy Biochem,1997,249:83-87
    64. Dahlgaard J, Loeschcke V, Michalak P, Justesen J. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Funct Ecol,1998,12:786-793
    65. Daugarrd M, Rohde M, Jaattela M. The heat shock protein 70 family:highly homologous proteins with overlapping and distinct functions. FEBS Lett,2007,581: 3702-3710
    66. de Jong G, van Noordwijk A J. Acquisition and allocation of resources:genetic (co) variances, selection, and life histories. Am Nat,1992,139:749-770
    67. De Wide J. Endocrine aspects of dipause in the adult stage. In:Douner R C H, Laufer H eds., Endocrinology of Insects. Alan R. Liss, New York,1983,357-367
    68. Del Rio D, Stewart A J, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovas, 2005,15:316-328
    69. Denlinger D L, Rinehart J P, Yocum G D. Stress proteins:a role in insect diapause? In:Denlinger D L, Giebultowicz J M, Saunders D S eds., Insect Timing:Circadian Rhythmicity to Seasonality. Elsevier, Amsterdam,2001,155-171
    70. Dhadialla T S, Cook K E, Wyatt G R. Vitellogenin mRNA in Locust fat body: coordinate induction of two genes by a juvenile hormone analog. Devel Biol,1987, 123:108-114
    71. Don-Wheeler G, Engelmman F. The biosynthesis and processing of vitellogenin in the fat bodies of females and males of the coekroaeh Leucophaea maderae. Insect Bioehem Mol Biol,1997,27:901-918
    72. Edwards G C, Braun R P, Wyatt G R. Induction of vitellogenin synthesis in Locusta migratoria by the juvenile hormone analog, Pyriproxyfen. J Insect Physiol,1993, 39:609-614
    73. Engelmann F. Vitellogenesis controlled by juvenile hormone. In:Downer R G H and Laufer H eds., Endocrinology of Insect, Alan R. Liss, New York,1983,259-270
    74. Eugehi E, Watanabe K, Hariyama T. A comparison of electrophysiologically detmerined spectral responses in 35 species of Lepidoptera. J Insect Physiol,1982, 28:675-682
    75. Fan Y L, Rafaeli A, Gileadi C, Applebaum S W. Juvenile hormone induction of pheromone gland PBAN-responsiveness in Helicoverpa armigera females. Insect Biochem Mol Biol,1999,29:635-641
    76. Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology. Annu Rev Physiol,1999, 61:243-282
    77. Garrido C, Bruey J M, Fromentin A, Hammann A, Arrigo A P, Solary E. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. Faseb J,1999,13: 2061-2070
    78. Garrido C, Bruey J M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70:anti-apoptotic proteins with tumorigenic properties. Cell Cycle, 2006,5:2592-2601
    79. Gharib B, Reggi M D. Changes in ecdysteroid and juvenile hormone levels in developing eggs of Bombyx mori. J Insect Physiol,1983,29:871-876
    80. Gilbert L I, Granger N A, Roe R M. The juvenile hormone:historical facts and speculations on future research directions. Insect Biochem Mol Biol,2000,30: 617-644
    81. Gintenreiter S, Ortel J, Nopp H J. Effects of different dietary levels of cadmium, lead copper, and zinc on the vitality of the forest pest insect Lymantria dispar L. (Lymantriidae, Lepid). Arch Environ Con Tox,1993,25:62-66
    82. Glinka A V, Wyatt G R. Juvenile hormone activation of gene transcription in locust fat body. Insect biochem Mol Biol,1996,26:13-18
    83. Goldstein J L, Brown M S. Regulation of the mevalonate pathway. Nature,1990, 343:425-430
    84. Goodman W G, Granger N A. The juvenile hormones. In:Gilbert L I ed., Comprehensive Molecular Insect Science. Elsevier Ltd., Oxford,2005,319-408
    85. Gunn, A. The determination of larval phase coloration in the African armyworm Spodoptera exempta and its consequences for thermoregulation and protection from UV light. Entomol Exp Appl,1998,86:125-133
    86. Gupta R S. Phylogenetic analysis of the 90 kDa heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol,1995,12:1063-1073
    87. Gurbuxani S, Bruey J M, Fromentin A, Larmonier N, Parcellier A, Jaattela M, Maritin F, Solary E, Garrido C. Selective depletion of inducible HSP70 enhances immunogenicity of rat colon cancer cells. Oncogene,2001,20:7478-7485
    88. Guttman S D, Glover C V, Allis C D, Gorovsky M A. Heat shock, deciliation and release from anoxia induce the synthesis of the same polypeptides in starved T. pyriformis. Cell,1980,22:299-307
    89. Halliwell B, Gutteridge J M. Free Radicals in Biology and Medicine. Oxford University Press, Oxford,1999
    90. Hammock B D, Sparks T C. A rapid assay for insect juvenile hormone esterase activity. Anal Biochem,1977,82:573-579
    91. Herman W S, Tatar M. Juvenile hormone regulation of longevity in the migratory monarch butterfly. Proc R Soc Lond B,2001,268:2509-2514
    92. Holloway G J, Sibly R M, Povey S R. Evolution in toxin-stressed environments. Funct Ecol,1990,4:289-294
    93. Hutchison E G, Tichelaar W, Hofhaus G, Weiss H, Leonard K R. Identification and electron microscopic analysis of a chaperonin oligomer from Neurospora crassa mitochondria. EMBO J,1989,8:1485-1490
    94. Ichimura S, Mita K, Numata M. Protein ubiquitination in the posterior silk glands of Bombyx mori. Insect Biochem Mol Biol,1994,24:717-722
    95. Imlay J A, Linn S. DNA damage and oxygen radical toxicity. Science,1988,240: 1302-1309
    96. Ingolia T D, Craig E A. Four small Drosphilia heat shock proteins are related to each other and to mammalian a-crystallin. Proc Natl Acad Sci USA,1982,79: 2360-2364
    97. Ismail S M, Satyanarayana K, Bradfield J Y, Dahm K H, Bhaskaran G. Juvenile hormone acid:evidence for a hormonal function in induction of vitellogenin in larvae of Manduca sexta. Arch Insect Biochem Physiol,1998,37:305-314
    98. Jurkiewicz B A, Buettner G R. Ultraviolet light-induced free radical formation in skin:an electron paramagnetic resonance study. Photochem Photobiol,1994,59: 1-4
    99. Kamada M, So A, Muramaki M, Rocchi P, Beraldi E, Gleave M. Hsp27 knockdown using nucleotide-base therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther,2007,6:299-308
    100. Kamata H, Hirata H. Redox regulationof cellular signalling. Cell Signal,1999,11: 1-14
    101. Keeley L L, McKercher S R. Endocrine regulations of ovarian maturation in the cockroach, Blaberus discoidalis. Comp Biochem Physiol A,1985,80:115-121
    102. Kiang J G, Tsokos G C. Heat shock protein 70 kDa:molecular biology, biochemistry, and physiology, Pharmacol. Therapeut,1998,80:183-201
    103. Kroeger P E, Sarge K D, Morimoto R I. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol Cell Biol,1993,13:3370-3383
    104. Landais I, Pommet J, Mita K, Nohata J, Gimenez S, Fournier P, Devauchelle G, Duonor-Cerutti M, Ogliastro M. Characterization of the cDNA encoding the 90 kDa heat-shock protein in the Lepidoptera, Bombyx mori and Spodoptera frugiperda. Gene,2001,271:223-231
    105. Laskey R A, Honda B M, Mills A D, Finch J T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature,1978,275: 416-420
    106. Levine R L, Garland D, Oliver C N, Amici A, Climent I, Lenz A G, Ahn B W, Shaltiel S, Stadtman E R. Determination of carbonyl content in oxidatively modified proteins. Method Enzymol,1990,186:464-478
    107. Li G C. Elevated levels of 70,000 dalton heat shock protein in transiently thermotolerant Chinese hamster fibroblasts and in their stable heat resistant variants. Int JRadiat Oncol,1985,11:165-177
    108. Li Y, Zhang T, Schwartz S J, Sun D. New developments in Hsp90 inhibitors as anti-cancer therapeutics:Mechanisms, clinical perspective and more potential. Drug Resist Update,2009,12:17-27
    109. Lindguist S, Craig E A. The heat shock proteins. Annu Rev Genet,1988,22: 631-677
    110. Lopez-Martinez G, Elnitsky M A, Benoit J B, Lee Jr. R E, Denlinger D L. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol,2008,38:796-804
    111. Mackerness S A H, Surplus S L, Blake P, John C F, Buchanan-Wollaston V, Jordan B R, Thomas B. Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana:role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant Cell Environ,1999,22:1413-1423
    112. Mahroof R, Zhu K Y, Neven L, Subramanyam B, Bai J. Expression patterns of three heat shock protein70 genes among developmental stages of the red flour beetle, Tribolium caslaneum (Coleoptera:Tenebriomidae). Comp Biochem Physiol A,2005,141:247-256
    113. Marber M, Mestril R, Chi S H, Sayen R, Yellon Y M, Dillman W H. Overexpression of the rat inducible 70-kDa heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest,1995,95: 1446-1456
    114. Mauchamp B, Darrouzet E, Malosse C, Couillaud F.4'-OH-JH-Ⅲ:an additional hydroxylated juvenile hormone produced by locust corpora allata in vitro. Insect Biochem Mol Biol,1999,29:475-480
    115. Maxwell R A, Weleh W H, Horodyski F M, Schegg K M, Schooley D A. Juvenile hormone kinase Ⅱ. Sequencing, cloning, and molecular modeling of juvenile hormone-selective diol kinase from Manduca sexta. J Biol Chem,2002a,277: 21882-21890
    116. Maxwell R A, Weleh W H, Schooley D A. Juvenile hormone kinase I. Purification, characterization, and substrate specificity of juvenile hormone-selective diol kinase from Manduca sexta. J Biol Chem,2002b,277:2187-2188
    117. Mazza C A, Izaguirre M M, Zavala J, Scopel A L, Ballare C L. Insect perception of ambient ultraviolet-B radiation. Ecol Lett,2002,5:722-726
    118. McDonnell R J, Mulkeen C J, Gormally M J. Sexual dimorphism and the impact of temperature on the pupal and adult stages of Sepedon spinipes, a potential biological control agent of fascioliasis. Entomol Exp Appl,2004,115:291-301
    119. McEnroe W D, Dronka K. Color vision in the adult female two-spotted spider mite. Science,1966,154:782-784
    120. McMillan T J, Leatherman E, Ridley A, Shorrocks J, Tobi S E, Whiteside J R. Cellular effects of long wavelength UV light (UVA) in mammalian cells. J Pharm Pharmacol,2008,60:969-976
    121. Meng J Y, Zhang C Y, Zhu F, Wang X P, Lei C L. Ultraviolet light-induced oxidative stress:effects on antioxidant response of Helicoverpa armigera adults. J Insect Physiol,2009,55:588-592
    122. Meng J Y, Zhang C Y, Lei C L. A proteomic analysis of Helicoverpa armigera adults after exposure to UV light irradiation. J Insect Physiol,2010,56:405-411
    123. Morganelli C M, Berger E M, Pelham H R. Transcription of Drosophila small Hsp-tk hybrid genes is induced by heat shock and by ecdysterone in transfected Drosophila cells. Proc Natl Acad Sci USA,1985,82:5865-5869
    124. Morimoto R I. Cell in stress:transcriptional activation of heat shock genes. Science, 1993,259:1409-1410
    125. Moseley P L. Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol,1997,83:1413-1417
    126. Moshitzky P, Miloslavski I, Aizenshtat Z, Applebaum S W. Methyl palmitate:a novel product of the Med fly (Ceratitis capitata) corpus allatum. Insect Biochem Mol Biol,2003,33:1299-1306
    127. Mosser D D, Caron A W, Bourget L, Meriin A B, Sherman M Y, Morimoto R I, Massie B. The chaperone function of hsp70 is required for protection against stress-induced apotosis. Mol Cell Biol,2000,20:7146-7159
    128. Mosser D D, Morimoto R I. Molecular chaperones and the stress of oncogenesis. Oncogene,2004,23:2907-2918
    129. Nakai A, Morimoto R I. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol,1993,13:1983-1997
    130. Niedzwieeki A, Reveillaud I, Fleming J E. Changes in superoxide dismutease and catalase in aging heat-shocked Drosophila. Free Radic Res Commun,1992,17:355
    131. Niimi S, Sakurai S. Development changes in juvenile hormone and juvenile hormone acid titers in the hemolymph and in-vitro juvenile hormone synthesis by corpora allata of the silkworm, Bombyx mori. J Insect Physiol,1997,43:875-884
    132. Norimine J, Mosqueda J, Palmer G H, Lewin H A, Brown W C. Conservation of Babesia bovis small heat shock protein (Hsp20) among strains and definition of T helper cell epitopes recognized by cattle with diverse major histocompatibility complex class Ⅱ haplotypes. Infect Immun,2004,72:1096-1106
    133. Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA,2000, 97:7871-7876
    134. Okada M, Itoh H, Hatakeyama T, Tokumitsu H, Kobayashi R. Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox. Biochem J, 2003,374:433-441
    135. Pankiw T, Huang Z Y, Winston M L, Robinson G E. Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J Insect Physiol,1998,44:685-692
    136. Parsell D A, Lindquist S. Heat shock proteins and stress tolerance. In:Morimoto R I, Tissieres A, Georgopoulos C eds., The Biology of heat shock proteins and molecular chaperones. ColdSpring Harbor Laboratory Press, ColdSpring Harbor, NY,1994,457-494
    137. Pearce A N, Huang Z Y, Breed M D. Juvenile hormone and aggression in honey bees. J Insect Physiol,2001,47:1243-1247
    138. Pelham H R. A Regulatory upstream promoter element in the Drosophila HSP70 heat shock protein. Cell,1982,30:517
    139. Peter M G, Shirk P D, Dahm K H, Roller H. On the specificity of juvenile hormone biosynthesis in the male cecropia moth. Z Naturforsch,1981,36C:579-585
    140. Peter C, Tamas S, Csaba S. The 90-kDa molecular chaperone family:Structure, function and clinical applications. A comprehensive review. Pharmacol Therapeut, 1998,79:129-168
    141. Price B D, Calderwood S K. Ca2+ is essential for multistep activation of the heat shock factor in permeabilized cells. Mol Cell Biol,1992,11:3365-3368
    142. Zhang Q R, Denlinger D L. Molecular characterization of heat shock protein 90,70 and 70 cognate cDNAs and their expression patterns during thermal stress and pupal diapause in the corn earworm. J Insect Physiol,2009,56:138-150
    143. Rael L T, Thomas G W, Craun M L, Curtis C G, Bar-Or R, Bar-Or D. Lipid peroxidation and the thiobarbituric acid assay:standardization of the assay when using saturated and unsaturated fatty acids. Insect Biochem Mol Biol,2004,37: 749-752
    144. Raikhel A S, Brown M R, Beles X. Hormonal control of reproductive proeesses. In: Gilbert L.l., Latrou K, Gill S S eds., Comprehensive Molecular Inseet Seience. Elsevier Ltd., oxford,2005,433-491
    145. Range S, Oeh U, Lorenz M W, Etzel W, Nauen R, Hoffmann K H. Juvenile hormone biosynthesis in the fall armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae). Compar Biochem Physiol,2002(B),132:191-202
    146. Rauschenbach Y, Bogomolova E V, Gruntenko N E, Adonyeva N V, Chentsova N A. Effects of juvenile hormone and 20-hydroxyecdysone on alkaline phosphatase activity in Drosophila under normal and heat stress conditions. J Insect Physiol, 2007,53:587-591
    147. Richter K, Muschler P, Hainzl O, Buchner J. Coordinated ATP hydrolysis by the Hsp90 dimer. JBiol Chem.2001,276:33689-33696
    148. Riddiford L M. Cellular and molecular actions of juvenile hormones. I:General considerations and premetamorphic actions. Adv Insect Physiol,1994,24:213-273
    149. Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia,1962,18:571-573
    150. Rolff J, Siva-Jothy M. Copulation corrupts immunity:A mechanism for a cost of mating in insects. PNAS,2002,99:9916-9918
    151. Roff D A. The Evolution of Life Histories:Theory and Analysis.1992
    152. Khalil S M S, Anspaugh D D, Roe R M. Role of juvenile hormone esterase and epoxide hydrolase in reproduction of the cotton bollworm, Helicoverpa zea. J Insect Physiol,2006,52:669-678
    153. Schauen M, Hornig-Do H T, Schomberg S, Herrmann G, Wiesner R J. Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death. Free Radical Bio Med,2007,42:499-509
    154. Shacter E. Protein oxidative damage. Method Enzymol,2000,319:428-436
    155. Share M R, Roe R M. A partition assay for the simultaneous determination of insect juvenile hormone esterase and epoxide hydrolase activity. Anal Biochem,1988,169: 81-88
    156. Sreedhar A S, Csermely P. Heat shock proteins in the regulation of apoptosis:new strategies in tumor therapy:a comprehensive review. Pharmacol Ther,2004,101: 227-257
    157. Stadtman E R. Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, aging and neutrophil function. Trends Biochem Sci, 1986,11:11-12
    158. Stadtman E R., Levine R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids,2003,25:207-218
    159. Stanley T, Omaye P Z. β-Carotene and protein oxidation:effects of ascorbic acid and a-tocopherol. Toxicology,2000,146:37-47
    160. Steiner B, Pfister-Wilhelm R, Grossniklaus-Burgin C, Rembold H, Treiblmayr K, Lanzrein, B. Titres of juvenile hormone Ⅰ, Ⅱ and Ⅲ in Spodoptera littoralis (Noctuidae) from the egg to the pupal moult and their modification by the egg-larval parasitoid Chelonus inanitus (Braconidae). J Insect Physiol,45:401-413
    161. StoltZman C A, Stay B. Gonadotrophic and morphogenetic effeets of a juvenile hormone analog tratment and ovary presenee on last instar male and female Diploptera punctata (Blattaria:Blaberidae). Eur Entom,1997,94:335-348
    162. Suzuki T, Takashima T, Izawa N, Wasakatsu M, Takeda M. UV radiation elevates arylalkylamine N-acetyltransferase activity and melatonin content in the two-spotted spider mite, Tetranychus urticae. J Insect Physiol,2008,54:1168-1174
    163. Teal P E A, Gomez-Simuta Y. Juvenile hormone:action in regulation of sexual maturity in Caribbean fruit flies and potential use in improving efficacy of sterile insect control technique for tephritid fruit flies. IOBC wprs Bulletin,2002,25:1-14
    164. Theodoraki M A, Mintzas A C. cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata. Insect Mol Biol,2006,15:839-852
    165. Tissieres A, Mitchell H K, Tracy U M. Protein synthesis in salivary gland of Drosophila melanogaste:relation to chromosome puff. J Mol Biol,1974,84: 389-398
    166. Tobe S S, Feyereisen R. Endocrinology of Insects. Downer R G New York:Alan R. Liss,1983:161
    167. Trumbo S T, Borst D W, Robinson G E. Rapid elevation of juvenile hormone titer during behavioral assessment of the breeding resource by burying beetle, Nicrophorus orbicollis. J Insect Physiol,1995,41:535-543
    168. Turner R B (translated by Li L Y). Analytical Biochemistry of Insects. Beijing: Science Press,1984.241
    169. Urbach F. The biological effects of increased ultraviolet radiation:an update. Photochem Photobiol,1989,50:439-441
    170. van Ooik T, Rantala M J, Saloniemi I. Diet-mediated effects of heavy metal pollution on growth and immune response in the geometrid moth Epirrita autumnata. Environ Pollut,2007,145:348-354
    171. Velazquez J M, Sonoda S, Bugaisky G, Lindquist L. Is the major Drosophila heat shock protein present in cells that have not been heat shocked? J Cell Biol,1983,96: 286-290
    172. Venugopal K J, Kumar D. Role of juvenile hormone in the synthesis and sequestration of vitellogenins in the red cotton stainer, Dysdercus koenigii (Heteroptera:Pyrrhocoridae). Comp Biochem Physiol C Toxicol Pharmacol,2000, 127:153-163
    173. Vile G F, Tyrrell R M. UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radical Bio Med,1995,18:721-730
    174. Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci,2004,9: 244-252
    175. Wang Y, Oberley L W, Murhammer D W. Antioxidant defense systems of two Lepidopteran insect cell lines. Free Radical Bio Med,2001,30:1254-126
    176. Weaver R J, Paterson Z A, Short J E, Edwards J P. Effects of Diploptera punctata allatostatins on juvenile hormone biosynthesis and endogenous juvenile hormone Ⅲ levels in virgin and mated female Periplaneta Americana. J Insect Physiol,1995, 41:117-125
    177. Westerlund S A. Hoffmann K H. Rapid quantification of juvenile hormones and their metabolites in insect haemolymph by liquid chromatography-mass spectrometry (LC-MS). Insect Anal Bioanal Chem,2004,379:540-543
    178. Wheeler J C, Bieschke E T, Tower J. Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc Natl Acad Sci USA,1995,92: 10408-10412
    179. Wigglesworh V B. Inseet Hormones.W. H. Freman, SanFraneisco,1970
    180. Williams G C. Natural selection, the costs of reproduction, and a refinement of Lack's principle. Am Nat,1966,100:687-690
    181. Wu K J, Gong P Y. A new and practical artificial diet for the cotton bollworm. Entomologica Sinica,1997,14:227-282
    182. Wu C. Heat shock transcription factors:structure and regulation.1995,11:441-469
    183. Wyatt G R, Braun R P, Zhang J. Priming effect in gene activation by juvenile hormone in locust fat body. Arch Insect Biochem Physiol,1996,32:633-640
    184. Wyatt G R, Davey K D. Cellular and molecular actions of juvenile hormone Ⅱ. Roles of juvenile hormone in adult insects. Adv Insect Physiol,1996,26:1-156
    185. Zera A J, Denno R F. Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol,1997,42:207-231
    186. Zera A J, Harshman L G. The physiology of life-history trade-offs in animals. Annu Rev Ecol S,1997,32:95-126
    187. Zhou X, Coll M, Applebaum S W. Effect of temperature and photoperiod on juvenile hormone biosynthesis and sexual maturation in the cotton bollworm, Helicoverpa armigera:implications for life history traits. Insect Biochem Mol Biol, 2000,30:863-868
    188. Zimmerman J L, Petri W, Meselson M. Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell, 1983,32:1161-1170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700