用户名: 密码: 验证码:
开级配大粒径沥青碎石组成设计参数与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半刚性基层沥青路面早期损坏现象,严重影响了道路的使用寿命,强度高、耐冲刷的刚性基层越来越受到重视。但是,刚性基层沥青路面结构普遍存在反射裂缝的问题,这制约了刚性基层沥青路面结构的推广应用。此外,沥青路面的水损坏现象普遍存在,严重降低了路面的使用寿命。为了解决沥青路面的反射裂缝和水损坏问题,本文展开了对开级配大粒径沥青碎石的研究。开级配大粒径沥青碎石(OLSM)具有集料粒径大和空隙率大的特点,可以起到延缓反射裂缝和排除路面内积滞水的作用。本文在分析OLSM性能要求和评价方法的基础上,深入研究了OLSM组成设计参数与设计方法,对OLSM进一步的推广应用具有重要意义。
     本文首先提出了采用变Ⅰ法对OLSM粗、细集料级配分别进行设计;通过均匀试验回归分析得出,26.5mm、9.5mm和4.75mm为粗集料的关键筛孔,2.36mm、0.3mm和0.075mm为细集料的关键筛孔,并分别对粗、细集料级配范围进行优化。采用试验的方法,研究了OLSM的技术特性随粗细集料体积比的变化规律;随着粗细集料体积比的增大,OLSM空隙率呈逐渐增大趋势,其强度、水稳定性和高温稳定性均呈逐渐降低趋势,其低温抗裂性和抗反射裂缝性能呈先提高后降低趋势;综合平衡考虑OLSM各个方面的性能,推荐了粗细集料体积比范围为78/22-88/12。
     以路面实际压实状况为标准评价了不同成型方法的适用性,轮碾法成型效果最好;旋转压实法和大型马歇尔击实法成型效果良好;静压法成型与路面实际压实状况相差甚远,不适合用于成型OLSM。通过对OLSM的性能要求与评价方法进行了分析,提出了适合OLSM强度、高温稳定性、低温抗裂性和透水性等性能的评价方法。根据反射裂缝形成机理,自行研发了评价沥青混合料抗反射裂缝的试验装置,提出了以直接拉伸试验、剪切试验和弯拉-剪切混合疲劳试验为抗反射裂缝性能的评价方法,以综合抗裂度为抗反射裂缝性能的评价指标,并阐明了沥青混合料抗反射裂缝的作用机理。
     采用试验的方法研究了OLSM的技术特性随沥青胶浆的变化规律;随着粉胶比的增大,OLSM的空隙率呈逐渐增大趋势,其强度、水稳定性、高温稳定性、低温抗裂性和抗反射裂缝性能呈先增大后减小的趋势;综合平衡考虑OLSM各个方面的性能,推荐了粉胶比范围为0.8-1.4。随着胶浆膜厚度的增大,OLSM的空隙率逐渐减小,其强度、高温稳定性和抗反射裂缝性能先增大后减小,其水稳定性和低温抗裂性逐渐增大;综合平衡考虑OLSM各个方面的性能,推荐了胶浆膜厚度范围为50~62μm。
     通过分析矿料比表面积计算模型,证实了等比数列法能够较为准确的反映颗粒粒径的实际分布情况,并建立了基于等比数列法的OLSM矿料比表面积计算模型;通过回归分析发现,力学指标与其路用性能具有较好的相关性,提出了采用力学指标法确定OLSM最佳胶浆用量;根据OLSM组成特点及本文的研究成果,提出了基于沥青胶浆的OLSM组成设计体系。
Asphalt pavement with semi-rigid type base often produces serious early damage, and it strongly reduces the useful time of the road. Therefore, rigid base with the characteristics of high strength and scouring resistance has been paid more and more attention. However, asphalt pavement with rigid base produces reflective cracking usually, which restricts the application of it. In addition, water damage to asphalt pavement is widespread, which strongly reduces the life of it. Open-graded large stone asphalt mixes (OLSM) has the largest aggregate nominal diameter greater than26.5mm and the porosity of it is larger than15%. It is usually used as the lower surface layer of asphalt pavement, in order to delay reflection crack and discharge water. This paper analyzes the performance evaluation method of OLSM, and studies composition design parameters and design method of it. It is significance to further popularize and apply OLSM.
     The paper designs coarse and fine aggregate gradation of OLSM by numerical calculation method of varying I, and determins key sieve pores of aggregate gradation based on the uniform experimental design. The relations between OLSM performances and volume ratio of coarse and fine aggregate (Rcf) are studied though the tests. The results show that: with the value of Rcf increasing, the porosity of OLSM increases, the strength, water stability and high temperature stability of it decrease, and low-temperature crack resistance and reflection cracking resistance increase first and then decrease. Based on the technical requirements, the reasonable ranges of Rcf and aggregate gradation of OLSM are recommended.
     To pavement compaction condition for standard, the paper evaluates the applicability of different molding methods. Wheel rolling method, gyratory compaction method and Marshall Compaction method are applicable to OLSM molding, but static pressure method is not suitable for forming OLSM. According to the characteristics of OLSM, the reasonable performance evaluation methods of it are confirmed. In addition, the paper developed the test device of reflection cracking resistance, and proposed the evaluation method and index of it based on the test results. And, action mechanism of reflection cracking resistance is illustrated.
     In order to provide parameters for the composition design, the relations between OLSM performances and asphalt mortar are studied though the tests. The results show that:with the value of the ratio of filler to bitumen increasing, the porosity of OLSM increases, the strength, water stability, high temperature, low-temperature crack resistance and reflection cracking resistance of it increase first and then decrease. And with the thickness of mortar film increasing, the porosity of OLSM decreases, the strength, high temperature, reflection cracking resistance of it increase first and then decrease, and the water stability and low-temperature crack resistance of it increase. Based on the technical requirements, the reasonable ranges of the mortar film thickness and ratio of filler to bitumen are recommended.
     By analyzing various calculation models of mineral aggregate surface area, the paper confirms that geometric progression method canaccurately reflect the actual distribution of grain diameter, and establishes the calculation model of mineral aggregate surface area based on the geometric progression method. Through regression analysis, it is found that mechanics index and pavement performance has good correlation,and the determination method of OLSM's optimum asphalt content is proposed based on the mechanics index method. Collecting the research findings in the paper, composition design system for OLSM based on mortar is put forward.
引文
[1]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.
    [2]沙爱民.半刚性基层的材料特性[J].中国公路学报,2008,21(01):1-5
    [3]Tyler, Yee Thienseng.The Performance of Continuously Reinforced Concrete Pavement on the Ayer Keroh-Expressway[C].Proceeding of 6th Conference of Road Engineering Association of Asia and Australia,1990.3
    [4]Hall, M. Cement-tabilized open-graded base strength testing and field Performance versus cement content[J].Transportation Research Record,1994,pp:22-31
    [5]Miehel Ray, Jean Pieer Christory. Combating conerete pavement slab pumping state of the art and reornrnendations[C].PLARC Technical Committee on Conerete Roads, Session b,ⅩⅧth, World Road Congress in Brussels of 1987,pp:725-733
    [6]K.Majidazadeh and D.V. Ramsamooj. Development of Testing Procedures and a Method to Predict Fatigue Failures of Asphalt Concrete Pavement systems[R].The Ohio State University Reserch Foundation, Final Report, Project RF 2873, March 1971
    [7]F.P. Germann and R.L.Lytton. Methodology for Predicting Reflection Cracking Life of Asphalt Concrete Overlays[R]. Report No. FHWA/TX-79/09+207-5, March 1979
    [8]R.L.Lytton and U.Shanmugham. Fabric Reinforced Overlays to Retard Reflection Cracking[R]. Report RF-342-5, Texas A&M Research Foundation, February 1983.
    [9]FHWA. Guidelines for design of subsurface drainage systems for highway structural sections[M]. Washington, D. C:FHWA,1973
    [10]李宇峙,邵腊庚.旧水泥混凝土路面上沥青混凝土加铺设计与应用技术研究[R].长沙交通学院,2002,10:18-22
    [11]孙立军.沥青路面结构行为理论[M].上海:同济大学出版社,2005.
    [12]张倩.水对沥青混合料影响的机理分析[D].西安:长安大学,2006.
    [13]N.F.coetzz. Some considerations on Reflection cracking in Asphalt Concrete Overlay Pavement [J],Ph.O.Dissertation Univ.of Califoria,1979,14(8):42-46
    [14]周富杰.反射裂缝的产生和发展机理[J].国外公路,1997,(4):12-15
    [15]叶国铮.防治沥青路面反射裂缝的试验方法[J].中南公路工程,1997.6(12):28-34
    [16]H.J.Fromm, WA.Phand. A Study of Transverse Cracking of Bituminous Pavement [J]. Proceeding of AAPT,1972,11(5)
    [17]付其林,陈拴发,陈华鑫,等.开级配大粒径沥青碎石混合料的高温稳定性[J].长安大学学报:自然科学版,2010,30(2):20-24
    [18]付其林,陈拴发,陈华鑫.开级配大粒径沥青混合料路用性能研究[J].武汉理工大学学报,2010,32(7):72-76
    [19]付其林,陈拴发,邢明亮.开级配大粒径沥青混合料水稳定性试验研究[J].合肥工业大学学报:自然科学版,2010,31(3):717-721
    [20]付其林,陈拴发,陈华鑫.级配对开级配大粒径沥青碎石路用性能的影响[J].郑州大学学报:工学版,2010,31(3):82-86
    [21]付其林.开级配大粒径沥青碎石组成设计与路用性能研究[D].西安:长安大学,2008.
    [22]付其林,邓韵发,乔伟.大粒径沥青混合料在抗反射裂缝中的应用[J].平顶山工学院学报,2007,16(1):63-66
    [23]顾强康,冷培义.水泥混凝土路面上沥青加铺层反射裂缝试验研究[J].中国公路学报,1999,1:35-40
    [24]Wood W.A., Reduceing reflection craching in bituminous overlays, Final Summary Report, Federal Highway Report No.FHWA-EP-85-02,1984
    [25]H.J.Fromm, W.A. Phand. A Study of Transverse Cracking of Bituminous Pavement[J]. Proceeding of AAPT,1972,11(5):26-29
    [26]N.F.Coetzz. Some considerations on Reflection cracking in Asphalt Concrete Overlay Pavement[J]. Ph.O.Dissertation Univ.of Califoria,1979,14(8):42-46
    [27]Coezee N.F., and C.L. Monismith. Analytical study of Minimization of reflection cracking in asphalt concrete overlays by use of a rubber asphalt interlayer[R].Transportation Research Board National Research council,1979,pp:100-108
    [28]Background of Superpave Asphalt Mixture Design and Analysis[R]. FHWA SA-95-003.Federal Highway Administration, United States Department of Transportation, Washington, D.C.,1995.
    [29]Harvey J., L. du Plessis, F. Long, et al. CAL/APT Program:Test Results from Accelerated Pavement Test on Pavement Structure Containing Asphalt Treated Permeable Base (ATPB)-Section 500RF. Report No.RTA-65W4845-3[R]. University of California, Berkeley,1996.
    [30]NCHRP REPORT386. Design and Evaluation of Large Stone Asphalt Mixes[R].Transportation Research Board National Research council,2000,10
    [31]Prithvi.S.Kandhals.Large Stone Asphalt Mixes:Design and Construction[R].NCAT Report,90-4.
    [32]Williams,EllisCxDesign and Constuction of Large Stone HMA Bases in Kentucky[J].Hot Mix Asphalt Technology,1998.
    [33]P.S. Kandhals, Rajib B. Mallick, E. R. Brown. HOT MIX ASPHALT FOR INTERSECTIONS IN HOT CLIMATES[R].NCAT Report,98-06.
    [34]P.J. Van de Loo. The Creep Test:A Key Tool in Asphalt Mix Design and in the Prediction of Pavement Rutting [R]. Proc. AAPT, Vol.47,1978.
    [35]Ahmed Faheem, H. U. BahiaUsing Gyratory Compactor to Measure Mechanical Stability of Asphalt Mixtures[R]. Wisconsin Highway Research Program 0092-01-02,2004
    [36]Stakston, Anthony D. The Effect of Fine Aggregate Angularity, Asphalt Content and Performance Graded Asphalts on Hot Mix Asphalt Performance in a Laboratory Study[R]. Masters Thesis. University of Wisconsin Madison,2002
    [37]Shad Sargand, Shin Wu, J. L. Figueroa. TRUCK/PAVEMENT/ECONOMIC MODELING AND IN-SITU FIELD TEST DATA ANALYSIS APPLICATIONS-VOLUME 1:INFLUENCE OF DRAINAGE ON SELECTION OF BASE [R]. ORITE 114 Stocker Center Ohio University,2006
    [38]M.O. Bejarano, J.T. Harvey, Abdikarim Ali, et al.Performance of Drained and Undrained Flexible Pavement Structures in Accelerated Loading under Wet Conditions[R].Pavement Research Center Institute of Transportation Studies University of California at Berkeley,2003
    [39]Khaled Ksaibati, Ryan Erickson. EVALUATION OF LOW TEMPERATURE CRACKING IN ASPHALT PAVEMENT MIXES[R].Dept.of Civil and Architectural Engineering, Wyoming University,1998
    [40]Jung, Duhwoe and T.S. Vinson..Thermal Stress Restrained Specimen Test To Evaluate Low-Temperature Cracking of Asphalt-Aggregate Mixtures[R]. Transportation Research Record No.1417. Washington, D.C.:National Academy Press,1993
    [41]Xue Li, Mihai O.Marasteanu Cohesive Modeling of Fracture in Asphalt Mixtures at Low Temperatures [J].Chemistry and Materials Science,2005,136, (4):285-308
    [42]Andriescu Adrian,Gibson Nelson H,Hesp Simon A M,et al. Validation of the Essential Work of Fracture Approach to Fatigue Grading of Asphalt Binders[J]. Journal of the Association of Asphalt Paving Technologists,2006(75):1016-1052
    [43]Zhiming Si. CHARACTERIZATION OF ASPHALT CONCRETE MIXTURESMICRODAMAGE AND HEALING[D]. Texas:Texas A&M University,2007
    [44]M.O. Bejarano, J.T. Harvey, Abdikarim Ali, et al.Performance of Drained and Undrained Flexible Pavement Structures in Accelerated Loading under Wet Conditions[R].Pavement Research Center Institute of Transportation Studies University of California at Berkeley,2003
    [45]C.L. Monismith, J.T. Harvey, T.P. Hoover, et al. Ten Year Perspective on Accelerated Pavement Testing;Caltrans Partnered Pavement Research Program[C].2nd International Conference on Accelerated Pavement Testing, Minneapolis, Minnesota,2004
    [46]Standard Test Method for Determining the Permanent Shear Strain and Stiffness Of Asphalt Mixtures Using the Superpave Shear Teste[R].AASHTO Deisngation:TP7-01
    [47]Teruhisa Masada, S.M. Sargand, Basel Abdalla, et al. MATERIAL PROPERTIES FOR IMPLEMENTATION OF MECHANISTIC-EMPIRICAL (M-E) PAVEMENT DESIGN PROCEDURES[R]. ORITE, Ohio University, Athens, OH.45701-2979,2004
    [48]Takahashi O., Hachiya Y. and Tsubokawa Y. Applicability of the Large Stone Asphalt Concretes for Surface Course of Heavy-Duty Airport Pavements[C].Proceedings of the 2002 Federal Aviation Administration Technology Transfer Conference,2002:pp63-85
    [49]Pennsylvania Department of Transportation.Comparison of 4 and 6-Inch Diameter Molded Specimens[R]. Bureau of Materials, Testing and Research, Status Report, February,1969.
    [50]Prithvi.S.Kandhals.DESIGN OF LARGE STONE ASPHALT MIXES TO MINIMIZE RUTTING[R]. Design and Construction.NCAT Report,90-1.
    [51]Prithvi.S. Kandhals, E.R.Brown. COMPARATIVE EVALUATION OF 4-INCH AND 6-INCH DIAMETER SPECIMENS FORTESTING LARGE STONE ASPHALT MIXES [R].NCAT Report,90-5.
    [52]KENTUCKYS. Experience with Large Size Aggregate in ituminous Hot-Mix:Comparative Evaluation of 4-inch and 6-inch Diame-ter[R]. A APT,1992-04
    [53]R.M.Recasens. Effect of Filler on the Aging Potential of Asphalt Mixtures[J].Transportation Research Record,2005(1901):10-17
    [54]周志刚,张起森,郑健龙.交通荷载作用下士工格栅防止沥青路面开裂的桥联作用[J].中国公路学报,1999(12):27-34
    [55]蔡喜棉.旧水泥混凝土路面上的罩面[J].华东公路,2000(3):36-38
    [56]樊统江.在刚性路面上加铺沥青混凝土的修筑技术及使用效果[J].石油沥青,1998,12(2):43-47
    [57]李祖仲.应力吸收层沥青混合料材料组成设计及抗裂性能研究[D].西安:长安大学,2009.
    [58]莫石秀.多年冻土地区级配碎石路用性能及设计方法研究[D].西安:长安大学,2002.
    [59]孙文婷.沥青稳定碎石排水基层在浙江公路上的应用研究[D].西安:长安大学,2009.
    [60]FU Qilin, CHEN Shuanfa. Influence of Aggregate Gradation on Pavement Performance of Open-graded Large Stone Asphalt Mixes[C].The 10th international conference of Chinese transportation professionals, Nov.3133-3140,2010, Beijing.
    [61]刘中林.大粒径沥青混合料组成设计与路用性能研究[D].西安:长安大学,2002.
    [62]王富玉.大粒径沥青混合料路用性能研究[D].西安:长安大学,2001.
    [63]黄晓明,张裕卿.沥青混合料高温性能试验方法[J].公路交通科技,2008,25(5):1-8
    [64]解晓光,王哲人.沥青碎石混合料动力变形特性研究[J].中国公路学报,2006,19(2):24-30
    [65]冯俊岭.大粒径沥青混合料路用性能研究[D].长沙:长沙理工大学,2004.
    [66]叶松.大粒径沥青混凝土路用性能及施工特性研究[D].西安:长安大学,2005.
    [67]杜顺成.沥青稳定碎石排水层性能研究[D].西安:长安大学,2003.
    [68]王恩东,张洪亮,王选仓.MAC改性沥青大粒径透水性沥青混合料试验研究[J].交通运输工程学报,2008,8(6):6-12
    [69]王富玉,任立锋,刘元烈.大粒径沥青混合料的路用性能研究[J].公路交通科技,2003,20(5):6-9
    [70]魏建国.沥青碎石技术特性研究[D].西安:长安大学,2008.
    [71]陆长兵.大粒径沥青稳定碎石基层性能研究[D].南京:东南大学,2004.
    [72]冯新军.大粒径沥青混合料组成设计与路用性能研究[D].西安:长安大学,2007.
    [73]张亮.大粒径沥青混合料抗裂性能试验研究[D].长沙:长沙理工大学,2006.
    [74]资建民,王海军,李福宝,等.大粒径沥青混合料基层缓解反射裂缝应力分析[J].华中科技大学学报(城市科学版),2006,23(s1):8-13
    [75]马庆雷,杨斌,陈拴发.大粒径沥青碎石加铺层结构反射裂缝调查及应力分析[J].西安建筑科技大学学报(白然科学版),2005,37(1):108-113
    [76]李宇峙,陈群,刘朝晖.不同成型方法的对比及压实特性研究[J].中外公路,2003,23(1):82-85
    [76]臧永超,肖志军,黄凯.大粒径透水性沥青混合料配合比设计研究[J].华东公路,2008,170(2):77-81
    [78]李平.基于胶浆特性的沥青混合料设计[D].西安:长安大学,2007.
    [79]吕伟民.沥青混合料设计方法与原理[M].上海:同济大学出版社,2001.
    [80]E.M.Kauffmann.The Application of Fracture Mechanics for Improved Design of Bituminous Concrete[J]. Vol.Ⅰ, Publication NO.FHWA-RD,1995,pp:76-79
    [81]Arif Chowdhury. Joe W. Button. Jose D. C. Grau. Effects of Superpave Restricted Zone on Permanent Deformation[J].International Center for Aggregate Research,2001.4:28-32
    [82]Smitn R.W.,RiceJ.M. Design of Open-Graded Friction Courses[R].FHWA,Synthesis of Current Practice on the Design,Construction,and Maintenance of Porous Friction Courses,1974
    [83]Kandhal,P.S.Design,Construction,and Maintenance of Open-Graded Asphalt Friction Courses[R]. National Asphalt Pavement Association,MD:2002
    [84]林绣贤.沥青混凝土合理集料组成的计算公式[J].华东公路,2003.2:82-84
    [85]Zhang W., Yu X. J. and Yuan Q. Uniform distribution:a new approach of design fermentation media [J].biotechnology techniques,1993,7(5):379-384
    [86]Fang K.T.and Wang Y. A sequential algorithm for optimization and its applications to regression analysis in lecture notes in contemporary mathematics [M].Beijing:science press,1990
    [87]Wang Y. and Fang K.T. A note on uniform distribution and experimental design [J].ke xue tong bao, 1981,26:485-489
    [88]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [89]张启锐.使用回归分析[M].北京:地质出版社,1988.
    [90]谭巍,周刚.沥青混合料高温稳定性的单轴贯入试验研究[J].石油沥青,2009.23(2):14-19
    [91]毕玉峰,孙立军.沥青混合料抗剪试验方法研究[J].同济大学学报(自然科学版),2005,33(8):1036-1040
    [92]彭勇,孙立军,石永久,等.沥青混合料抗剪强度的影响因素[J].东南大学学报(自然科学版),2007,27(2):330-333
    [93]岳雷,黄曼,刘黎萍,等.沥青混合料抗剪性能试验研究[J].公路工程,2009,34(1):13-17
    [94]ACI Committee 209. Prediction of creep, shrinkage and temperature effects in concrete structures. In SP-27:Design for effects of creep,shrinkage, in concrete temperature structures[C]. Detroit:ACI. 1971:51-93
    [95]HuberG.Performance Survey on Open-Graded Friction Course Mixes.NCHRP Synthesis 284[M]. Washington,D.C.:Transportation Research Board,2000.
    [96]Mallick R.B.et al.Design,Constuction and Performance of New-Generation Open-Graded Friction Course[J]AAPT,2000
    [97]傅志勇.沥青混合料高温性能研究[D].长沙:长沙理工大学,2005.
    [98]K.T.Hall, M.LDarter, S.H.Carpenter, D.A.Steele.Guidelines for Evaluation of Asphalt-Overlaid Concrete Pavement[J].Civil Engineering Studies,1995,12(6):1-9
    [99]Jingna Zhang, L. Allen Cooley Jr, P.S. Kandhal. Comparison of fundamental and simulative test methods for evaluating permanent deformation of hot mix asphalt [R].NCAT Report 02-07, October 2002.
    [100]Prithvis. Kandhal, L. Allen Cooley Jr. Evaluation of permanent deformation of asphalt mixtures using loaded wheel tester [R]. NCAT Report 02-08, October,2002.
    [101]L.M.France.Chemical.Physical and Thermodynamic Properties of Neat and Polymer Modified Asphalt Binder[J].M.S.thesis.Michigan State University,1997:23-25
    [102]J.A.Deacon.Temperature Considerations in Asphalt-aggregate Mixture Analysis and Design [J].Transportation Research Board,1994:97-112
    [103]何爱军,周进川,饶枭宇,等.不同厚度的沥青混合料室内车辙试验研究[J].重庆交通学院学报,2006,25(5):58-64
    [104]李娜,朱文琪,李向东,等.全厚度与标准厚度车辙试验的对比分析[J].武汉理工大学学报,2003,25(12):66-68
    [105]朱洪洲,徐松,唐伯明,等.沥青稳定碎石高温稳定性影响因素的灰熵分析[J].合肥工业大学学报(自然科学版),2009,32(7):1081-1085
    [106]David N Richardson. Drainability Characteristics of Granular Pavement Base Material[J]. Journal of Transportation Engineering Sept./Oct,1997.
    [107]徐皓,倪富健,刘清泉,等.排水性沥青混合料渗透系数测试研究[J].中国公路学报,2004,3:1-5
    [108]吉青克.大孔隙材料渗透系数的室内测定[J].公路交通科技,2002,2:31-34
    [109]P.E. Joseph and R. Hass.Evalatting Alternative Solutions to Reflective Cracking Through Asphalt Overlays [J].Transportation Research Board,1989
    [110]张肖宁,邹桂莲.沥青混合料抵抗反射裂缝能力的评价方法研究[J].华南理工大学学报,2001,7:42-48
    [111]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].北京:人民交通出版社,2002
    [112]Refective Cracking in Pavements Design and Performance of Overlay Systems[C]. Proc of 3rd Int. RILEM Conferce.1996.12. London, ISBN 0419 22260X
    [113]J.M.Rigo,R.Degeimbre and L.Franken.Reflective Cracking Pavement[M].London:published by E & FNSpon,1993
    [114]周富杰,孙立军.反射裂缝的足尺疲劳试验研究及其力学分析[J].土木工程学报,2001,34(3):78-83
    [115]C.L. Monismith and N.F. Coetzee. Reflective Cracking:Analyses, Laboratory Studies and Design Considerations[J].Proceedings of AAPT,1980,49,pp:268-313
    [116]I.Ishai, et al.Experimental and Analytical Model for the Role of Reinforced Asphaltic Membranes in Retardation of Reflective Cracking[J].Proceedings of AAPT,1993,52,pp:130-149
    [117]M.A. Caltabiano and J.M. Brunton. Reflective Cracking in Asphalt Overlays[J].Proceedings of AAPT,1992,51,pp:310-332
    [118]谢军,李宇峙,邵腊庚.荷载型反射裂缝的APA疲劳模拟试验研究[J].公路交通科技,2003,20(6):5-8
    [119]郑南翔等.张登良教授及其研究生论文集[M].北京:人民交通出版社,2004.
    [120]王捷,龚涌峰.粉胶比对沥青胶浆和沥青混合料性能的影响[J].长沙交通学院学报,2004,20(4):73-77
    [121]Harris B.M, Stuart K.D.Analysis of mineral fillers and mastics used in stone matrix asphalt [J]. Proceedings Association of Asphalt Paving Technologists,1995,64 (1):211-2341
    [122]邢明亮.排水路面沥青混合料的胶浆特性与矿料组成研究[D].西安:长安大学,2010.
    [123]张登良.沥青与沥青混合料[M].北京:人民交通出版社,1993.
    [124]郝培文.沥青混合料配合比设计方法研究[D].西安:西安公路交通大学,1996.
    [125]郑玉.集料比表面积计算方法探讨[J].交通标准化,2008,184(11):95-97
    [126]申根宝.根据颗粒构成特性计算天然集料的比表面积[J].北京工业大学学报,1984,10(3):19-31
    [127]L.N.Adwards. Proportioning the materials of mortars and concretes by surface areas of aggregates. A.S.T.M 18 Part Ⅱ,1918, pp:235-302
    [128]齐琳.采用间接拉伸试验评价沥青混合料低温性能研究[D].西安:长安大学,2006.
    [129]仲玉侠,王显利,刘茉.改性沥青混合料低温抗裂性能的试验研究[J].华东公路,2010,184(4):66-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700