用户名: 密码: 验证码:
基于数据驱动和物理模型的结构地震损伤识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来世界频繁发生大地震并造成了巨大的经济损失、人员伤亡及社会影响,这是因为一方面人们对地震地面运动的特征认识不足,另一方面是人们还无法准确把握工程结构在真实地震作用下的地震损伤机理和破坏机制。近30年发展起来的结构健康监测系统通过布设传感器获取原型结构在真实服役环境及荷载作用下的实际响应,实时地诊断结构的损伤并及时地发出预警警报,是当前研究和揭示工程结构在真实地震作用下结构地震响应、损伤机理和破坏机制的最直接、最有效的手段。传统的基于振动信号的结构损伤识别方法一般认为结构损伤前后都是线性的,由于强地震地面运动的非平稳性使得工程结构在强地震作用下表征明显的非线性行为,如混凝土裂缝的张开与闭合,钢筋或钢材的屈服或屈曲等,这使得传统的结构损伤识别方法并不直接适合识别结构的地震损伤。因此迫切需要重新审视地震地面运动的非平稳特性,发展利用结构地震作用下非线性特征和非线性系统识别方法的结构地震损伤识别方法和损伤评估方法。为此,本文研究地震地面运动时频能量分布、以及基于数据驱动提取非线性特征的结构地震损伤识别方法和基于物理模型识别非线性系统的结构地震损伤识别方法。主要研究内容如下:
     研究基于匹配追踪分解算法和时频能量分布的地震地面运动生成方法。首先介绍匹配追踪分解算法的基本原理;然后构造具有相同峰值加速度和傅里叶幅度谱的简单人工地震地面运动,比较它们时频能量分布的差异以及时频能量分布对线性结构最大弹性位移的影响,进一步定义时频原子幅度、循环特征、滞后相位角和有效能量,分析地震地面运动有效能量与最大弹性位移的相关性;最后分析人工地震地面运动时频能量分布对弹塑性结构响应的影响规律,通过时频能量分布解释非线性结构地震响应的动态棘轮效应。
     研究基于层间位移时频特征分形维数的剪切型结构地震损伤识别方法。首先定义时频特征并采用分形维数定量刻画;然后结合模态叠加原理推导线性结构各自由度处时频特征分形维数的性质,结合子结构方法得到非线性结构各子结构时频特征分形维数的性质;最后以10层剪切型结构为数值仿真对象,模拟结构在单层损伤和多层损伤,不同损伤程度,近场地震动和远场地震动、不同噪声水平下的识别效果,并讨论不同阻尼比和采用层间加速度对识别结果的影响。
     研究基于位移信号时频特征分形维数的框架型结构地震损伤方法。首先结合静态缩聚法、模态叠加原理推导线性框架型结构各主自由度处时频特征分形维数的性质;然后对于梁、柱端产生塑性铰的非线性框架型结构,研究拟力法推导塑性铰到非弹性位移的转换矩阵并得到各主自由度的时频特征分形维数的性质,对于局部安装非线性构件如阻尼器的非线性框架型结构,研究逆反路径法分析局部非线性对结构相对位移的影响并得到各主自由度的时频特征分形维数的性质。其次通过16层框架型结构数值算例验证结构单层和多层梁、柱出现塑性铰时的时频特征分形维数的识别方法;最后通过安装了摩擦阻尼器(模拟结构体系的局部非线性)的16层钢框架型结构振动台试验验证所提方法。
     研究基于扩展Kalman和无迹Kalman滤波相结合的结构地震损伤分散识别方法。首先介绍经典Kalman滤波,扩展Kalman滤波和无迹Kalman滤波的基本原理;然后研究分别用扩展Kalman滤波和无迹Kalman滤波识别线性和非线性子结构的扩展状态。其次以10自由度剪切型结构为数值仿真对象,模拟结构在单层损伤和多层损伤下的识别结果,并比较同基于扩展Kalman滤波和无迹Kalman滤波整体结构识别方法的识别结果。最后结合识别的力—位移曲线和修正的Park-Ang损伤指标对结构的地震损伤定量评估。
Great earthquakes in the world have caused huge economic damage, casualties andsocial implications in recent years. This is because that people on one hand, are lack ofknowledge of the characteristics of earthquake ground motion and on the other handpeople can not accurately understand the seismic damage mechanism of the realengineering structures under the strong ground motion. The structural health monitoring(SHM) systems, having been developed in recent30years, monitor the real responses ofthe prototype structures under the real environment and loads with placed sensors, andprovide real-time structural damage diagnosis and timely early warning alarm, thus theSHM is currently the most direct and effective measure to study and reveal the seismicresponses, damage mechanisms and failure mechanisms of engineering structures.Traditional structural damage detection methods based on vibration signals assume thestructure is linear before and after damage. Due to the non-stationarity of strong groundmotion, the engineering structures exhibit obvious nonlinear behavior, such as theopening and closing of cracks in concrete and the yielding and buckling of steels, etc.,which makes the traditional structural damage detection methods are not suitable fordetecting structural seismic damage directly. Therefore there is an urgent need to re-examine the non-stationary characteristics of the earthquake ground motion, and todevelopment structural seismic damage detection and assessment methods with the helpof nonlinear feature and nonlinear system identification approaches. To this end, thisthesis focuses on the time-frequency energy distribution of earthquake ground motion,data-driven based structural seismic damage detection method by extracting nonlinearfeature and model based structural seismic damage detection method by identifying thenonlinear system. The main contents are as follows:
     The method of generating earthquake ground motion based on matching pursuitdecomposition (MPD) and time-frequency energy distribution (TFED) is researched.Firstly the theory of MPD is introduced. Secondly the artificial earthquake groundmotions with same peak ground acceleration and Fourier amplitude spectrum aregenerated and the difference between the two TFEDs and their effects on the maximalelastic displacements of linear structures are studied. The amplitude, cyclingcharacteristics, phase lag angle and effective energy of time-frequency atoms aredefined, and the correlation between maximal elastic displacement and effective energyare analyzed. Finally the regular pattern of TEFDs’s effects on the responses of elastic perfectly plastic model (EPP) for the artificial earthquake ground motions are studied,and explaination of the dynamic ratcheting effect of EPP model are given by using theTFED of the real earthquake ground motion.
     The structural seismic damage detection method based on the fractal dimension(FD) of interstory displacement’s time-frequency feature (TFF) is proposed for shear-type structure. Firstly, the TFF is defined and the FD is used to quantify the TFF.Secondly, the FD of TFF at each degree of freedom (DOF) for linear system is derivedwith the help of modal superposition principle, and the FD of TFF for each substructurein nonlinear system is derived with the help of substructure method. Finally, thenumerical simulations of10-story shear-type structure with single or multiple damage,different damage extend, near field and far field ground motion and different noise levelare conducted, and the effects of damping ratios and using interstory acceleration on thedetection results are discussed.
     The structural seismic damage detection method based on the FD ofdisplacements’ TFF is investigated for moment-resist frame (MRF) structure. Firstly, theFD of TFF at each main DOF of linear MRF is derived with the help of staticcondensation method and modal superposition principle. Secondly, for nonlinear MRFwith plastic hinges at the ends of beams and columns, the transformation matrix fromthe rotations of plastic hinges to the inelastic displacements are derived based on theforce analogy method and the characteristics of the FD of TFF are studied; for thenonlinear MRF with added local nonlinear component such as the damper, the effects oflocal nonlinearity on the relative displacements are discussed and the characteristics ofthe FD of TFF are also studied. Thirdly, the numerical simulation of16-story MRF withsingle and multiple plastic hinges at the ends of beams and columns is studied. Finally,the shaking table test of a16-story steel MRF with added frictional dampers, whichsimulate local nonlinearities in the whole structure, is conducted to verify the proposedmethod.
     The decentralized identification method of structural seismic damage based on theextended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. Firstly,the principles of classical KF, EKF and UKF are introduced. Secondly, the method thatidentifies the extended state spaces of the linear and nonlinear substructures using EKFand UKF respectively is investigated. Thirdly, a10-story shear-type structure withsingle or multiple damages is used for numerical simulation, and the identified resultsare compared with those using EKF or UKF for the complete structure identification.Finally, the quantitative evaluation of the structural seismic damage is obtained bycombining the estimated force-displacement curve and the modified Park-Ang damage index.
引文
[1]胡聿贤.地震工程学[M].北京:地震出版社,2006:380-382.
    [2] Housner G W. Strong Ground Motion [J]. Earthquake Engineering,1970,75-91.
    [3] Bozorgnia Y, Bertero V V. Earthquake Engineering: From EngineeringSeismology to Performance-Based Engineering [M]. CRC Press,2004.
    [4] Cacciola P, Deodatis G. A Method for Generating Fully Non-Stationary andSpectrum-Compatible Ground Motion Vector Processes [J]. Soil Dynamics andEarthquake Engineering,2011,31(3):351-360.
    [5] Sgobba S, Stafford P, Marano G, Guaragnella C. An Evolutionary StochasticGround-Motion Model Defined by a Seismological Scenario and Local SiteConditions [J]. Soil Dynamics and Earthquake Engineering,2011,31(11):1465-1479.
    [6] Zentner I, Poirion F. Enrichment of Seismic Ground Motion Databases UsingKarhunen–Loève Expansion [J]. Earthquake Engineering&Structural Dynamics,2012,41(14):1945-1957.
    [7] Zhang Y, Zhao F, Yang C. Generation of Nonstationary Artificial Ground MotionBased on the Hilbert Transform [J]. Bulletin of the Seismological Society ofAmerica,2012,102(6):2405-2419.
    [8] Rezaeian S, Der Kiureghian A. Simulation of Orthogonal Horizontal GroundMotion Components for Specified Earthquake and Site Characteristics [J].Earthquake Engineering&Structural Dynamics,2012,41(2):335-353.
    [9] Conte J, Peng B. Fully Nonstationary Analytical Earthquake Ground-MotionModel [J]. Journal of Engineering Mechanics,1997,123(1):15-24.
    [10] He J. An Efficient Numerical Method for Estimating Reliabilities of LinearStructures under Fully Nonstationary Earthquake [J]. Structural Safety,2010,32(3):200-208.
    [11] Beck J L, Papadimitriou C. Moving Resonance in Nonlinear Response to FullyNonstationary Stochastic Ground Motion [J]. Probabilistic EngineeringMechanics,1993,8(3–4):157-167.
    [12] Iyama J, Kuwamura H. Application of Wavelets to Analysis and Simulation ofEarthquake Motions [J]. Earthquake Engineering&Structural Dynamics,1999,28(3):255-272.
    [13] Ohsaki Y. On the Significance of Phase Content in Earthquake Ground Motions[J]. Earthquake Engineering&Structural Dynamics,1979,7(5):427-439.
    [14] Thráinsson H, Kiremidjian A S. Simulation of Digital EarthquakeAccelerograms Using the Inverse Discrete Fourier Transform [J]. EarthquakeEngineering&Structural Dynamics,2002,31(12):2023-2048.
    [15] Boore D M. Phase Derivatives and Simulation of Strong Ground Motions [J].Bulletin of the Seismological Society of America,2003,93(3):1132-1143.
    [16]赵凤新,胡聿贤.地震动非平稳性与幅值谱和相位差谱的关系[J].地震工程与工程振动,1994,14(2):1-6.
    [17]廖振鹏,金星.强地震动相位的一个随机模型[J].地震学报,1995,17(3):353-361.
    [18]杨庆山,姜海鹏.基于相位差谱的时-频非平稳人造地震动的反应谱拟合[J].地震工程与工程振动,2002,22(1):32-38.
    [19] Chakraborty A, Okaya D. Frequency‐Time Decomposition of Seismic DataUsing Wavelet‐Based Methods [J]. GEOPHYSICS,1995,60(6):1906-1916.
    [20] Zhou Z, Adeli H. Time-Frequency Signal Analysis of Earthquake Records UsingMexican Hat Wavelets [J]. Computer-Aided Civil and Infrastructure Engineering,2003,18(5):379-389.
    [21] Zhou Z, Adeli H. Wavelet Energy Spectrum for Time-Frequency Localization ofEarthquake Energy [J]. International Journal of Imaging Systems andTechnology,2003,13(2):133-140.
    [22] Telesca L, Lapenna V, Alexis N. Multiresolution Wavelet Analysis ofEarthquakes [J]. Chaos, Solitons&Fractals,2004,22(3):741-748.
    [23] Sinha S, Routh P S, Anno P D, Castagna J P. Spectral Decomposition of SeismicData with Continuous-Wavelet Transform [J]. Geophysics,2005,70(6): P19-P25.
    [24] Wang Y. Seismic Time-Frequency Spectral Decomposition by Matching Pursuit[J]. Geophysics,2007,72(1): V13-V20.
    [25] Todorovska M I, Meidani H, Trifunac M D. Wavelet Approximation ofEarthquake Strong Ground Motion-Goodness of Fit for a Database in Terms ofPredicting Nonlinear Structural Response [J]. Soil Dynamics and EarthquakeEngineering,2009,29(4):742-751.
    [26] Yazdani A, Takada T. Wavelet-Based Generation of Energy-and Spectrum-Compatible Earthquake Time Histories [J]. Computer-Aided Civil andInfrastructure Engineering,2009,24(8):623-630.
    [27] Iyama J. Estimate of Input Energy for Elasto-Plastic Sdof Systems DuringEarthquakes Based on Discrete Wavelet Coefficients [J]. EarthquakeEngineering&Structural Dynamics,2005,34(15):1799-1815.
    [28] Montejo L A, Kowalsky M J. Estimation of Frequency-Dependent StrongMotion Duration Via Wavelets and Its Influence on Nonlinear Seismic Response[J]. Computer-Aided Civil and Infrastructure Engineering,2008,23(4):253-264.
    [29] Cao H, Friswell M I. The Effect of Energy Concentration of Earthquake GroundMotions on the Nonlinear Response of Rc Structures [J]. Soil Dynamics andEarthquake Engineering,2009,29(2):292-299.
    [30] Spencer B F, Ruiz-Sandoval M E, Kurata N. Smart Sensing Technology:Opportunities and Challenges [J]. Structural Control and Health Monitoring,2004,11(4):349-368.
    [31] Doebling S W, Farrar C R, Prime M B, Shevitz D W. Damage Identification andHealth Monitoring of Structural and Mechanical Systems from Changes in TheirVibration Characteristics: A Literature Review [R]. Report LA-13070-MS, LosAlamos National Laboratory, NM.,1996.
    [32] Chang P C, Flatau A, Liu S C. Review Paper: Health Monitoring of CivilInfrastructure [J]. Structural Health Monitoring,2003,2(3):257-267.
    [33] Carden E P, Fanning P. Vibration Based Condition Monitoring: A Review [J].Structural Health Monitoring,2004,3(4):355-377.
    [34] Sohn H, Farrar C R, Hemez F M, Shunk D D, Stinemates D W, Nadler B R,Czarnecki J J. A Review of Structural Health Monitoring Literature:1996-2001[R]. Report LA-13976-MS, Los Alamos National Laboratory Los Alamos, NewMexico,2004.
    [35] Liu S-C, Tomizuka M, Ulsoy G. Strategic Issues in Sensors and Smart Structures[J]. Structural Control and Health Monitoring,2006,13(6):946-957.
    [36] Ou J, Li H. Structural Health Monitoring in Mainland China: Review and FutureTrends [J]. Structural Health Monitoring,2010,9(3):219-231.
    [37] Liu Y, Nayak S. Structural Health Monitoring: State of the Art and Perspectives[J]. JOM Journal of the Minerals, Metals and Materials Society,2012,1-4.
    [38] Cao J, Liu X. Structural Health Monitoring Using Wireless Sensor Networks [J].Mobile and Pervasive Computing in Construction,2012,210-236.
    [39] Zhou L, Yan G, Wang L, Ou J. Review of Benchmark Studies and Guidelines forStructural Health Monitoring [J]. Advances in Structural Engineering,2013,16(7):1187-1206.
    [40] Todorovska M. Earthquake Damage: Detection and Early Warning EarlyWarning in Man-Made Structures [M]//Meyers R A. Extreme EnvironmentalEvents. Springer New York.2011:150-174.
    [41] Celebi M. Seismic Monitoring of Structures and New Developments [M].Earthquakes and Health Monitoring of Civil Structures. Springer.2013:37-84.
    [42] Naeim F. Real-Time Damage Detection and Performance Evaluation forBuildings [M]. Earthquakes and Health Monitoring of Civil Structures. Springer.2013:167-196.
    [43] Celebi M, Sanli A, Sinclair M, Gallant S, Radulescu D. Real-Time SeismicMonitoring Needs of a Building Owner—and the Solution: A Cooperative Effort[J]. Earthquake Spectra,2004,20(2):333-346.
    [44] Federal Emergency Management Agency N. FEMA356. Prestandard andCommentary for the Seismic Rehabilitation of Buildings [M]. FEMAWashington, DC.2000:1-8-1-10.
    [45] Applied Technology Council N. Seismic Evaluation and Retrofit of ExistingConcrete Buildings [M]. Redwood City, CA,1996:3-1-3-13.
    [46]蒋欢军,吕西林.钢筋混凝土框架结构层间位移角与构件变形关系研究[J].地震工程与工程振动,2009,29(2):66-72.
    [47] Naeim F. Performance of20Extensively-Instrumented Buildings During the1994Northridge Earthquake [J]. The Structural Design of Tall Buildings,1998,7(3):179-194.
    [48] Miranda E. Use of Probability-Based Measures for Automated DamageAssessment [J]. The Structural Design of Tall and Special Buildings,2006,15(1):35-50.
    [49] Tang J-P, Chiou D-J, Chen C-W, Chiang W-L, Hsu W-K, Chen C-Y, Liu T-Y. ACase Study of Damage Detection in Benchmark Buildings Using a Hilbert-Huang Transform-Based Method [J]. Journal of Vibration and Control,2011,17(4):623-636.
    [50] Ruiz-García J, Miranda E. Residual Displacement Ratios for Assessment ofExisting Structures [J]. Earthquake Engineering&Structural Dynamics,2006,35(3):315-336.
    [51] Macrae G A, Kawashima K. Post-Earthquake Residual Displacements ofBilinear Oscillators [J]. Earthquake Engineering&Structural Dynamics,1997,26(7):701-716.
    [52] Yazgan U, Dazio A. The Use of Post-Earthquake Residual Displacements as aPerformance Indicator in Seismic Assessment [J]. Georisk: Assessment andManagement of Risk for Engineered Systems and Geohazards,2010,5(1):59-76.
    [53] Ruiz-García J, Miranda E. Evaluation of Residual Drift Demands in RegularMulti-Storey Frames for Performance-Based Seismic Assessment [J].Earthquake Engineering&Structural Dynamics,2006,35(13):1609-1629.
    [54] Loh C-H, Mao C-H, Huang J-R, Pan T-C. System Identification and DamageEvaluation of Degrading Hysteresis of Reinforced Concrete Frames [J].Earthquake Engineering&Structural Dynamics,2011,40(6):623-640.
    [55] Nakashima M, Inoue K, Tada M. Classification of Damage to Steel BuildingsObserved in the1995Hyogoken-Nanbu Earthquake [J]. Engineering Structures,1998,20(4–6):271-281.
    [56] Safak E. Wave-Propagation Formulation of Seismic Response of MultistoryBuildings [J]. Journal of Structural Engineering,1999,125(4):426-437.
    [57] Todorovska M I, Trifunac M D. Earthquake Damage Detection in the ImperialCounty Services Building Iii: Analysis of Wave Travel Times Via ImpulseResponse Functions [J]. Soil Dynamics and Earthquake Engineering,2008,28(5):387-404.
    [58] Todorovska M I, Trifunac M D. Impulse Response Analysis of the Van Nuys7-Storey Hotel During11Earthquakes and Earthquake Damage Detection [J].Structural Control and Health Monitoring,2008,15(1):90-116.
    [59] Antoni J. Blind Separation of Vibration Components: Principles andDemonstrations [J]. Mechanical Systems and Signal Processing,2005,19(6):1166-1180.
    [60] Liang Y C, Lin W Z, Lee H P, Lim S P, Lee K H, Sun H. Proper OrthogonalDecomposition and Its Applications–Part Ii: Model Reduction for MemsDynamical Analysis [J]. Journal of Sound and Vibration,2002,256(3):515-532.
    [61] Liang Y C, Lee H P, Lim S P, Lin W Z, Lee K H, Wu C G. Proper OrthogonalDecomposition and Its Applications—Part I: Theory [J]. Journal of Sound andVibration,2002,252(3):527-544.
    [62] Kerschen G, Golinval J C. Physical Interpretation of the Proper OrthogonalModes Using the Singular Value Decomposition [J]. Journal of Sound andVibration,2002,249(5):849-865.
    [63] Feeny B F, Kappagantu R. On the Physical Interpretation of Proper OrthogonalModes in Vibrations [J]. Journal of Sound and Vibration,1998,211(4):607-616.
    [64] Poncelet F, Kerschen G, Golinval J C, Verhelst D. Output-Only Modal AnalysisUsing Blind Source Separation Techniques [J]. Mechanical Systems and SignalProcessing,2007,21(6):2335-2358.
    [65] Ghahari S F, Abazarsa F, Ghannad M A, elebi M, Taciroglu E. Blind ModalIdentification of Structures from Spatially Sparse Seismic Response Signals [J].Structural Control and Health Monitoring,2013, DOI:10.1002/stc.1593.
    [66] Sadhu A, Hazra B, Narasimhan S. Blind Identification of Earthquake-ExcitedStructures [J]. Smart Materials and Structures,2012,21(4):045019.
    [67] Gutiérrez E, Zaldivar J M. The Application of Karhunen–Loéve, or PrincipalComponent Analysis Method, to Study the Non-Linear Seismic Response ofStructures [J]. Earthquake Engineering&Structural Dynamics,2000,29(9):1261-1286.
    [68] Aschheim M A, Black E F, Cuesta I. Theory of Principal Components Analysisand Applications to Multistory Frame Buildings Responding to SeismicExcitation [J]. Engineering Structures,2002,24(8):1091-1103.
    [69] Sadhu A, Hazra B. A Novel Damage Detection Algorithm Using Time-SeriesAnalysis-Based Blind Source Separation [J]. Shock and Vibration,2013,20(3):423-438.
    [70] Simon M, Tomlinson G R. Use of the Hilbert Transform in Modal Analysis ofLinear and Non-Linear Structures [J]. Journal of Sound and Vibration,1984,96(4):421-436.
    [71] Chanpheng T, Yamada H, Katsuchi H, Sasaki E. Nonlinear Features for DamageDetection on Large Civil Structures Due to Earthquakes [J]. Structural HealthMonitoring,2012,11(4):482-488.
    [72] Rivola A, White P R. Bispectral Analysis of the Bilinear Oscillator withApplication to the Detection of Fatigue Cracks [J]. Journal of Sound andVibration,1998,216(5):889-910.
    [73] Nichols J M, Marzocca P, Milanese A. On the Use of the Auto-BispectralDensity for Detecting Quadratic Nonlinearity in Structural Systems [J]. Journalof Sound and Vibration,2008,312(4–5):726-735.
    [74] Ni Y Q, Zhou X T, Ko J M. Experimental Investigation of Seismic DamageIdentification Using Pca-Compressed Frequency Response Functions and NeuralNetworks [J]. Journal of Sound and Vibration,2006,290(1–2):242-263.
    [75] Gurley K, Kareem A. Applications of Wavelet Transforms in Earthquake, Windand Ocean Engineering [J]. Engineering structures,1999,21(2):149-167.
    [76] Kijewski T, Kareem A. Wavelet Transforms for System Identification in CivilEngineering [J]. Computer-Aided Civil and Infrastructure Engineering,2003,18(5):339-355.
    [77]公茂盛,谢礼立. HHT方法在地震工程中的应用之初步探讨[J].世界地震工程,2003,19(3):39-43.
    [78]陈隽,徐幼麟. HHT方法在结构模态参数识别中的应用[J].振动工程学报,2003,16(3):129-134.
    [79]公茂盛.基于强震记录的结构模态参数识别与应用研究[D].哈尔滨:中国地震局工程力学研究所,2005:17-40.
    [80]公茂盛,鹿嶋俊英,谢礼立,欧进萍.基于结构强震记录的结构时变模态参数识别[J].振动与冲击,2010,29(5):171-175+248.
    [81] Mallat S. A Wavelet Tour of Signal Processing [M]. Academic Press,1999:67-150.
    [82] Liew K, Wang Q. Application of Wavelet Theory for Crack Identification inStructures [J]. Journal of Engineering Mechanics,1998,124(2):152-157.
    [83] Hou Z, Noori M, Amand R. Wavelet-Based Approach for Structural DamageDetection [J]. Journal of Engineering Mechanics,2000,126(7):677-683.
    [84] Pan T-C, Lee C L. Application of Wavelet Theory to Identify Yielding in SeismicResponse of Bi-Linear Structures [J]. Earthquake Engineering&StructuralDynamics,2002,31(2):379-398.
    [85] Sun Z, Chang C. Structural Damage Assessment Based on Wavelet PacketTransform [J]. Journal of Structural Engineering,2002,128(10):1354-1361.
    [86] Robertson A N, Farrar C R, Sohn H. Singularity Detection for Structural HealthMonitoring Using Holder Exponents [J]. Mechanical Systems and SignalProcessing,2003,17(6):1163-1184.
    [87]李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验分析[J].土木工程学报,2003,36(5):52-57+75.
    [88] Todorovska M I, Trifunac M D. Earthquake Damage Detection in the ImperialCounty Services Building II: Analysis of Novelties Via Wavelets [J]. StructuralControl and Health Monitoring,2010,17(8):895-917.
    [89] Loh C-H, Mao C H, Chao S-H, Weng J-H. Feature Extraction and SystemIdentification of Reinforced Concrete Structures Considering DegradingHysteresis [J]. Structural Control and Health Monitoring,2010,17(7):712-729.
    [90] Spina D, Valente C, Tomlinson G R. A New Procedure for DetectingNonlinearity from Transient Data Using the Gabor Transform [J]. NonlinearDynamics,1996,11(3):235-254.
    [91] Staszewski W J. Identification of Non-Linear Systems Using Multi-Scale Ridgesand Skeletons of the Wavelet Transform [J]. Journal of Sound and Vibration,1998,214(4):639-658.
    [92] Todorovska M I, Trifunac M D. Earthquake Damage Detection in the ImperialCounty Services Building I: The Data and Time–Frequency Analysis [J]. SoilDynamics and Earthquake Engineering,2007,27(6):564-576.
    [93] Vafaei M, Adnan A B. Seismic Damage Detection of Tall Airport Traffic ControlTowers Using Wavelet Analysis [J]. Structure and Infrastructure Engineering,2012,1-22.
    [94] Yang Y, Nagarajaiah S. Time‐Frequency Blind Source Separation UsingIndependent Component Analysis for Output‐Only Modal Identification ofHighly‐Damped Structures [J]. Journal of Structural Engineering, http://doi:10.1061/(ASCE)ST.1943-1541X.0000621.
    [95] Yang Y, Nagarajaiah S. Blind Identification of Damage in Time-Varying SystemUsing Independent Component Analysis with Wavelet Transform [J].Mechanical Systems and Signal Processing, http://dx.doi.org/10.1016//j.ymssp.2012.1008.1029.
    [96] Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N-C, Tung CC, Liu H H. The Empirical Mode Decomposition and the Hilbert Spectrum forNonlinear and Non-Stationary Time Series Analysis [J]. Proceedings of theRoyal Society of London Series A: Mathematical, Physical and EngineeringSciences,1998,454(1971):903-995.
    [97] Spanos P D, Giaralis A, Politis N P. Time–Frequency Representation ofEarthquake Accelerograms and Inelastic Structural Response Records Using theAdaptive Chirplet Decomposition and Empirical Mode Decomposition [J]. SoilDynamics and Earthquake Engineering,2007,27(7):675-689.
    [98] Dong Y, Li Y, Lai M. Structural Damage Detection Using Empirical-ModeDecomposition and Vector Autoregressive Moving Average Model [J]. SoilDynamics and Earthquake Engineering,2010,30(3):133-145.
    [99] Li H, Deng X, Dai H. Structural Damage Detection Using the CombinationMethod of Emd and Wavelet Analysis [J]. Mechanical Systems and SignalProcessing,2007,21(1):298-306.
    [100] Nagarajaiah S, Basu B. Output Only Modal Identification and StructuralDamage Detection Using Time Frequency&Wavelet Techniques [J]. EarthqEng Eng Vib,2009,8(4):583-605.
    [101] Wang M L, Wu F. Structural System Identification Using Least Mean Square(Lms) Adaptive Technique [J]. Soil Dynamics and Earthquake Engineering,1995,14(6):409-418.
    [102] Smyth A, Masri S, Chassiakos A, Caughey T. On-Line Parametric Identificationof Mdof Nonlinear Hysteretic Systems [J]. Journal of Engineering Mechanics,1999,125(2):133-142.
    [103] Lin J-W, Betti R, Smyth A W, Longman R W. On-Line Identification of Non-Linear Hysteretic Structural Systems Using a Variable Trace Approach [J].Earthquake Engineering&Structural Dynamics,2001,30(9):1279-1303.
    [104] Yang J N, Lin S. On-Line Identification of Non-Linear Hysteretic StructuresUsing an Adaptive Tracking Technique [J]. International Journal of Non-LinearMechanics,2004,39(9):1481-1491.
    [105] Yang J, Lin S. Identification of Parametric Variations of Structures Based onLeast Squares Estimation and Adaptive Tracking Technique [J]. Journal ofEngineering Mechanics,2005,131(3):290-298.
    [106] Yang J N, Huang H, Lin S. Sequential Non-Linear Least-Square Estimation forDamage Identification of Structures [J]. International Journal of Non-LinearMechanics,2006,41(1):124-140.
    [107] Tang H-S, Xue S-T, Chen R, Sato T. Online Weighted Ls-Svm for HystereticStructural System Identification [J]. Engineering Structures,2006,28(12):1728-1735.
    [108] Xu B, He J, Rovekamp R, Dyke S J. Structural Parameters and DynamicLoading Identification from Incomplete Measurements: Approach andValidation [J]. Mechanical Systems and Signal Processing,2012,28:244-257.
    [109] Masri S F, Caughey T K. A Nonparametric Identification Technique forNonlinrar Dynamic Problems [J]. Journal of Applied Mechanics,ASCE,1979,46(2):433-447.
    [110] Crawley E F, O’donnell K J. Identification of Nonlinear System Parameters inJoints Using the Force-State Mapping Technique [J]. AIAA Paper,1986,86(1013):659-667.
    [111] Masri S F, Bekey G A, Sassi H, Caughey T K. Non-Parametric Identification ofa Class of Nonlinear Multidegree Dynamic Systems [J]. Earthquake Engineering&Structural Dynamics,1982,10(1):1-30.
    [112] Masri S F, Caffrey J P, Caughey T K, Smyth A W, Chassiakos A G. Identificationof the State Equation in Complex Non-Linear Systems [J]. International Journalof Non-Linear Mechanics,2004,39(7):1111-1127.
    [113] Masri S F, Ghanem R, Arrate F, Caffrey J. Stochastic Nonparametric Models ofUncertain Hysteretic Oscillators [J]. AIAA journal,2006,44(10):2319-2330.
    [114] Masri S F, Ghanem R, Arrate F, Caffrey J P. A Data-Based Procedure forAnalyzing the Response of Uncertain Nonlinear Systems [J]. Structural Controland Health Monitoring,2009,16(7-8):724-750.
    [115] Xu B, He J, Masri S F. Data-Based Identification of Nonlinear Restoring Forceunder Spatially Incomplete Excitations with Power Series Polynomial Model [J].Nonlinear Dynamics,2012,67(3):2063-2080.
    [116] Loh C H, Lin H M. Application of Off-Line and on-Line IdentificationTechniques to Building Seismic Response Data [J]. Earthquake Engineering&Structural Dynamics,1996,25(3):269-290.
    [117] Lynch J, Wang Y, Lu K, Hou T, Loh C. Post-Seismic Damage Assessment ofSteel Structures Instrumented with Self-Interrogating Wireless Sensors [C].Proceedings of the Proceedings of the8th National Conference on EarthquakeEngineering,2006.
    [118] Hoon S, Charles R F. Damage Diagnosis Using Time Series Analysis ofVibration Signals [J]. Smart Materials and Structures,2001,10(3):446-451.
    [119] Loh C-H, Duh J-Y. Analysis of Nonlinear System Using Narma Models [J].Doboku Gakkai Ronbunshu,1996,1996(537):11-21.
    [120] Palumbo P, Piroddi L. Seismic Behaviour of Buttress Dams: Non-LinearModelling of a Damaged Buttress Based on Arx/Narx Models [J]. Journal ofSound and Vibration,2001,239(3):405-422.
    [121]何林,欧进萍.基于ARMAX模型及MA参数修正的框架结构动态参数识别[J].振动工程学报,2002,15(1):51-55.
    [122] Leontaritis I, Billings S A. Input-Output Parametric Models for Non-LinearSystems Part I: Deterministic Non-Linear Systems [J]. International journal ofcontrol,1985,41(2):303-328.
    [123] Leontaritis I J, Billings S A. Input-Output Parametric Models for Non-LinearSystems Part Ii: Stochastic Non-Linear Systems [J]. International Journal ofControl,1985,41(2):329-344.
    [124] Korenberg M, Billings S, Liu Y, Mcilroy P. Orthogonal Parameter EstimationAlgorithm for Non-Linear Stochastic Systems [J]. International Journal ofControl,1988,48(1):193-210.
    [125] Chen S, Billings S A. Representations of Non-Linear Systems: The NarmaxModel [J]. International Journal of Control,1989,49(3):1013-1032.
    [126] Yun C-B, Shinozuka M. Identification of Nonlinear Structural Dynamic Systems[J]. Journal of Structural Mechanics,1980,8(2):187-203.
    [127] Hoshiya M, Saito E. Structural Identification by Extended Kalman Filter [J].Journal of Engineering Mechanics,1984,110(12):1757-1770.
    [128] Loh C-H, Tsaur Y-H. Time Domain Estimation of Structural Parameters [J].Engineering Structures,1988,10(2):95-105.
    [129] Koh C G, See L M, Balendra T. Estimation of Structural Parameters in TimeDomain: A Substructure Approach [J]. Earthquake Engineering&StructuralDynamics,1991,20(8):787-801.
    [130] Loh C-H, Chung S-T. A Three-Stage Identification Approach for HystereticSystems [J]. Earthquake Engineering&Structural Dynamics,1993,22(2):129-150.
    [131] Loh C, Lin C, Huang C. Time Domain Identification of Frames underEarthquake Loadings [J]. Journal of Engineering Mechanics,2000,126(7):693-703.
    [132] Zhang H, Foliente G C, Yang Y, Ma F. Parameter Identification of InelasticStructures under Dynamic Loads [J]. Earthquake Engineering&StructuralDynamics,2002,31(5):1113-1130.
    [133] Yang J N, Lin S, Huang H, Zhou L. An Adaptive Extended Kalman Filter forStructural Damage Identification [J]. Structural Control and Health Monitoring,2006,13(4):849-867.
    [134] Yang J, Pan S, Huang H. An Adaptive Extended Kalman Filter for StructuralDamage Identifications Ii: Unknown Inputs [J]. Structural Control and HealthMonitoring,2007,14(3):497-521.
    [135] Lei Y, Wu Y, Li T. Identification of Non-Linear Structural Parameters underLimited Input and Output Measurements [J]. International Journal of Non-Linear Mechanics,2012,47(10):1141-1146.
    [136] Lei Y, Jiang Y, Xu Z. Structural Damage Detection with Limited Input andOutput Measurement Signals [J]. Mechanical Systems and Signal Processing,2012,28:229-243.
    [137] Saha N, Roy D. Extended Kalman Filters Using Explicit and Derivative-FreeLocal Linearizations [J]. Applied Mathematical Modelling,2009,33(6):2545-2563.
    [138] Saha N, Roy D. Two-Stage Extended Kalman Filters with Derivative-Free LocalLinearizations [J]. Journal of Engineering Mechanics,2011,137(8):537-546.
    [139] Wu M, Smyth A W. Application of the Unscented Kalman Filter for Real-TimeNonlinear Structural System Identification [J]. Structural Control and HealthMonitoring,2007,14(7):971-990.
    [140] Wu M, Smyth A. Real-Time Parameter Estimation for Degrading and PinchingHysteretic Models [J]. International Journal of Non-Linear Mechanics,2008,43(9):822-833.
    [141] Chatzi E N, Smyth A W, Masri S F. Experimental Application of on-LineParametric Identification for Nonlinear Hysteretic Systems with ModelUncertainty [J]. Structural Safety,2010,32(5):326-337.
    [142] Xie Z, Feng J. Real-Time Nonlinear Structural System Identification Via IteratedUnscented Kalman Filter [J]. Mechanical Systems and Signal Processing,2012,28:309-322.
    [143] Omrani R, Hudson R, Taciroglu E. Parametric Identification of NondegradingHysteresis in a Laterally and Torsionally Coupled Building Using an UnscentedKalman Filter [J]. Journal of Engineering Mechanics,2013,139(4):452-468.
    [144] Ahn K W, Chan K-S. Approximate Conditional Least Squares Estimation of aNonlinear State-Space Model Via an Unscented Kalman Filter [J].Computational Statistics&Data Analysis,2013, http://dx.doi.org/10.1016//j.csda.2013.1007.1038.
    [145] Song W, Dyke S. Development of a Cyber-Physical Experimental Platform forReal-Time Dynamic Model Updating [J]. Mechanical Systems and SignalProcessing,2013,37(1–2):388-402.
    [146] Worden K, Manson G. Random Vibrations of a Duffing Oscillator Using theVolterra Series [J]. Journal of Sound and Vibration,1998,217(4):781-789.
    [147] Chatterjee A, Vyas N S. Non-Linear Parameter Estimation in Multi-Degree-of-Freedom Systems Using Multi-Input Volterra Series [J]. Mechanical Systemsand Signal Processing,2004,18(3):457-489.
    [148] Rice H, Fitzpatrick J. The Measurement of Nonlinear Damping in Single-Degree-of-Freedom Systems [J]. Journal of vibration, acoustics, stress, andreliability in design,1991,113(1):132-140.
    [149] Richards C M, Singh R. Identification of Multi-Degree-of-Freedom Non-LinearSystems under Random Excitations by the “Reverse Path” Spectral Method [J].Journal of Sound and Vibration,1998,213(4):673-708.
    [150] Staszewski W J. Analysis of Non-Linear Systems Using Wavelets [J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2000,214(11):1339-1353.
    [151] Bellizzi S, Guillemain P, Kronland-Martinet R. Identification of Coupled Non-Linear Modes from Free Vibration Using Time-Frequency Representations [J].Journal of Sound and Vibration,2001,243(2):191-213.
    [152] Staszewski W J. Identification of Damping in Mdof Systems Using Time-ScaleDecomposition [J]. Journal of Sound and Vibration,1997,203(2):283-305.
    [153] Kitada Y. Identification of Nonlinear Structural Dynamic Systems UsingWavelets [J]. Journal of Engineering Mechanics,1998,124(10):1059-1066.
    [154] Ghanem R, Romeo F. A Wavelet-Based Approach for Model and ParameterIdentification of Non-Linear Systems [J]. International Journal of Non-LinearMechanics,2001,36(5):835-859.
    [155] Coca D, Billings S A. Non-Linear System Identification Using WaveletMultiresolution Models [J]. International Journal of Control,2001,74(18):1718-1736.
    [156] Billings S A, Wei H L. The Wavelet-Narmax Representation: A Hybrid ModelStructure Combining Polynomial Models with Multiresolution WaveletDecompositions [J]. International Journal of Systems Science,2005,36(3):137-152.
    [157] Wei H L, Billings S A, Balikhin M A. Wavelet Based Non-Parametric NarxModels for Nonlinear Input–Output System Identification [J]. InternationalJournal of Systems Science,2006,37(15):1089-1096.
    [158] Chang C-C, Shi Y. Identification of Time-Varying Hysteretic Structures UsingWavelet Multiresolution Analysis [J]. International Journal of Non-LinearMechanics,2010,45(1):21-34.
    [159] Li H, Mao C, Ou J. Identification of Hysteretic Dynamic Systems by UsingHybrid Extended Kalman Filter and Wavelet Multiresolution Analysis withLimited Observation [J]. Journal of Engineering Mechanics,2013,139(5):547-558.
    [160]毛晨曦.结构地震损伤监测与控制的SMA智能系统[D].哈尔滨:哈尔滨工业大学,2006:114-145.
    [161] Mallat S G, Zhang Z. Matching Pursuits with Time-Frequency Dictionaries [J].,IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [162] Qian S, Chen D. Signal Representation Using Adaptive Normalized GaussianFunctions [J]. Signal Processing,1994,36(1):1-11.
    [163] Ahn I-S, Chen S S, Dargush G F. Dynamic Ratcheting in Elastoplastic Single-Degree-of-Freedom Systems [J]. Journal of Engineering Mechanics,2006,132(4):411-421.
    [164] Challamel N, Lanos C, Hammouda A, Redjel B. Stability Analysis of DynamicRatcheting in Elastoplastic Systems [J]. Physical Review E,2007,75(2):026204.
    [165] Ahn I S, Chen S S, Dargush G F. An Iterated Maps Approach for DynamicRatchetting in Sdof Hysteretic Damping Systems [J]. Journal of Sound andVibration,2009,323(3–5):896-909.
    [166] Mandelbrot B B. The Fractal Geometry of Nature [M]. Macmillan,1983:6-19.
    [167]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996:1-92.
    [168] Ivanovici M, Richard N. Fractal Dimension of Color Fractal Images [J]. IEEETransactions on Image Processing,2011,20(1):227-235.
    [169] Li J, Du Q, Sun C. An Improved Box-Counting Method for Image FractalDimension Estimation [J]. Pattern Recognition,2009,42(11):2460-2469.
    [170] Cattani C. Harmonic Wavelet Approximation of Random, Fractal and HighFrequency Signals [J]. Telecommunication Systems,2010,43(3-4):207-217.
    [171] Chang T-P, Ko H-H, Liu F-J, Chen P-H, Chang Y-P, Liang Y-H, Jang H-Y, Lin T-C, Chen Y-H. Fractal Dimension of Wind Speed Time Series [J]. Applied Energy,2012,93(1):742-749.
    [172] Gneiting T, ev íková H, Percival D B. Estimators of Fractal Dimension:Assessing the Roughness of Time Series and Spatial Data [J]. Statistical Science,2012,27(2):247-277.
    [173] Lee Y, Vakakis A, Mcfarland D, Bergman L. A Global–Local Approach toNonlinear System Identification: A Review [J]. Structural Control and HealthMonitoring,2010,17(7):742-760.
    [174] Voormeeren S, Rixen D. A Family of Substructure Decoupling TechniquesBased on a Dual Assembly Approach [J]. Mechanical Systems and SignalProcessing,2012,27:379-396.
    [175] Trinh T N, Koh C G. An Improved Substructural Identification Strategy forLarge Structural Systems [J]. Structural Control and Health Monitoring,2012,19(8):686-700.
    [176] Xing Z, Mita A. A Substructure Approach to Local Damage Detection of ShearStructure [J]. Structural Control and Health Monitoring,2012,19(2):309-318.
    [177] Farrow K T, Kurama Y C. SDOF Demand Index Relationships for Performance-Based Seismic Design [J]. Earthquake Spectra,2003,19(4):799-838.
    [178] Hart G C, Wong K K F. Structural Dynamics for Structural Engineers [M].Wiley New York,2000:365-392.
    [179]吴斌.滞变型耗能减震体系的试验、分析和设计方法[D].哈尔滨:哈尔滨工业大学,1998:80-81.
    [180] Kalman R E. A New Approach to Linear Filtering and Prediction Problems [J].Journal of basic Engineering,1960,82(1):35-45.
    [181]宋文尧,张牙.卡尔曼滤波[M].北京:科学出版社,1991:1-20.
    [182]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998:167-188.
    [183] Julier S, Uhlmann J, Durrant-Whyte H F. A New Method for the NonlinearTransformation of Means and Covariances in Filters and Estimators [J]. IEEETransactions on Automatic Control,2000,45(3):477-482.
    [184] Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation [J].Proceedings of the IEEE,2004,92(3):401-422.
    [185] Xiong K, Wei C, Liu L. Robust Unscented Kalman Filtering for NonlinearUncertain Systems [J]. Asian Journal of Control,2010,12(3):426-433.
    [186] Dini D H, Mandic D P, Julier S J. A Widely Linear Complex Unscented KalmanFilter [J]. Signal Processing Letters,2011,18(11):623-626.
    [187] Jafarzadeh S, Lascu C, Fadali M S. State Estimation of Induction Motor DrivesUsing the Unscented Kalman Filter [J]., IEEE Transactions on IndustrialElectronics,2012,59(11):4207-4216.
    [188] Ikhouane F, Rodellar J. Systems with Hysteresis [M]. John Wiley and Sons.2007:13-36.
    [189] Singhal A, Kiremidjian A. Method for Probabilistic Evaluation of SeismicStructural Damage [J]. Journal of Structural Engineering,1996,122(12):1459-1467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700