用户名: 密码: 验证码:
基于在线计算方式的车载ATO运行模式曲线优化模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车载ATO (Automatic Train Operation)是实现列车自动运行的核心设备之一,属于现代的列控设备,是轨道交通智能化的表现。自动调速功能是车载ATO最为核心的功能之一,通常由运行模式曲线计算模块和速度自动控制模块共同实现列车的自动运行功能。运行模式曲线计算模块根据计划运行时间和计划运行路径,综合考虑准点、精确停车、节能、舒适性、线路状况、列车性能等条件,计算列车的最佳运行轨迹。速度自动控制模块以该运行轨迹为目标,控制列车运行。运行模式曲线计算方式可分为在线计算方式和离线计算方式。在线计算方式能实时获取列车运行过程中的各种信息,及时做出有利调整,提高了车载ATO的适应性能力。
     基于在线计算方式的ATO运行模式曲线优化模型是一个高实时性的多目标优化问题。本文分析和总结了现有的多目标优化算法,在动态规划最优性原理的基础上,以时间为依据进行阶段划分,将运行曲线划分为若干相互关联的阶段,在每个阶段采用多目标层次决策的思路计算最优解,实现ATO运行模式曲线的优化。
     论文的主要研究内容如下:
     1.根据列车运行控制和优化目标的特点,建立了列车运行控制的数学模型体系。该数学模型体系包括了列车运动学优化模型、控制目标计算模型、控制目标评价模型、列车状态转移模型等。
     2.针对ATO运行模式曲线优化问题中,主、客观权值存在的不足,提出基于主观权值、局部客观权值以及全局客观权值的ATO控制目标权值计算和权值组合计算模型。
     将ATO控制目标的客观权值分为局部客观权值和全局客观权值,实现了对不同阶段客观因素对阶段性能指标和整体性能指标影响的描述。同时,可通过改变主观权值、局部客观权值和全局客观权值的权值组合方案,计算满足不同决策目的的决策权值,从而直接影响多目标决策的结果,达到预定的优化目的。
     3.针对准点、精确停车、节能以及舒适性目标优化的特点,提出ATO多目标层次决策思路,将多目标决策分为两层。第一层多目标决策只对节能和舒适性目标进行优化,使得节能和舒适性指标达到最优;第二层多目标决策对准点、精确停车、节能和舒适性目标进行优化,通过牺牲节能和舒适性指标,使得准点和精确停车指标满足约束条件。
     论文提出的多目标层次决策中的两层多目标决策之间彼此相互独立,其本质是在进行所有目标优化之前先对节能和舒适性目标进行优化,判断优化结果是否仍能满足准点和精确停车约束条件,从而在不影响准点和精确停车指标的前提下,实现最大化提升节能和舒适性指标的目的。
     4.基于在线计算方式的ATO运行模式曲线计算是一个具有高实时性、多目标、控制对象非线性、且复杂多变的外界条件对控制目标的影响显著等特点的多目标优化问题。本文以列车运行控制的数学模型体系为基础,采用多目标层次决策优化思路,提出了基于在线计算方式的ATO运行模式曲线计算模型。通过实验仿真证明,本文建立的ATO运行模式曲线计算模型在实时性和多目标优化方面都能满足了车载ATO自动调速功能的需求,对于该领域的技术进步具有一定的积极意义。
On-board ATO (Automatic Train Operation) is the core parts equipment of automatic train control. It is an advanced train control equipment and demonstrates the intelligence of rail transport. Automatic speed control is one core functions of ATO, usually, it is realized through the combination of the operation type profile calculation module and the module of automatic speed control. After taking comprehensive consideration on time, accurate parking, energy saving, comfort, track condition, train performance etc, operation type profile calculation module will calculate the best train operation track based on the programmed operation time and operation paths. Automatic speed control module control train operation according to the operation truck. The operation type profile calculation module has two different models:on-line and off-line. The online calculation module can improve the adaptive capacity of ATO, which is able to obtain real-time information and adjust the operation in time during the operating process.
     The online calculation of operation type profile is a high real time capability of multi-objective optimization problem. After analyzes and summarizes the existing multi-objective optimization algorithm and on the basis of the dynamic programming principle of optimality, the method of the thesis is to divide the profile into a number of interrelated phases according to the operation time. At each stage, using multi-objective hierarchical decision to calculate the optimal solution and achieve the optimizing of ATO operational mode profile.
     The main works of this thesis can be surmised as the followings:
     1. According to the characteristic of train operation and control target, the thesis establishes the mathematical model system of train operational control. The mathematical model system includes the optimized model of train kinematics, the calculation model of control parameters, the calculation model of control target, the evaluation model of control target and the state transition model of train operation, etc.
     2. To overcome the shortcomings of single subjective and objective weight existing in solving the optimization problem, this thesis proposed the model of ATO controlling target weight calculation and weight combination calculation based on subjective weights, local objective weights and objective weights.
     By dividing ATO control objective weights into local objective weights and global objective weights can realize the description of different stages of objective factors impacts on the stage performance and the overall performance. Through changing the combination plan of subjective weights of objective weights, local and global weights of objective weights, the decision will directly influence the outcome of multiple objective decision making, and finally achieve the expected purpose of optimization
     3. The thesis proposes the idea of ATO multi-objective hierarchical decision method and divided Multi-objective decision-making into two layers according to features of the Punctual, precise Parking, energy-saving and comfort-objective optimization. The function of first layer of multi-objective decision is only optimizing the energy efficiency and comfort goals and make energy efficiency and comfort s be the optimal; The second layer is used to Optimize punctuality, precision Parking, energy-saving and comfort index and makes punctuality and precision Parking s satisfy the constraints through the expense of energy efficiency and comfort index.
     Multi-objective hierarchical decision between the two layers of multi-objective decision-making proposed in the thesis is independent from each other. It optimizes energy efficiency and comfort index before optimizes all the index and judge whether the optimization results meet punctuality and precision parking constraints and realize the purpose of maximizing enhance energy saving and comfort index under the premise that punctuality and precision parking index is not affected.
     4. The on-line calculation of ATO best operational type profile is a multiple optimization problem, which has the characteristic of high real-time, multiple target, nonlinearity of control system and various and complex environment obviously effect on control targets.
     Based on the mathematical model system of train operation, using the idea of multi-objectives comprehensive optimization based on multi-level decision, this thesis proposes the on-line calculation model of ATO best operational type profile. Through the experimental simulation, the on-line calculation model of ATO best operational type profile can satisfy the real-time and optimization requirements, which has certain positive significance in the field of technological progress.
引文
[1]唐涛,黄良骥.列车自动驾驶系统控制算法综述[J].铁道学报,2003,25(2):98-102
    [2]王义惠,宁滨,宋永端.高速列车制动及牵引自动控制研究[J].控制工程,2010,Vol.17,S0:5-8
    [3]任兴明,王晶晶.国产化城市轨道交通ATO系统设计[J].电子机械工程,2011,Vol..27(5):53-56
    [4]陈荣武,刘莉,诸昌钤.基于CBTC的列车自动驾驶控制算法[J].计算机应用,2007,Vo1.27(11):2649-2651
    [5]余进,钱清泉,何正友.两级模糊神经网络在高速列车ATO系统中的应用研究[J].铁道学报,2008,Vo1.30(5):52-56
    [6]刘海东,毛保华,丁勇,何天健.列车自动驾驶仿真系统算法及其实施研究[J].系统仿真学报,2005,Vol.17(3):577-580
    [7]董海荣,高冰,宁滨.列车自动驾驶调速系统自适应模糊控制[J].动力学与控制学报,2010,Vol.8(1):87-91
    [8]Siemens Ltd. China TS. TRAINGUARD? MT ATC System For Chengdu Metro Line 1 BOOK Ⅱ:ATP & ATO[Z]. Guangzhou China. Siemens Ltd. China TS,2006:83
    [9]Alstom Ltd. China. Signaling Solution for Shanghai Line 10[Z]. Shanghai China. Alstom Ltd.,2008:67-69
    [10]Thales Rail Signalling Solutions Inc. Shanghai Line 6 CBTC System design[Z]. Canada, Thales Rail Signalling Solutions Inc,2006:81
    [11]Thales Rail Signalling Solutions Inc. Shanghai Line 11 CBTC System design[Z]. Canada, Thales Rail Signalling Solutions Inc,2009:141-143
    [12]Union Switch & Signal International Co. Chengdu Line 1 CBTC System design [Z]. USA, Union Switch & Signal International Co,2006:5-21-52-22
    [13]Westinghouse Rail Systems Limited.Trainborne VOBC Funcational Requirements Specification For Beijing Metro Line 5[Z]. UK, Westinghouse Rail Systems Limited, 2005:121-123
    [14]HITACHI Ltd. Chengdu Line 1 ATC System design Plan[Z]. Japan, HITACHI Ltd, 2006:1-53-1-56
    [15]Alstom Ltd. China. Signaling Solution for Chengdu Line 1[Z]. Shanghai China. Alstom Ltd.,2006:28-30
    [16]Bombardier Transportation Ltd. Bombardier CITYFLO650 System Pan for Chengdu Metro Line 1,2006:10,25
    [17]卡斯柯信号有限公司.自动列车控制(ATC)系统介绍Urbalis 888[Z].上海,卡斯柯信号有限公司,2009:41
    [18]Erofeyev E. Caleulation of Optimum Train Control Using Dynamic Programming Method. Proeeedings of Moseow Railway Engineering Institute(Trudey MIIT). Moseow,1967. issue811:16-30
    [19]Milroy IP. Minimum-Energy Control of Rail Vehiele. Proeeeding of the Railway Engineering Conferenee. Sydney,1981. Institution Engineers of Australia:103-104
    [20]Asnis I., Dmitruk A., Osmolovskii N.. Solution of the Problem of the Energetically Optimal Control of the Motion of a Train by the Maximum principle. USSR Computational Mathematies and Mathematical Physics.1985,25(6):37-44
    [21]Milroy IP. Aspeet of Automatie Train Control. PhD. thesis, Loughborough University, 1980
    [22]Lee DH, Milroy IP and Tyler K. Applieation of Poatryagen's Maximum Principle to the Semi-Automatie Control of Rail Vehiele. Proeeedings of the Seeond Conferenee on Control Engineering, Neweastle, Institute of Engineers Autralia,1982:233-236
    [23]Goloviteher I.. Train Control Algorithm for Energy Comsuption Optimization. Proeeedings of ALL-Union Railway Research Institute, Vestnik VN11ZHT,1982:18-23
    [24]Goloviteher I.. Control Algorithms for Automatie Operation of Rail Vehieles. Automated and Remote Control Journal of Russian Aeademy of Science (Automatika I Telemekhanika)11,1986b:118-126
    [25]Howlett P.G Existenee of an Optimal Strategy for the Control of a Train. School of Mathematies RePort#3, University of South Australia,1998
    [26]Howlett P.G Pudney P.J. Energy-Effieient Train Control. Springer Press,1995
    [27]Howlett P.G The Optimal Control of a Train. Annals of Operations Research 98. Kluwer Academic Publishers,2000:5-15
    [28]Eugene Khmelnitsky. On an Optimal Control Problem of Train Operation. IEEE Transaetions on Automatie Control.2000,25(7):1257-1256
    [29]陶林芳.国内外城市快速轨道交通的现状与发展趋势[J].上海建设科技,2005,5:10-14
    [30]Computerised enery conservation[J]. International Railway Journal,1984; (12)
    [31]A.Adinolfi, R.Lamedica, C.Modesto, A. Prudenzi, S.Vimercati. Experimental Assessment of Energy Saving Due to Trains Regenerative Braking in An Electrified Subway Line. [J]. IEE Proc.-Electr.. Power Appl,1997,25(1):211-216
    [32]Maria Dominguez, Antonio Fernandez-Cardador, Asuncion P.Cucala, Ramon R.Pecharroman. Energy Saving in Metropolitan Railway Substations Through Regenerative Energy Recovery and Optimal Design of ATO Speed Profiles[J]. IEEE Transactions on automation science and engineering,2012,Vol.154(5):1-9
    [33]Lee. K.B, Kim Tai-Hoon, Choi Won-Seok. Tracing stopping point for remaining distance through multi brake modeling in the ATO[J]. Communications in Computer and Information Science,2010,Vol.74:169-178
    [34]Christain Rauch.Own A Pieoe Of Modern Railroad History[J].Railroad Model Craftsman.2009,77(9)
    [35]Cheng Jiax in, How lett Phil. Critical velocities for the minimisation of fuel consumption in the control of trains[J]. South Australia n Institute of Technology, Report-MACS 90/01
    [36]Cheng Jiax in, How lett Phil. Optimal strategies for the minimisation of fuel consumption in the control of trains[J]. South Australian Institute of Technology, Report-MACS 90/03
    [37]Schler-Hainsch Eckhard. Verfahren zur Optimierung des Energiever brauchs v on Zugfahrten[J]. D sseldor f:VDI-Verlag,1991
    [38]冯晓云.模糊预测控制及其在列车自动驾驶中的应用研究[D].西南交通大学,2001:5-10
    [39]Yonli Huang and Seiji Yasunobu. A General Practical Design Method for Fuzzy PID Control from Conventional PID Control[J]. IEEE Trans-action of Fuzzy System,2000. Vol.77(5):969-972
    [40]C.S. Chang, S.S. Sim. Optimising Train Movements Trough Coast Control Using Genetic algolithms[J]. IEE Proc.-Electr.. Power Appl,1997,144(1):65-73
    [41]C.S.Chang and D.Y.Xu. Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system[J]. IEE Proc.-Electr. Power Appl.2000.Vol. 147.No.3:206-212
    [42]A.Adinolfi, R.Lamedica, C.Modesto, A. Prudenzi, S.Vimercati. Experimental Assessment of Energy Saving Due to Trains Regenerative Braking in An Electrified Subway Line. [J]. IEE Proc.-Electr.. Power Appl,1997,25(1):211-216
    [43]C.S.Chang, D.Y.Xu and H.B.Quek. Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system[J]. IEE Proc.-Electr.. Power Appl,1999,Vol.146.No.5:577-583
    [44]李子钧.基于模糊自适应PID控制的列车自动驾驶系统的研究[D].北京交通大学,2010:1-2
    [45]王长林,林颖.列车运行控制技术[M].西南交通大学讲义,2005:1-2,202,219-221
    [46]傅世善编著.闭塞与列控概论[M].北京:中国铁道出版社,2006
    [47]汪希时编著.智能铁路运输系统ITS-R[M].北京:中国铁道出版社,2004
    [48]吴汶麒等编著.轨道交通运行控制与管理[M].上海:同济大学出版社,2004
    [49]郎宗棪,曾小清,姜季生编著.轨道交通信号控制基础[M].上海:同济大学出版社:2007
    [50]李开成等.国外铁路通信信号新技术纵览[M].中国铁道出版社,2005.
    [51]林瑜筠主编.城市轨道交通信号[M].北京:中国铁道出版社,2010
    [52]江坤.国产化城轨交通列车自动驾驶系统车载设备研究与设计[J].铁路通信信号工程技术,2009,Vo1.6(1):11-13
    [53]李春宇.沈阳地铁一号线无人自动折返方案[J].铁路通信信号工程技术,2009,Vo1.6(1):40-41
    [54]陈登科.长春轻轨净月线工程中的国产化ATP系统[J].铁路通信信号工程技术,2007,Vo1.4(1):43-44,49
    [55]王成.城市轨道交通信号系统全部国产化方案分析[J].铁道勘测与设计,2010(5):263
    [56]何燕.第一套全国产化信号系统在大连快轨3号线中的应用[J].城市轨道交通研究,2007(7):58
    [57]陈鹤,宁滨,黄友能,郎红霞.CBTC系统中数据库存储单元的下载策略[J].机电工程,2008,Vo1.21(1):76-79
    [58]燕飞,唐涛.实时操作系统及其在列车运行控制系统中的应用分析[J].北方交通大学学报,2002,26(6):69-75
    [59]郑建宁.国产CBTC系统在北京地铁亦庄线的应用研究[J].铁道勘测与设计,2010(4):98
    [60]Jianyong Zuo,Mengling Wu,Hua Peng, Zhongkai Chen. Feedback Control of Pneumatic Brake of Ueban Railway Train under ATO Mode[J]. E-Product E-Service and E-Entertainment(ICEEE),2010, vol.1(4):978-981
    [61]Liu Junli, Li Shufen, Liu Junqin. The study of Automatic Train Operation(ATO) system[J]. Advanced Materials Research,2011,Vol.159:562-567
    [62]Maria Dominguez, Antonio Fernandez-Cardador, Asuncion P.Cucala, Ramon R.Pecharroman. Energy Saving in Metropolitan Railway Substations Through Regenerative Energy Recovery and Optimal Design of ATO Speed Profiles[J]. IEEE Transactions on automation science and engineering,2012,Vol.154(5):1-9
    [63]Jinling Zhu, Xiaoyun Feng, Qing He, Jian Xiao. The Simulation Research for the ATO Model Based on Fuzzy Predictive Control[J]. IEEE Transactions on automation science and engineering,2005, Vol.8(5):235-241
    [64]Qi Hongfeng, Xuwei. Design of Maglev Automatic Train Operation System and Research on Predictive Control Algorithm[J]. IEEE Transactions on automation science and engineering,2011, Vol.8(11):463-470
    [65]Chen Xiangxian, Zhang Yue, Huang Hai. Train Speed Control Algorithm based on PID controller and single-neuron PID controller[J].2010 Second WRI Global Congress onIntelligent Systems,2010,41:107-110
    [66]刘翔.城市轨道交通列车自动运行(ATO)最优控制策略的研究[D].北京交通大学,2011:3,24
    [67]Alstom Ltd. China. Alstom Urbalis888 System[Z]. Shanghai China. Alstom Ltd.,2009: 35-39
    [68]游小明.轨道交通安全计算机的研究与实现[J].计算机工程,2011,Vol.37(6):231-233,236
    [69]郭志良,郜春海,马连川,吕继东.基于时间自动机模型的安全计算机平台的形式化验证[J].铁道学报,2011,Vol.33(6):68-73
    [70]张素兰,郭平,张继福.基于信息熵和偏差的加权概念格内涵权值获取[J].北京理工大学学报,2011,Vol.31(1):59-63
    [71]周敏,李太勇.粒子群优化算法中的惯性权值非线性调整策略[J].计算机工程,2011,Vol.37(5):204-206
    [72]吴秋波,王允诚,赵秋亮,吴昌荣.混沌惯性权值调整策略的粒子群优化算法[J].计算机工程与应用,2009,45(7):49-51
    [73]Fu Xinping, Zou Min. Application of combination weighting method in contract risk's evaluation of third party logistics[J]. Journal of Southeast University(English Edition),2007,Vol.23:128-132
    [74]余建星,谭振东.基于组合赋权及TOPSIS的绩效定量评价研究[J].系统工程理论与实践,2005(11):46-50
    [75]A. Qing. Differential Evolution:Fundamentals and Applications in Engineering[M], New York:Jhon Wliley & Sons,2009
    [76]贺新春,李兴拼,刘卫林.水资源系统多目标综合评估模型与方法[J].水利学报,2009,Vol.40(9):1033-1039
    [77]易思蓉.地铁路网规划的多目标综合评价[J].城市轨道交通研究,2002,2:31-35
    [78]吴小萍,詹振炎.基于灰色和模糊集理论的铁路方案多目标综合评价方法及模型研究[J].铁道学报,2001,Vol.23(5):107-113
    [79]张泽彬,郝志峰,黄翰,李学强.求解车辆路径问题的多领域下降搜索蚁群优化算法[J].南京大学学报(自然科学),2012,Vol.48:91-98
    [80]杜长海,黄席樾,杨祖元,唐明霞,杨芳勋.改进的蚁群算法在动态路径诱导中的应用研究[J].计算机工程及应用,2008,44(27):236-239
    [81]黄贵玲,高西全,靳松杰,谈飞洋.基于蚁群算法的最短路径问题的研究和应用[J].计算机工程及应用,2007,43(13):233-235
    [82]吕红霞,何大可,陈韬.基于蚁群算法的客运站到发线运用计划编制方法[J].西南交通大学学报,2008,Vol.43(2):153-158
    [83]马超群,兰秋军,周忠宝.运筹学[M],湖南大学出版社,2010:195
    [84]陈宝林.最优化理论与算法(第2版)[M],清华大学出版社,2005
    [85]薛毅.最优化原理与方法[M],北京工业大学出版社,2001
    [86]王正志.进化计算[M],国防科技大学出版社,200O
    [87]云庆夏.进化算法[M],冶金工业出版社,2000
    [88]刑文训.现代优化计算方法(第2版)[M],清华大学出版社,2005
    [89]王凌,智能优化算法及其应用[D],浙江大学,2006
    [90]孙素云.基于动态规划的多链路出口路径选择算法[J].计算机工程,2010,Vol.36(9):117-119
    [91]曲家庆,张曙.基于动态规划优化传感器网络寿命的算法[J].沈阳工业大学学报,2011,Vol.33(5):556-560
    [92]纪震著.粒子群算法及应用[M].北京:科学出版社,2009
    [93]刘波著.粒子群优化算法及其工程应用[M].北京:电子工业出版社,2010
    [94]Rail Transit Vehicle Interface Standards Committee of the IEEE Vehicular Technology Society. IEEE 1474.1TM IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements[S]. the United States of America the Institute of Electrical and Electronics Engineers, Inc,2005.
    [95]Rail Transit Vehicle Interface Standards Committee of the IEEE Vehicular Technology Society. IEEE 1474.2TM IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements[S]. the United States of America the Institute of Electrical and Electronics Engineers, Inc,2003.
    [96]Rail Transit Vehicle Interface Standards Committee of the IEEE Vehicular Technology Society. IEEE 1474.3TM IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements[S]. the United States of America the Institute of Electrical and Electronics Engineers, Inc,2008.
    [97]Rail Transit Vehicle Interface Standards Committee of the IEEE Vehicular Technology Society. IEEE 1475 IEEE Standard for the Functioning of and interfaces Among Propulsion, Friction Brake, and Train-borne Master Control on Rail Rapid Transit Vehicles[S]. the United States of America:the Institute of Electrical and Electronics Engineers, Inc,1999.
    [98]Rail Transit Vehicle Interface Standards Committee of the IEEE Vehicular Technology Society. IEEE 1483 IEEE Standard for Verification of Vital Functions in Processor-Based Systems Used in Rail Transit Control[S]. the United States of America the Institute of Electrical and Electronics Engineers, Inc,2007.
    [99]Rail Transit Vehicle Interface Standards Committee of the IEEE Vehicular Technology Society. IEEE 1698 IEEE Guide for the Calculation of Braking Distances for Rail Transit Vehicles[S]. the United States of America:the Institute of Electrical and Eiectronics Engineers, Inc,2009.
    [100]孔祥安.TGV—法国高速铁路[M],成都:西南交通大学出版社,1997
    [101](日)铃声浩明著,王寿长译.震动舒适性的国际标准草案[J].国外铁道车辆,2000,37(1):43-45
    [102]UIC, UIC 513 Guidelines for evaluateing passenger comfort in relation to vibration in railway vehicles[S]. International Union of Railways.1994
    [103]ISO. ISO2631-1 Mechanical vibration and shock-Evaluation of hunman exposure to whole-body vibration Part 1:General requirements[S].International Organization for Standardization.1997
    [104]ISO. ISO2631-2 Mechanical vibration and shock-Evaluation of hunman exposure to whole-body vibration Part 2:Vibration in buildings[S].International Organization for Standardization.2003
    [105]ISO. ISO2631-3 Mechanical vibration and shock-Evaluation of hunman exposure to whole-body vibration Part 3:Evaluation of exposure to whole-body z-axis vertical vibration in the frequency range 0.1 to 0.63Hz ISO 2631[S].International Organization for Standardization.1997
    [106]ISO. ISO2631-4 Mechanical vibration and shock-Evaluation of hunman exposure to whole-body vibration Part 4:Guidelines for evaluation of the effects of vibration and rotational motion on passenger and crew comfort in fixed-guideway transport systems[S].International Organization for Standardization.2001
    [107]ISO. ISO2631-5 Mechanical vibration and shock-Evaluation of hunman exposure to whole-body vibration Part 5:Methond for evaluation of vibration containing multiple shocks[S].International Organization for Standardization.2004
    [108]中华人民共和国国家标准局.GB 5599-85铁道车辆动力学性能评定和试验鉴定规范.中国标准书号[S].国家标准局,1986
    [109]王自力.列车节能运行优化操纵的研究[J].西南交通大学学报,1994,29(3):275-279
    [110]金炜东,王自力,李崇维.列车节能操纵优化方法研究[J].铁道学报,1997,19(6):58-62
    [111]王峰,刘海东,丁勇,陈善亮,毛保华.列车节能运行的算法及实施技术研究[J].北方交通大学学报,2002,Vo1.26(5):13-18
    [112]丁勇,毛保华,刘海东,张鑫,王铁城.列车节能运行模拟系统的研究[J].北方交通大学学报,2004,Vol.28(2):76-81
    [113]丁勇,毛保华,刘海东,张鑫,王铁城.定时约束条件下列车节能操纵的仿真算法研究[J].系统仿真学报,2004,Vol.16(10):2241-2244
    [114]冯晓云,何鸿云,朱金陵.列车优化操纵原则及其优化操纵策略的数学描述[J].机车电传动,2001,4:13-16
    [115]Howlett P G, Pudney P J. Energy-Efficient Train Control[M], London:Springer,1995
    [116]C.S. Chang, S.S. Sim. Optimising Train Movements Trough Coast Control Using Genetic algolithms[J]. IEE Proc.-Electr.. Power Appl,1997,144(1):65-73
    [117]Rongfang Liu, Iakov M. Golovitcher. Energy-Efficient Operation of Rail Vehicles[J]. Transportation Research Part A,2003,37:917-932
    [118]张全著.复杂多属性决策研究[M].沈阳:东北大学出版社,2008
    [119]杨自厚,许宝栋,董颖编著.多目标决策方法[M].沈阳:东北大学出版社,2006
    [120]张衍林,艾平主编,舒彩霞,徐广印,余平祥副主编.运筹学[M].武汉:华中科技大学出版社,2009
    [121]左军编.多目标决策方法与应用[M].杭州:浙江大学出版社,1991
    [122]Thales Rail Signalling Solutions Inc. The Fundamental Requirements of The On-board ATC Equipment [Z]. Canada, Thales Rail Signalling Solutions Inc,2009:229-231
    [123]Thales Rail Signalling Solutions Inc. The VOBC Data Preparation for Wuhan Line 1 [Z]. Canada, Thales Rail Signalling Solutions Inc,2009:229-231
    [124]Thales Rail Signalling Solutions Inc. The VOBC Data Preparation for Wuhan Line 1 [Z]. Canada, Thales Rail Signalling Solutions Inc,2009:79-88,112-119
    [125]Thales Rail Signalling Solutions Inc. The LDCS Placement Rule and Constraint [Z]. Canada, Thales Rail Signalling Solutions Inc,2009:79-88,1-13
    [126]段海滨著.蚁群算法原理及其应用[M].科学出版社,2005
    [127]员春欣,江建慧.安全关键计算机系统[M].北京:中国铁道出版社,2003
    [128]林颖,王长林.车载ATP安全技术平台同步机制[J].计算机工程,2010,Vol.36(11): 14-16
    [129]GENELEC. EN50128 Railway applications-Communication, signaling and processing systems-Software for railway control and protection systems[S]. GENELEC,2009
    [130]吴艳霞,顾国昌,王克惠.一种基于控制流检测的低功耗基本块划分方法[J].计算机工程与应用,2007,43(25):118-120
    [131]B.Nicolescu, Y.Savaria, R.Velazaco. SIED:Software Implemented Error Detection[J]. Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems(DFT' 03),2003:1063-1070
    [132]李剑明,谭庆平,徐建军,蒋诚.基于路径跟踪的控制流检测[J].计算机工程,2009,Vol.35(20):68-70
    [133]李爱国,洪炳镕,王司.软件实现的程序控制流校验方法研究进展[J].哈尔滨工业大学学报,2008,Vol.40(3):407-412,482
    [134]李爱国,洪炳镕,王司.一种软件实现的程序控制流错误检测方法[J].宇航学报,2006,Vol.27(6):1424-1430
    [135]段成,吴克河.通用综合评价支持系统的可配置评价模型研究[J].系统仿真学报,2012,Vol.24(3):692-695
    [136]卢志刚,张炜,王新华,黄舒婷.多目标多层次模糊综合评价在电力企业运营状况评价中的应用[J].电网技术,2002,Vol.26(2):54-57
    [137]彭俊彬.动车组牵引与制动[M].中国铁道出版社,2007
    [138]铁道部运输局,铁道机车司机培训考试中心,西南交通大学.动车组技术与应用(CRH 1)[M].西南交通大学出版社,2008
    [139]孙中央.列车牵引计算实用教程[M].中国铁道出版社,2005:134
    [140]中华人民共和国铁道部.TB/T 1407-1998中国标准书号[S].北京:中国铁道出版社,1998:24.
    [141]彭其渊,石红国,魏德勇.城市轨道交通列车牵引计算[M].西南交通大学出版社,2005
    [142]铁道部运输局,铁道机车司机培训考试中心,西南交通大学.动车组技术与应用(CRH 3)[M].西南交通大学出版社,2008
    [143](美)George F.Luger著,史忠植,张银奎,赵志崑等译.人工智能:复杂问题求解的结构和策略[M],机械工业出版社,2006
    [144]Seong-Ho Han, Yun-Sub Byen, Jong-Hyen Baek, Tae-Ki An, Su-Gil Lee, Hyun-Jun Park. An Optimal automatic train operation(ATO) Control Using Genetic Algorithms(GA) [J]. IEE Proc- Electr.. Power Appl,1999,99(6):360-362
    [145]Seong-Ho Han, Su-Gil Lee, Won-Wyong Kim. Development of Onboard Train Automatic Control System For Korean Standard EMU[J]. ISIE 2001,Pusan Korea,2001: 1257-1259
    [146]Hairong Dong, Li Li, Bin Ning. Fuzzy Switch of High-speed ATO Systems Based on Running Conditions[J]. Proceedings of the 2010 IEEE International Conference on Information and Automation June20-23,Harbin,China.2010:619-622
    [147]孙艳丰,戴春荣.几种随机搜索算法的比较研究[J].系统工程及电子技术,1998:2:43-47
    [148]张惠娣,刘士荣.移动机器人行为参数的PSO多目标优化[J].计算机工程,2011,Vol.37(4):190-192
    [149]肖晓伟,肖迪,林锦国,肖玉峰.多目标优化问题的研究概述[J].计算机应用研究,2011,Vol.28(3):805-808,827
    [150]蔡自兴,(美)约翰·德尔金,龚涛编著.高级专家系统:原理、设计及应用[M].科学出版社,2005
    [151]陈希孺著.广义线性模型的拟似然法[M].中国科学技术大学出版社,2011
    [152]徐跃良编.数值分析[M].西南交通大学出版社,2005
    [153]李士勇,陈永强,李研编著.蚁群算法及其应用[M].哈尔滨工业大学出版社,2004
    [154](法)Malik Ghallab,(美)Dana Nau,(意)Paolo Traverso著,姜云飞,杨强,凌应标等译.Auomated Planning Theory and Practice,自动规划:理论和实践[M].清华大学出版,2008
    [155]Dong Haurong, Li Li, Ning Bin, Hou Zhongsheng. Fuzzy Tuning of ATO System in Train Speed Control with Multiple Working Conditions[J]. Proceedings of the 29th Chinese Control Conference July 29-31,2010,Beijing,China,2010:1697-1700
    [156]Xiaomin Zhu and Xiang Liu. The Modeling of Test Systems of Automatic Train Operation (ATO) in Urban Rail Transit Based on LABVIEW[J].2010 International Conference on Computer Application and System Modeling(ICCASM 2010),2010: V1-559-V1-563
    [157]Qi Hongfeng, Xu Wei. Design of Maglev Automatic Train Operation System and Research on Predictive Control Algorithm[J]. IEE Proc.-Electr. Power Appl,2011,8(1): 463-470
    [158]Chan-Ho Cho, Dong-Hyuk Choi, Zhong-Hua Quan, Sun-Ah Choi, Gie-Soo Park, and Myung-Seon Ryou. Modeling of CBTC Carborne ATO Functions using SCADE[J]. 2011 11th International Conference on Control, Auomation and Systems Oct.26-29, 2011 in KINTEX,Gyeonggi-do, Korea,2011:1089-1093
    [159]Gao Bing, Dong Hairong and Zhang Yanxin. Speed Adjustment Braking of Automatic Train Operation System based on Fuzzy-PID Switch Control[J].2009 6th International Conference on Fuzzy Systems and Knowledge Discovery.2009:577-580
    [160]林颖,王长林.车载列车自动防护系统对空转及滑行的检查与校正方法研究[J].城市轨道交通研究,2011(3):28-31,36
    [161]陈荣武,刘莉,诸昌钤.基于CBTC的列车自动驾驶控制算法[J].计算机应用,2007,Vo1.27(11):2649-2651

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700