用户名: 密码: 验证码:
过表达肌浆网钙ATP酶治疗慢性缺血性心力衰竭的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章小型猪慢性缺血性心力衰竭模型的建立与评价
     在我国,慢性心肌缺血已成为心力衰竭最重要的病因。本研究的目的是建立慢性缺血性心力衰竭的大动物模型,为研究其病理生理机制和防治手段奠定基础。采用开胸前降支起始段ameroid缩窄环植入法建立小型猪慢性缺血性心衰模型,术后第4周采用心肌核素灌注SPECT显像确认局部心肌缺血,经胸超声心动图检查测定心脏功能,并应用放射免疫法测定血清心衰相关炎性因子和神经体液因子的变化。缺血组12只小型猪顺利完成了开胸ameroid缩窄环植入术,4只动物行假手术作为对照。术后第4周缺血组前降支供血区域存在不可逆灌注缺损,与对照组相比,心脏整体收缩、舒张功能,缺血心肌局部厚度及局部运动能力均显著下降,伴随血清心衰相关炎性因子TNF-α,神经体液因子BNP、Ang II和ET-1水平的显著增高,符合慢性缺血性心衰的病理生理改变。说明在猪的前降支防治ameroid缩窄环是建立慢性缺血性心衰模型的可靠方法。
     第二章SERCA2a过表达对慢性缺血性心力衰竭小型猪心功能的改善作用
     转基因过表达SERCA2a可改善多种原因所致心衰动物模型的心功能,然而,其对慢性缺血性心衰心功能的影响还不清楚。本研究旨在观察重组腺相关病毒介导的SERCA2a基因转导对慢性缺血性心衰小心猪的治疗作用。将第一章建立的心衰动物模型,随机分为EGFP转导组和SERCA2a转导组,开胸心肌内直接注射进行基因转导。8周后超声心动图、血流动力学检测测定SERCA2a基因转导对心功能的影响,心肌核素灌注显像评价缺血区心肌灌注,放免法测定血清心衰相关炎性因子和神经体液因子,并行Western Blot测定缺血心肌中SERCA2a蛋白的表达量和活性变化。结果表明重组腺相关病毒可有效介导SERCA2a在心肌组织中的表达,8周后,与EGFP组相比,SERCA2a组心脏整体收缩、舒张功能,局部缺血心肌运动能力和缺血区室壁厚度均显著增加,伴随血清心衰相关炎性因子和神经体液因子水平的显著下降。两组缺血区心肌灌注情况无显著差异。表明SERCA2a过表达短期内(基因转导后8周)对缺血心肌灌注无影响,但可显著改善慢性缺血性心衰小型猪的心脏功能,可能成为慢性缺血性心衰治疗的潜在手段。
     第三章SERCA2a过表达对慢性缺血心肌内质网应激-凋亡通路的影响
     心肌细胞凋亡是缺血性心衰发生的重要原因,内质网应激-凋亡通路是新近发现的心肌细胞凋亡机制。本研究的目的是观察SERCA2a基因转导对缺血心肌细胞凋亡的影响及其与内质网应激-凋亡通路的关系。TUNEL法检测第二章各组动物缺血心肌细胞凋亡情况,行免疫组化和Western Blot测定UPR通路ATF6、IRE1和PERK的活化情况以及内质网应激相关凋亡通路CHOP、caspase-12和JNKs的活性。结果表明,缺血心肌组织中心肌细胞凋亡显著增强,伴随UPR信号通路、内质网应激相关凋亡通路及其下游信号分子的激活。SERCA2a基因转导可显著减轻缺血心肌细胞的凋亡,并可逆转上述UPR信号通路、内质网应激相关凋亡通路及其下游信号分子的活化。说明减弱内质网应激相关的缺血心肌细胞的凋亡,可能是SERCA2a基因转导治疗慢性缺血性心力衰竭的重要机制之一。
Chapter 1 Establishment and evaluation of chronic ischemic heart failure model in mini pig
     Chronic myocardial ischemia has become the most important cause of heart failure in China. The aim of this study is to create a large animal model of chronic ischemic heart failure. Ameroid constrictor was implanted in the initial segment of LAD in mini pig by open chest surgery. Regional myocardial perfusion was assessed by SPECT. Cardiac function was determined by echocardiography and serum levels of heart failure related inflammatory factor TNF-α, neural-hormonal factors BNP, Ang II and ET-1 were also measured by radioimmunoassay. 4 weeks after ameroid implantation, a fixed perfusion defect was detected in LAD dependent area in ischemic pig. Also, the overall cardiac systolic and diastolic function, regional myocardial motion and thickness were significantly decreased compared with the control animal, with significant increase of the serum levels of the above heart failure related biomarkers. These results indicated that implantation of ameroid constrictor in the initial segment of LAD is a dependable way to create animal model of chronic ischemic heart failure.
     Chapter 2 Improved cardiac function after SERCA2a gene delivery in mini pig model of chronic ischemic heart failure
     SERCA2a gene delivery has been reported to be beneficial to the cardiac function in a variety of heart failure animal models, but its effects on chronic ischemic heart failure are still unknown. The aim of this study was to investigate whether SERCA2a gene delivery could improve the cardiac function in this heart failure type. Intramyocardial injection was performed to deliver the recombinant adeno-associated viral vector containing either EGFP or SERCA2a in chronic ischemic heart failure pigs. Effects of SERCA2a gene delivery on cardiac function were assessed by echocardiography and hemodynamic measurement. Changes of regional myocardial perfusion were determined by SPECT and changes of serum levels of heart failure related biomarkers were measured by radioimmunoassay. rAAV1-SERCA2a effectively restored the protein level and activity of SERCA2a in ischemic myocardium and significantly improved overall cardiac function 8 weeks after gene delivery, with significant decrease of serum heart failure related biomarkers. However, no improvement of regional myocardial perfusion was detected 8 weeks after SERCA2a gene delivery. These results demonstrated that intramyocardial rAAV1-SERCA2a gene delivery is an effective way to improve cardiac function of chronic ischemic heart failure in mini pig, indicating the potential therapeutic role of SERCA2a gene delivery in chronic ischemia induced heart failure.
     Chapter 3 Attenuation of ER stress related myocardial apoptosis by SERCA2a gene delivery in a mini pig model chronic ischemic heart failure
     Myocardial apoptosis has been reported to play an important role in the pathogenesis of chronic ischemic heart failure and ER stress-apoptosis signaling pathway is a newly defined mechanism of cellular apoptosis. The aim of this study is to investigate the effects of SERCA2a gene delivery in ischemic myocardial apoptosis and ER stress associated apoptosis pathway. TUNEL staining was used to measure the apoptosis of ischemic myocardium of animals in section 2. Immunohistochemistry and Western Blot were performed to detect the activation of the components of UPR pathway ATF6, IRE1 and PERK, and ER stress related apoptotic proteins CHOP, caspase-12 and JNKs. Enhanced myocardial apoptosis and activation of UPR pathway signaling proteins were detected in EGFP transduced animals compared to control, with significant increase of ER stress related apoptotic proteins, indicating ER stress related apoptosis was enhanced in the myocardium of chronic ischemic heart failure pigs. However, restoration of SERCA2a expression by gene transfer significantly attenuated the apoptosis of ischemic myocardium and reversed the activation of UPR pathway and ER stress related apoptotic proteins. These results demonstrated that the beneficial effects of SERCA2a gene delivery to chronic ischemic heart failure may be related to the attenuation of ER stress associated myocardial apoptosis.
引文
[1] Jiang H, Ge J. Epidemiology and clinical management of cardiomyopathies and heart failure in China. Heart, 2009,95(21):1727-1731.
    [2] Herrmann JL. Do ameroid constrictors reliably occlude porcine coronary arteries. J Surg Res, 2010,161(1):36-37.
    [3] Shen YT, Kudej RK, Bishop SP, et al. Inotropic reserve and histological appearance of hibernating myocardium in conscious pigs with ameroid-induced coronary stenosis. Basic Res Cardiol, 1996,91(6):479-485.
    [4] Tuzun E, Oliveira E, Narin C, et al. Correlation of ischemic area and coronary flow with ameroid size in a porcine model. J Surg Res, 2010, 164(1):38-42..
    [5] Schneider C, Jaquet K, Geidel S, et al. Transplantation of bone marrow-derived stem cells improves myocardial diastolic function: strain rate imaging in a model of hibernating myocardium. J Am Soc Echocardiogr, 2009,22(10):1180-1189.
    [6] White FC, Carroll SM, Magnet A, et al. Coronary collateral development in swine after coronary artery occlusion. Circ Res, 1992,71(6):1490-1500.
    [7] Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation, 2000,102(20 Suppl 4):IV14-23.
    [1] Del MF, Hajjar RJ. Intracellular devastation in heart failure. Heart Fail Rev, 2008,13(2):151-162.
    [2] Bers DM. Cardiac excitation-contraction coupling. Nature, 2002,415(6868):198-205.
    [3] Frank KF, Bolck B, Erdmann E, et al. Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation. Cardiovasc Res, 2003,57(1):20-27.
    [4] Mercadier JJ, Lompre AM, Duc P, et al. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest, 1990,85(1):305-309.
    [5] de la Bastie D, Levitsky D, Rappaport L, et al. Function of the sarcoplasmic reticulum and expression of its Ca2(+)-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res, 1990,66(2):554-564.
    [6] Lyon AR, Sato M, Hajjar RJ, et al. Gene therapy: targeting the myocardium. Heart, 2008,94(1):89-99.
    [7] Kawase Y, Hajjar RJ. The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med, 2008,5(9):554-565.
    [8] Lipskaia L, Chemaly ER, Hadri L, et al. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther, 2010,10(1):29-41.
    [9] MonteF d, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation, 1999,100(23):2308-2311.
    [10] Hajjar RJ, Kang JX, Gwathmey JK, et al. Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation, 1997,95(2):423-429.
    [11] Schmidt U, del MF, Miyamoto MI, et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circulation, 2000,101(7):790-796.
    [12] Kawase Y, Ly HQ, Prunier F, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol, 2008,51(11):1112-1119.
    [13] Miyamoto MI, del MF, Schmidt U, et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A, 2000,97(2):793-798.
    [14] del MF, Williams E, Lebeche D, et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation, 2001,104(12):1424-1429.
    [15] Sakata S, Lebeche D, Sakata N, et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol, 2007,42(4):852-861.
    [16] Gupta D, Palma J, Molina E, et al. Improved exercise capacity and reduced systemic inflammation after adenoviral-mediated SERCA-2a gene transfer. J Surg Res, 2008,145(2):257-265.
    [17] Byrne MJ, Power JM, Preovolos A, et al. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther, 2008,15(23):1550-1557.
    [18] Mi YF, Li XY, Tang LJ, et al. Improvement in cardiac function after sarcoplasmic reticulum Ca2+-ATPase gene transfer in a beagle heart failure model. Chin Med J (Engl), 2009,122(12):1423-1428.
    [19] Trost SU, Belke DD, Bluhm WF, et al. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes, 2002,51(4):1166-1171.
    [20] Sakata S, Lebeche D, Sakata Y, et al. Mechanical and metabolic rescue in a type II diabetes model of cardiomyopathy by targeted gene transfer. Mol Ther, 2006,13(5):987-996.
    [21] Sakata S, Lebeche D, Sakata Y, et al. Transcoronary gene transfer of SERCA2a increases coronary blood flow and decreases cardiomyocyte size in a type 2 diabetic rat model. Am J Physiol Heart Circ Physiol, 2007,292(2):H1204-1207.
    [22] Jiang H, Ge J. Epidemiology and clinical management of cardiomyopathies andheart failure in China. Heart, 2009,95(21):1727-1731.
    [23] Svensson EC, Marshall DJ, Woodard K, et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation, 1999,99(2):201-205.
    [24] Chu D, Sullivan CC, Weitzman MD, et al. Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors. J Thorac Cardiovasc Surg, 2003,126(3):671-679.
    [25] Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation, 2000,102(20 Suppl 4):IV14-23.
    [26] Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med, 1990,323(4):236-241.
    [27] Anker SD, von HS. Inflammatory mediators in chronic heart failure: an overview. Heart, 2004,90(4):464-470.
    [28] Swedberg K, Eneroth P, Kjekshus J, et al. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation, 1990,82(5):1730-1736.
    [29] Teerlink JR. Endothelins: pathophysiology and treatment implications in chronic heart failure. Curr Heart Fail Rep, 2005,2(4):191-197.
    [30] Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol, 2007,50(25):2357-2368.
    [31] O'Donoghue M, Braunwald E. Natriuretic peptides in heart failure: should therapy be guided by BNP levels. Nat Rev Cardiol, 2010,7(1):13-20.
    [32] Kogler H, Schott P, Toischer K, et al. Relevance of brain natriuretic peptide in preload-dependent regulation of cardiac sarcoplasmic reticulum Ca2+ ATPase expression. Circulation, 2006,113(23):2724-2732.
    [33] Toischer K, Kogler H, Tenderich G, et al. Elevated afterload, neuroendocrine stimulation, and human heart failure increase BNP levels and inhibit preload-dependent SERCA upregulation. Circ Heart Fail, 2008,1(4):265-271.
    [34] Sakata S, Lebeche D, Sakata N, et al. Targeted gene transfer increases contractility and decreases oxygen cost of contractility in normal rat hearts. Am J Physiol Heart Circ Physiol, 2007,292(5):H2356-2363.
    [35] Hadri L, Bobe R, Kawase Y, et al. SERCA2a Gene Transfer Enhances eNOS Expression and Activity in Endothelial Cells. Mol Ther, 2010, 18(7):1284-1292.
    [36] Gray SJ, Samulski RJ. Optimizing gene delivery vectors for the treatment of heart disease. Expert Opin Biol Ther, 2008,8(7):911-922.
    [1] Rahimtoola SH, Dilsizian V, Kramer CM, Marwick TH, Vanoverschelde JL. Chronic ischemic left ventricular dysfunction: from pathophysiology to imaging and its integration into clinical practice. JACC Cardiovasc Imaging. 2008. 1(4): 536-555.
    [2] Talukder MA, Zweier JL, Periasamy M. Targeting calcium transport in ischaemic heart disease. Cardiovasc Res. 2009. 84(3): 345-352.
    [3] Krause S, Hess ML. Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ Res. 1984. 55(2): 176-184.
    [4] Kaplan P, Hendrikx M, Mattheussen M, Mubagwa K, Flameng W. Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. Circ Res. 1992. 71(5): 1123-1130.
    [5] Mubagwa K. Sarcoplasmic reticulum function during myocardial ischaemia and reperfusion. Cardiovasc Res. 1995. 30(2): 166-175.
    [6] Zucchi R, Ronca-Testoni S, Di NP, et al. Sarcoplasmic reticulum calcium uptake in human myocardium subjected to ischemia and reperfusion during cardiac surgery. J Mol Cell Cardiol. 1996. 28(8): 1693-1701.
    [7] del MF, Lebeche D, Guerrero JL, et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci U S A. 2004. 101(15): 5622-5627.
    [8] Niwano K, Arai M, Koitabashi N, et al. Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol Ther. 2008. 16(6): 1026-1032.
    [9] Miyamoto MI, del MF, Schmidt U, et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A. 2000. 97(2): 793-798.
    [10] Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial functionin an experimental model of heart failure in large animals. Gene Ther. 2008. 15(23): 1550-1557.
    [11] Li XY, Hui HP, Lu XC, Guo YT. [Treatment of chronic heart failure by overexpressing sarcoplasmic reticulum calcium ATPase through gene therapy: an experiment with rats]. Zhonghua Yi Xue Za Zhi. 2006. 86(17): 1174-1178.
    [12] Gupta D, Palma J, Molina E, et al. Improved exercise capacity and reduced systemic inflammation after adenoviral-mediated SERCA-2a gene transfer. J Surg Res. 2008. 145(2): 257-265.
    [13] Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999. 13(10): 1211-1233.
    [14] Ron D. Translational control in the endoplasmic reticulum stress response. J Clin Invest. 2002. 110(10): 1383-1388.
    [15] Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest. 2002. 110(10): 1389-1398.
    [16] Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001. 3(11): E255-263.
    [17] Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005. 115(10): 2656-2664.
    [18] Bernales S, Papa FR, Walter P. Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol. 2006. 22: 487-508.
    [19] Wang XZ, Lawson B, Brewer JW, et al. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol Cell Biol. 1996. 16(8): 4273-4280.
    [20] Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J. 2003. 22(20): 5435-5445.
    [21] Hotamisligil GS. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes. 2005. 54 Suppl 2: S73-78.
    [22] Szegezdi E, Duffy A, O'Mahoney ME, et al. ER stress contributes toischemia-induced cardiomyocyte apoptosis. Biochem Biophys Res Commun. 2006. 349(4): 1406-1411.
    [23] Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC. Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res. 2006. 99(3): 275-282.
    [24] Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE. Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol. 2006. 291(3): H1411-1420.
    [25] Caspersen C, Pedersen PS, Treiman M. The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J Biol Chem. 2000. 275(29): 22363-22372.
    [26] Hojmann LA, Frandsen A, Treiman M. Upregulation of the SERCA-type Ca2+ pump activity in response to endoplasmic reticulum stress in PC12 cells. BMC Biochem. 2001. 2: 4.
    [27] Thuerauf DJ, Hoover H, Meller J, et al. Sarco/endoplasmic reticulum calcium ATPase-2 expression is regulated by ATF6 during the endoplasmic reticulum stress response: intracellular signaling of calcium stress in a cardiac myocyte model system. J Biol Chem. 2001. 276(51): 48309-48317.
    [28] Lipskaia L, Chemaly ER, Hadri L, Lompre AM, Hajjar RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther. 2010. 10(1): 29-41.
    [29] 2nd DGW. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res. 2009. 81(3): 465-473.
    [30] Lee Y, Gustafsson AB. Role of apoptosis in cardiovascular disease. Apoptosis. 2009. 14(4): 536-548.
    [31] Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 1998. 17(19): 5708-5717.
    [32] Yoshida H, Okada T, Haze K, et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 2000. 20(18): 6755-6767.
    [33] Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998. 12(7): 982-995.
    [34] Oyadomari S, Koizumi A, Takeda K, et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest. 2002. 109(4): 525-532.
    [35] Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000. 403(6765): 98-103.
    [36] Rao RV, Castro-Obregon S, Frankowski H, et al. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem. 2002. 277(24): 21836-21842.
    [37] Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000. 287(5453): 664-666.
    [38] Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000. 103(2): 239-252.
    [1] Antithrombotic Trialists'Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ, 2002,324:71-86.
    [2] Patrono C. Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost, 2003,1:1710-1713.
    [3] Patrono C, Baigent C, Hirsh J, et al. Antiplatelet drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest, 2008,133:199S-233S.
    [4] Weber AA, Przytulski B, Schanz A, et al. Towards a definition of aspirin resistance: a typological approach. Platelets, 2002,13:37-40.
    [5] Pulcinelli FM, Pignatelli P, Celestini A, et al. Inhibition of platelet aggregation by aspirin progressively decreases in long-term treated patients. J Am Coll Cardiol, 2004,43:979-984.
    [6]中华医学会心血管病学分会,中华心血管病杂志编辑委员会.阿司匹林在动脉硬化性心血管疾病中的临床应用:中国专家共识(2005).中华心血管病杂志, 2006:281-284.
    [7] Harrison P, 3rd FAL, Furman MI, et al. Measuring antiplatelet drug effects in the laboratory. Thromb Res, 2007,120:323-336.
    [8] Gurbel PA, Bliden KP, DiChiara J, et al. Evaluation of dose-related effects of aspirin on platelet function: results from the Aspirin-Induced Platelet Effect (ASPECT) study. Circulation, 2007,115:3156-3164.
    [9] Hovens MM, Snoep JD, Eikenboom JC, et al. Prevalence of persistent platelet reactivity despite use of aspirin: a systematic review. Am Heart J, 2007,153:175-181.
    [10] Gasparyan AY, Watson T, Lip GY. The role of aspirin in cardiovascular prevention: implications of aspirin resistance. J Am Coll Cardiol, 2008,51:1829-1843.
    [11] Snoep JD, Hovens MM, Eikenboom JC, et al. Association of laboratory-defined aspirin resistance with a higher risk of recurrent cardiovascular events: asystematic review and meta-analysis. Arch Intern Med, 2007,167:1593-1599.
    [12] Sofi F, Marcucci R, Gori AM, et al. Residual platelet reactivity on aspirin therapy and recurrent cardiovascular events--a meta-analysis. Int J Cardiol, 2008,128:166-171.
    [13] Krasopoulos G, Brister SJ, Beattie WS, et al. Aspirin "resistance" and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ, 2008,336:195-198.
    [14] Patrono C, Bachmann F, Baigent C, et al. Expert consensus document on the use of antiplatelet agents. The task force on the use of antiplatelet agents in patients with atherosclerotic cardiovascular disease of the European society of cardiology. Eur Heart J, 2004,25:166-181.
    [15] Michelson AD, Cattaneo M, Eikelboom JW, et al. Aspirin resistance: position paper of the Working Group on Aspirin Resistance. J Thromb Haemost, 2005,3:1309-1311.
    [16] Hankey GJ, Eikelboom JW. Aspirin resistance. Lancet, 2006,367:606-617.
    [17] Duzenli MA, Ozdemir K, Aygul N, et al. Comparison of increased aspirin dose versus combined aspirin plus clopidogrel therapy in patients with diabetes mellitus and coronary heart disease and impaired antiplatelet response to low-dose aspirin. Am J Cardiol, 2008,102:396-400.
    [18] Kuliczkowski W, Witkowski A, Polonski L, et al. Interindividual variability in the response to oral antiplatelet drugs: a position paper of the Working Group on antiplatelet drugs resistance appointed by the Section of Cardiovascular Interventions of the Polish Cardiac Society, endorsed by the Working Group on Thrombosis of the European Society of Cardiology. Eur Heart J, 2009,30:426-435.
    [19] Smith SC Jr, Feldman TE, Hirshfeld JW Jr, et al. ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update 2001 Guidelines for Percutaneous Coronary Intervention). Circulation, 2006,113:e166-286.
    [20] Price MJ, Berger PB, Angiolillo DJ, et al. Evaluation of individualized clopidogrel therapy after drug-eluting stent implantation in patients with high residual plateletreactivity: design and rationale of the GRAVITAS trial. Am Heart J, 2009,157:818-824, 824.e1.
    [21] Pettersen AA, Seljeflot I, Abdelnoor M, et al. Unstable angina, stroke, myocardial infarction and death in aspirin non-responders. A prospective, randomized trial. The ASCET (ASpirin non-responsiveness and Clopidogrel Endpoint Trial) design. Scand Cardiovasc J, 2004,38:353-356.
    [22] Valgimigli M, Campo G, de Cesare N, et al. Intensifying platelet inhibition with tirofiban in poor responders to aspirin, clopidogrel, or both agents undergoing elective coronary intervention: results from the double-blind, prospective, randomized Tailoring Treatment with Tirofiban in Patients Showing Resistance to Aspirin and/or Resistance to Clopidogrel study. Circulation, 2009,119:3215-3222.
    [1] Bers DM. Cardiac excitation-contraction coupling. Nature, 2002,415:198-205.
    [2] Del MF, Hajjar RJ. Intracellular devastation in heart failure. Heart Fail Rev, 2008,13:151-162.
    [3] MonteF d, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation, 1999,100:2308-2311.
    [4] Kawase Y, Ly HQ, Prunier F, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol, 2008,51:1112-1119.
    [5] del MF, Williams E, Lebeche D, et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation, 2001,104:1424-1429.
    [6]惠海鹏,李小鹰,刘秀华,等.腺相关病毒介导心肌肌浆网Ca2+-ATPase 2a基因转导治疗大鼠慢性心力衰竭.中华心血管病杂志, 2006,34:357-362.
    [7] Sakata S, Lebeche D, Sakata Y, et al. Mechanical and metabolic rescue in a type II diabetes model of cardiomyopathy by targeted gene transfer. Mol Ther, 2006,13:987-996.
    [8] Sakata S, Lebeche D, Sakata Y, et al. Transcoronary gene transfer of SERCA2a increases coronary blood flow and decreases cardiomyocyte size in a type 2 diabetic rat model. Am J Physiol Heart Circ Physiol, 2007,292:H1204-1207.
    [9] Mi YF, Li XY, Tang LJ, et al. Improvement in cardiac function after sarcoplasmic reticulum Ca2+-ATPase gene transfer in a beagle heart failure model. Chin Med J (Engl), 2009,122:1423-1428.
    [10]李小鹰,惠海鹏,鲁晓春,等.转基因过表达肌浆网钙ATP酶基因治疗慢性心力衰竭的实验研究.中华医学杂志, 2006,86:1174-1178.
    [11] Xin W, Lu X, Li X, et al. Attenuation of ER stress related myocardial apoptosis by SERCA2a gene delivery in ischemic heart disease. Mol Med, 2011,17:201-210.
    [12] Sun YL, Hu SJ, Wang LH, et al. Effect of beta-blockers on cardiac function andcalcium handling protein in postinfarction heart failure rats. Chest, 2005,128:1812-1821.
    [13] Flesch M, Schiffer F, Zolk O, et al. Angiotensin receptor antagonism and angiotensin converting enzyme inhibition improve diastolic dysfunction and Ca(2+)-ATPase expression in the sarcoplasmic reticulum in hypertensive cardiomyopathy. J Hypertens, 1997,15:1001-1009.
    [14] Heerdt PM, Holmes JW, Cai B, et al. Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation, 2000,102:2713-2719.
    [15] Vanderheyden M, Mullens W, Delrue L, et al. Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders. J Am Coll Cardiol, 2008,51:129-136.
    [16]付治卿,李小鹰,刘秀华,等.肌浆网钙ATP酶基因转导对慢性心力衰竭犬心肌蛋白质组影响的初步研究.中华心血管病杂志, 2008,36:260-265.
    [17] Rodriguez B, Trayanova N, Noble D. Modeling cardiac ischemia. Ann N Y Acad Sci, 2006,1080:395-414.
    [18] Brooks WW, Conrad CH, Morgan JP. Reperfusion induced arrhythmias following ischaemia in intact rat heart: role of intracellular calcium. Cardiovasc Res, 1995,29:536-542.
    [19] del MF, Lebeche D, Guerrero JL, et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci U S A, 2004,101:5622-5627.
    [20] Prunier F, Kawase Y, Gianni D, et al. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation, 2008,118:614-624.
    [21] Nakayama H, Otsu K, Yamaguchi O, et al. Cardiac-specific overexpression of a high Ca2+ affinity mutant of SERCA2a attenuates in vivo pressure overload cardiac hypertrophy. FASEB J, 2003,17:61-63.
    [22]米亚非,李小鹰,鲁晓春,等. rAAV1-SERCA2a转导对慢性心力衰竭beagle犬的治疗作用.解放军医学杂志, 2009,34:151-154.
    [23] Gupta D, Palma J, Molina E, et al. Improved exercise capacity and reducedsystemic inflammation after adenoviral-mediated SERCA-2a gene transfer. J Surg Res, 2008,145:257-265.
    [24] Hadri L, Bobe R, Kawase Y, et al. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Mol Ther, 2010,18:1284-1292.
    [25] Lipskaia L, del MF, Capiod T, et al. Sarco/endoplasmic reticulum Ca2+-ATPase gene transfer reduces vascular smooth muscle cell proliferation and neointima formation in the rat. Circ Res, 2005,97:488-495.
    [26] Hajjar RJ, Zsebo K, Deckelbaum L, et al. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail, 2008,14:355-367.
    [27] Jaski BE, Jessup ML, Mancini DM, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail, 2009,15:171-181.
    [28] Horowitz JD, Rosenson RS, McMurray JJ, et al. Clinical Trials Update AHA Congress 2010. Cardiovasc Drugs Ther, 2011. In Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700