用户名: 密码: 验证码:
地铁车辆—钢弹簧浮置板轨道耦合动态行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一方面,我国正大力发展城市轨道交通来缓解大中城市的交通拥堵状况,另一方面,城市轨道交通诱发的振动、噪声等环境问题越来越受到人们的关注,解决好这些环境问题是保证城市轨道交通可持续发展的关键问题之一。为此,多种减振降噪措施被用来削弱城市轨道交通对线路沿线居民、建筑和精密设备的影响,然而,各种措施的预期目标及使用效果不尽相同。目前,与其他减振降噪措施相比,钢弹簧浮置板轨道综合表现最好,在对减振控制要求严格的位置广泛推广使用。随着我国经济的发展,居民健康意识的增强,钢弹簧浮置板减振轨道将会被更多的应用到新建的城市轨道交通线上。
     浮置板轨道结构形式多样,各自适用环境和减振效果都有差别,钢弹簧浮置板轨道只是其中一种。虽然浮置板轨道拥有减振效果好、运行维护少、使用寿命长等诸多优点,但是,前期投入大、施工复杂、工期长和线路稳定性差等缺陷严重制约了它的广泛使用,目前只安装在对振动控制要求严格的线路上。因此,为了充分了解浮置板轨道的优缺点,做到合理的扬长避短,国内外学者采用多种手段对它进行了研究。对于连续型浮置板轨道,研究的重点是轨道的垂向共振频率、轨道临界速度、轨道柔度和减振效率等;对于离散型单元板式浮置板轨道,研究的重点是轨道板的弯曲柔性变形对减振效果的影响、轨道板接头位置垂向错动、浮置板轨道与其他轨道形式连接过渡等。
     有关浮置板轨道的研究已取得大量成果,解决了很多相关工程问题。但是,尚有一些问题存在争议,没有彻底解决,如地铁车辆在浮置板轨道上运行时的安全性问题、是否需要在离散型单元板端头的接缝处安装铰接约束装置?是否应该在浮置板轨道到传统整体道床轨道的过渡段采取轨道支承刚度过渡措施?浮置板轨道支承失效的机理以及轨道车辆耦合动态行为的影响如何?浮置板轨道是否适合新型列车即直线电机列车安全平稳运行?针对上述尚未解决问题,主要展开了以下几个方面的研究工作:
     (1)首先对国内外浮置板轨道的研究历史和现状进行了详细论述,明确了钢弹簧浮置板轨道技术的研究意义和研究方向。
     (2)进一步推进了地铁车辆-钢弹簧浮置板轨道耦合耦合动力学模型和相应的数值程序。主要体现在:(a)建立直线电机列车车辆/浮置板轨道模型和相应的数值方法;(b)模型中能够反映车辆相对轨道的移动效应;(c)考虑了轨道板端部的连接结构的影响和建模;(d)采用三维实体有限元理论模拟轨道板,不仅可以对短、中和长型轨道板进行统一建模,而且考虑轨道板厚度尺寸的影响,有效提高计算结果的可靠性,可以进行轨道板局部伤损建模分析;(e)考虑传统整体道床轨道和浮置板轨道过渡段不同过渡方案的影响和建模,即轨道纵向非均匀支承结构建模分析。
     (3)研究了普通地铁车辆(转子电机驱动)在钢弹簧浮置板轨道上运行时轨道板长度、厚度和钢弹簧纵向间距对系统动态响应的影响规律。弄清了钢弹簧浮置板轨道对车辆运行性能的影响规律;得出了地铁车辆在不同参数钢弹簧浮置板轨道上运行时轮轨力、车辆加速度等。研究结果显示,钢弹簧浮置板轨道参数变化对系统振动加速度的影响很小;就脱轨系数而言,地铁车辆在钢弹簧浮置板轨道上可以安全运行。
     (4)分析计算了普通地铁车辆在钢弹簧浮置板轨道上运行时,轨道板间的错动对轮轨力和扣件力的影响规律。研究表明,轨道板间的错动对轮轨力的影响甚微,对接缝两侧扣件受力影响明显;在接缝位置安装剪力铰可以有效削弱轨道板间错动对扣件受力的影响,降低扣件系统病害发生的概率,减少后期维护。
     (5)分析计算了钢弹簧浮置板轨道与普通板式无砟轨道连接过渡段轨道刚度变化对轮轨力、扣件力和轨道变形的影响规律。结果显示,过渡段内轨道刚度突变对轮轨力的影响不大,对过渡点两侧扣件受力状态影响较大,需要在过渡段内设置刚度过渡区来降低扣件的拉、压力水平;在过渡段轨道板安装剪力铰、在过渡区增加钢弹簧布置密度和降低过渡段内扣件刚度都可以有效地降低扣件受力水平。
     (6)研究了钢弹簧浮置板轨道的扣件或钢弹簧失效对车辆运行安全性和轨道变形的影响。研究结果表明,只有当扣件连续失效数量到一定程度时才会严重威胁车辆的行车安全。少数钢弹簧失效对行车安全影响甚微,但会增大轨道板垂向变形位移,影响部分扣件的受力状态,严重情况会导致轨道板与地基板的硬碰触底接触。
     (7)研究了直线电机地铁车辆在钢弹簧浮置板轨道上运行时系统的动态行为。明确了轨道板接缝与感应板接缝位置关系对系统受力的影响规律以及感应板垂向位置异常对系统受力的影响规律。从研究结果获知,轨道板接缝与感应板接缝应采用“对齐”方式布置,应严格控制感应板的上凸型异常错动。
     (8)根据正在服役的钢簧浮置板轨道现场实验数据,分析了钢弹簧浮置板轨道的钢轨状态对车辆部件的振动响应情况,通过与其他减振轨道对比,用现场实验数据证明钢弹簧浮置板轨道的优良性能。
China is making great efforts to develop the urban rail transits to ease traffic congestion for large and medium-sized cities. The vibration, noise and environmental issues caused by urban rail traffics are increasingly of concern. A variety of noise and vibration reduction measures have been used to weaken the impact of urban rail transit lines along the residents, constructions and precision instruments. At present, compared with other noise and vibration reduction measures used in urban rail transits, the overall performance of steel spring floating slab track is the best, it was gradually used in the demanding locations in the vibration control. With China's quick economic development and the awareness increase of the health of residents, steel spring floating slabs will be widely applied to the new urban rail transit lines.
     Steel spring floating slab track has many advantages, such as the damping effect and the inertial vibration reduction, convenient maintenance, long life and so on. However, the high initial investment, complex construction, long duration, and poor stability severely restrict the scope of its use. Scholars at home and abroad adopted various methods to analyze the performance of floating slab track. For continuous floating slab tracks, the concerned study focuses on the vertical resonant frequency of the track, the critical velocity of the floating slab tracks and orbital calculation of compliance and damping efficiency. For the discrete floating slab track, the study focuses on the bending flexible deformation with damping, the vertical dislocation of slabs at the joints, connecting transition between floating slab track and others.
     Many research results on the floating slab techniques and its application have been obtained and some problems of the floating slab tracks were solved. But many questions are still open. So far people have not carried out the detailed investigations into more new types of structures and techniques applied to the floating slab tracks and not yet optimized the floating slab track structure further. The concerned important problems include the safety operation of the metro trains in the partial and total failure of the track parts, the hinge joint use at the connection of two slabs improving the dynamical behavior of the vehicle and the track, improvement on the transition section between a general slab track and a floating slab track, and the floating slab track matching a metro train of linear induction motor. Aiming at the problems the present work conducts the following researches:
     (1) First the thesis gives a detailed discussion on the history and current status of study and application of the floating slab track at home and abroad, and describes the significance and direction of development and application of steel spring floating slab tracks.
     (2) Thesis carries forward further the coupling dynamics model of a metro train and a floating slab track and the corresponding numerical code. The mian innovation work includes that (a) the coupling dynamic model for a linear induction motor metro train and a floating slab track and its numerical code is developed,(b) the dynamic models considers the constant speed motion of the tracks with respect to the trains,(c) the model for the foating slab track considers the modeling of the hinged joints between the slabs and the behavior analysis,(d) the finite element method is used to simulate the floating slabs, which considers the optimization of the sizes of the slabs, calculate the more reliable results and the failure status of the track parts or in the location of the parts, and (e) the modes are used to analyze the effect of the track support stiffness in the transit section between the general slab track and the floating slab track on the dynamic behavior of the vehicle and the track and the effect of the uneven support stiffness of the tracks.
     (3) The effect of the sizes of the floating slab and the space between the springs supporting the slab on the dynamic behavior of the vehicle and the track is analyzed when the general metro train (electric rotating motor driving) is operating on a floating slab track. The considered sizes include the height and length of the floating slab. The mechanism is understood redarding the effect of the characterestics of the floating slab track on the dynamic behavior of the vehicle and the track. The research results show that the change of the parameters of the floating slab track does not have a great influence on the vibration acceleration of the vehicle and the track. The operation of metro trains on the floating slab track is very safely.
     (4) The thesis calculates the effect of the vertical dislocation between the ends of the two floating slobs on the dynamic behavior of the vehicle and the track when the general metro train (electric rotating motor driving) is operating on a floating slab track. The calculation results show that the influence of the dislocation on the wheel/rail forces is very small, but is great on the forces in the fastenings at the gap of the two slabs. Using the hinged joint in the connection of the slabs can effectively reduce the influence caused by the dislocation on the forces in the fastening, the fastenning illness and the maintaining cost.
     (5) The present work calculates the effect of the support stiffness change of the transition section between the general slab track and the floating slab track on the wheel/rail forces, the forces in the fastening and the deformation of the track. The calculated results indicate that the sudden change of the support stiffness of the transition section does not have a great influence on the wheel/rail force, but has a great influence on the forces in the fastening systems in the transition section. Hence the transition section needs to use the slow change of the support stiffness which effectively reduces the compression and tension of the fastenings in the transition section. The other measures to reduce the forces in the fastening systems are, respectively, using the hinged joints in connect the floating slabs, increasing the distribution density of the support springs and decreasing the stiffness of the fastennings.
     (6) The effect of the failure of the springs or of the fasteners on the track defoemation and the operation safety of the train is analzed. The results show that the operation safety of the train is serious influenced only when the number of fastener continuous failure to a certain extent. The failure of only a few springs has a small influence on the safe operation of the train, but has a great influence on the deformation and the displacement of the slab and the forces in the fastening.
     (7) Using the present model analyzes the dynamic behavior of the linear motor vehicle operating on a steel spring floating slab track. It is clear that the effect of the gap of the slabs relative to the gap of the reactor plates on the dynamic behavior of the system. The effect of the vertical dislocation of the reactor plates on the force state in the system is analyzed and understood clearly. The research results indicate that the gap of the floating slabs should align at the gap of the reactor plates in the construction of the track. In maintaining the tracks the dislocation of the reactor plates should be strictly controlled.
     (8) Based on the field experiment data, the thesis analyzes the floating slab track service status and the effect of the rail status of a floating slab track on the vibration of the vehicles. Compared to the tracks with the other vibration reduction measures, the field experiment datum show that the floating slab track has more advantages in the vibration reduction.
引文
1.金学松,温泽峰,张卫华,曾京,周仲荣,刘启跃.世界铁路发展状况及其关键力学问题.第十三届全国结构工程学术会议特邀报告,南昌,2004.工程力学.2004,21(增刊):90-104
    2.苗彦英.城市轨道交通的界定范围及定义.世界轨道交通.2004,1:52-53
    3.温泽峰.钢轨波浪形磨损研究.西南交通大学博士学位论文,2006
    4.孙晓静.地铁列车振动对环境影响的预测研究及减振措施分析.北京交通大学博士学位论文,2008
    5.夏禾,吴萱,于大明.城市轨道交通系统引起的环境振动问题.北方交通大学学报.1999,23(4):1-7
    6. M.L.M. Duarte, M.R. Filho. Perception threshold of people exposed to sinusoidal vibration. Proceedings of the Tenth International Congress on Sound and Vibration. 2003:3791-3798
    7.C.F.比尔兹.结构振动分析.朱世杰,陈玉琼.中国铁道出版社.1988
    8.孙晓静,刘刘维宁,郭建平等.地铁列车振动对精密仪器和设备的影响及减振措施,中国安全科学学报.2005,15(11):78-81
    9.翟婉明,孙翔.低动力作用轮轨系统垂向动力参数研究与设计.铁道学报.1993,15(3):1-10
    10. Jenkins H.H., Stephenson J.E., Clayton G.A., Morland G.W., Lyon D. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces. Railway Engineering Journal.1974,3(1):2-16
    11.杨中平.日本直线电机地铁技术问答.都市快轨交通.2006,19(2):96-99
    12. Koo D H, Kim J C, Yoo W H, Park T W. An experimental study of the effect of low-noise wheels in reducing noise and vibration. Part D Transportation Research.2002,7:429-439
    13.范蓉平,孟光崔银会.弹性车轮的发展与研究现状.机车电传动.2005:8-11
    14. J.T. Nelson. Recent developments in ground-borne noise and vibration control. Journal of Sound and Vibration.1996 193(1):367-376
    15.翟婉明.车辆-轨道耦合动力学.第三版.科学出版社,2007
    16.陈果.车辆-轨道耦合系统随机振动分析.西南交通大学博士学位论文,2000
    17. P. Grootenhuis, Floating track slab isolation for railways, Journal of Sound and Vibration,1977,51 (3):443-448
    18. G.P. Wilson, H.J. Saurenman, J.T. Nelson, Control of ground-borne noise and vibration. Journal of Sound and Vibration.1983,87(2):339-350
    19. J.A. Forrest, Modelling of Ground Vibration from Underground Railways, PhD Dissertation, Cambridge University,1999
    20. F. Cui, C.H. Chew. The effectiveness of floating slab track system-Part I. Receptance methods. Applied Acoustics.2000,61:441-453
    21. M.F.M. Hussein, H.E.M. Hunt. Modelling of floating-slab tracks with continuous slabs under oscillating moving loads. Journal of Sound and Vibration.2006,297:37-54
    22. M.F.M. Hussein, H.E.M. Hunt. Modelling of Floating-Slab Track with Discontinuous Slab Part 1:Response to Oscillating Moving Loads. JOURNAL OF LOW FREQUENCY NOISE, VIBRATION AND ACTIVE CONTROL.2006,25(1):23-39
    23. M.F.M. Hussein, H.E.M. Hunt. Modelling of Floating-Slab Track with Discontinuous Slab Part 2:Response to moving trains. JOURNAL OF LOW FREQUENCY NOISE, VIBRATION AND ACTIVE CONTROL.2006,25(2):111-118
    24. G. Lombaert, G. Degrande, B. Vanhauwere, B. Vandeborght, S. Francois. The control of ground-borne vibrations from railway traffic by means of continuous floating slabs. Journal of Sound and Vibration.2006,297:946-961
    25. Tsutomu WATANABE, Masamichi SOGABE, Takayuki YAMAZAKI. A Study of Running Safety and Ride Comfort of Floating Tracks for High-Speed Train. Journal of Mechanical Systems for Transportation and Logistics.2008,1(1):22-30
    26. Hans-Georg Wagner, Axel Herrmann. Floating Slab Track above Ground for Turnouts in Tram Lines. Noise and Vibration Mitigation.2008, NNFM 99:86-93
    27. M.F.M. Hussein, H.E.M. Hunt. A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel. Journal of Sound and Vibration.2009,321:363-374
    28. S. Gupta, G. Degrande. Modelling of continuous and discontinuous floating slab tracks in a tunnel using a periodic approach. Journal of Sound and Vibration.2010,329: 1101-1125
    29. Chen-Ming Kuo, Cheng-Hao Huang, Yi-Yi Chen. Vibration characteristics of floating slab track. Journal of Sound and Vibration.2008,317:1017-1034
    30. C.K. Hui, C.F. Ng. The effects of floating slab bending resonances on the vibration isolation of rail viaduct. Applied Acoustics.2009,70:830-844
    31.吴天行.轨道减振器与弹性支承块或浮置板轨道组合的隔振性能分析.振动工程学报.2007,20(5):489-493
    32.李增光,吴天行.浮置板柔度计算方法及隔振性能研究.振动工程学报.2007,20(3):2007-2012
    33. Z G Li, T X Wu. Modelling and analysis of force transmission in floating-slab track for railways. Part F:J. Rail and Rapid Transit.2008, (222):45-57
    34. Z G Li, T X Wu. Vehicle/track impact due to passing the transition between a floating slab and ballasted track. Noise and Vibration Mitigation, NNFM 99.2008,94-100
    35. Z G Li, T X Wu. On vehicle/track impact at connection between a floating slab and ballasted track and floating slab track's effectiveness of force isolation, Vehicle System Dynamics.2009,47(5):513-531
    36.李增光,吴天行.浮置板轨道参数激励振动研究.振动与冲击.2010,29(2):17-20
    37.王炯.浮置板轨道隔振性能研究.上海交通大学硕士学位论文,2008
    38.王炯,吴天行.浮置板轨道隔振性能研究.上海交通大学学报,2007,41(6):1021-1025
    39.吴川.考虑减振结构时效特性的轻轨系统耦合振动研究.上海交通大学博士学位论文,2009
    40.吴川,刘学文,黄醒春.短型浮置板轨道系统隔振性能研究.振动与冲击.2008,27(8):74-76
    41.刘学文,吴川,谢军,黄醒春.长型浮置板轨道隔振系统理论分析(Ⅰ)—弥散曲线及临界速度.计算力学学报.2009,26(6):919-923
    42.刘学文,吴川,谢军,黄醒春.长型浮置板轨道隔振系统理论分析(Ⅱ)传递率.计算力学学报.2009,26(6):924-927
    43.孙晓静,刘维宁,张宝才.浮置板轨道结构在城市轨道交通减振降噪上的应用.中国安全科学学报.2005,15(8):65-69
    44.孙晓静,刘维宁,郭建平,翟辉,丁德云.地铁列车振动对精密仪器和设备的影响及减振措施.中国安全科学学报.2005,15(11):78-81
    45.王娅娜.浮置板轨道结构振动力学特性分析的研究.北京交通大学硕士学位论文,2006
    46.张虹亮.隧道内钢弹簧浮置板轨道结构振动特性及其对环境影响的研究.北京交通大学硕士学位论文,2007
    47.谢达文.地铁钢弹簧浮置板轨道减振特性试验研究.北京交通大学硕士学位论文,2008
    48.丁德云.浮置板轨道的模态分析.铁道学报.2008,30(3):61-64
    49.丁德云,刘维宁,张宝才,谢达文.特殊浮置板轨道隔振效果的三维数值研究.铁道学报.2009,31(6):58-62
    50.丁德云.地铁列车振动环境响应低频特征的分析与研究.北京交通大学博士学位论文,2009
    51. Ding D.Y., Liu W.N., Li K.F., Sun X.J., Liu W.F. Low frequency vibration tests on a floating slab track in an underground laboratory. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A,2011,12(5):345-359
    52.谷爱军,张宏亮.钢弹簧浮置板轨道结构在不同频段的隔振效率.噪声与振动控制.2009,1:39-42
    53.郑小康地铁高架桥上浮置板轨道的减振研究.北京交通大学硕士学位论文,2010
    54.朱宝玲.新建轨道交通浮置板轨道结构振动对既有地铁结构影响分析.北京交通大学硕士学位论文,2010
    55.朱萧湃.浅埋情况下地铁振动特性及控制措施研究.北京交通大学硕士学位论文,2010
    56.耿传智,楼梦麟.浮置板轨道结构系统振动模态分析.同济大学学报(自然科学版).2006,34(9):1201-1205
    57.董国宪.高架轨道交通浮置板轨道减振降噪性能研究.同济大学硕士学位论文,2007
    58.宋晶.地铁轨道结构的减振性能研究.同济大学工学硕士学位论文,2008
    59.宋晶,郝郡.地铁车站振动噪音对周围环境影响分析及对策.城市轨道交通研究.2008,3:2-29
    60.郝珺,耿传智,朱剑月.不同轨道结构减振效果测试分析.城市轨道交通研究,2008,4:68-71
    61.张宝才,徐祯祥.螺旋钢弹簧浮置板隔振技术在城市轨道交通减振降噪上的应用.中国铁道科学.2002,23(3):68:71
    62.姚京川,浮置板式轨道结构理论与仿真计算分析及实验研究.铁道科学研究院硕士学位论文,2003
    63.姚京川.浮置板式轨道结构隔振效果分析.振动与冲击,2005,24(6):108-110
    64.王继军,赵汝康,许良善:ER组合无碴轨道减振性能的试验分析.铁道建筑.2003,12:44-46
    65.王澜,宣言,万家,姜坚白.浮置板式轨道结构隔振效果仿真研究.中国铁道科学.2005,26(6):48-51
    66.王阳.浮置板式轨道动力设计参数研究.中南大学硕士学位论文,2008
    67.孔凡兵.不同支承条件下的浮置板轨道在城轨列车作用下的动力特性分析.中南大学硕士学位论文,2008
    68.翁长根,赫丹,王阳,向俊.扣件失效对城市轨道交通列车-浮置板式轨道系统竖向振动响应的影响.铁道科学与工程学报.2008,5(2):29-33
    69.向俊,王阳,赫丹,孔凡兵,郭高杰.城市轨道交通列车一浮置板式轨道系统竖向振动模型.中南大学学报(自然科学版).2008,39(3):596-601
    70.蔡成标,翟婉明,王其昌.不同轨下基础轨道连接的动力特性分析.铁道学报.2002,24(2):79-82
    71.蔡成标,刘增杰,赵汝康.浮置板轨道过渡段的动力学设计.铁道建筑.2003,12:41-43
    72.李君.减振型无砟轨道合理刚度的动力学分析.西南交通大学硕士学位论文,2010
    73. Wanming ZHAI, Peng XU, Kai WEI. Analysis of vibration reduction characteristics and applicability of steel-spring floating-slab track. Journal of Modern Transportation. 2011,19(4):215-222
    74.李俊岭.地铁钢弹黄浮置板轨道对环境振动的影响分析.西南交通大学硕士学位论文,2011
    75.侯勇.地铁浮置隔振装置的设计研究.北方工业大学工程硕士学位论文,2008
    76.郭亚娟.列车振动荷载作用下地铁浮置板轨道动力学特性分.石家庄铁道学院硕士学位论文,2005
    77.郭亚娟,杨绍普,郭文武.钢弹簧浮置板轨道结构的动力特性分析.振动、测试与诊断.2006,26(2):146-150
    78.杨绍普,郭亚娟.浮置板道床非线性动力特性分析.振动与冲击.2006.25(2):51-54
    79.袁俊.地铁浮置板轨道结构减振研究.西安建筑科技大学硕士学位论文,2008
    80.袁俊,吴敏哲,孟昭博,宋林.基于双层Euler-Bernoulli梁理论的浮置板轨道隔 振研究.西安建筑科技大学学报(自然科学版).2009,41(5):683-688
    81. Jun Yuan, Yongchao Zhu, Minzhe Wu. Vibration Characteristics and Effectiveness of Floating Slab Track System. Journal of Computers.2009,4(12):1249-1254
    82.毛利军,雷晓燕,杜厚智.提速线路轨道过渡段动力响应分析.华东交通大学学报.2001,18(1):35-40
    83.侯德军,雷晓燕,刘庆杰.浮置板轨道系统动力响应分析.铁道工程学报.2006,8:18-24
    84.雷晓燕.轨道过渡段刚度突变对轨道振动的影响.中国铁道科学.2006,27(5):42-45
    85.雷晓燕,张斌,刘庆杰.轨道过渡段动力特性的有限元分析.中国铁道科学.2009,30(5):15-20
    86.杨广军,董晓马,李广慧,谢晓鹏.连续型浮置板的长度变化对轨道梁振动的影响.郑州大学学报.2008,29(3):113-116
    87.刘洪瑞,邹锦华,王荣辉。轨道交通橡胶浮置板式轨道结构动力设计参数研究.铁道科学与工程学报.2009,16(2):5-11
    88.邹锦华,王荣辉,魏德敏.橡胶浮置板无砟轨道过渡段动力学性能分析.铁道建筑.2010,3:82-85
    89.庄表中.随机振动入门.北京科学出版社,1981
    90.严隽髦,傅茂海.车辆工程.第三版.中国铁道出版社,2008
    91. X.B. Xiao, X.S. Jin, Z.F. Wen. Effect of Disabled Fastening Systems and Ballast on Vehicle Derailment. ASME Journal of Acoustic and Vibration,2007,129(2):217-229
    92. Zhai W.M., Cai C.B., Guo S.Z. Coupling Model of Vertical and Lateral Vehicle/Track Interactions. Vehicle System Dynamics.1996,26(1):61-79
    93. S. Timoshenko, D. H.Young, W.W.JR. Vibration Problems in Engineering (4th Edition). John Wiley & Sons, Inc. USA,1974
    94. S.G. Zhang, X.B. Xiao, Z.F. Wen, X.S. Jin. Effect of unsupported sleepers on wheel/rail normal load. Soil Dynamics and Earthquake Engineering.2008,28: 662-673
    95.彭国伦Fortran 95程序设计.中国电力出版社,2006
    96.金学松,刘启跃.轮轨摩擦学.中国铁道出版社,2004
    97.王开文.车轮接触点迹线及轮轨接触几何参数的计算.西南交通大学学报.1984, 1:89-99
    98.顾戌华.直线电机列车-桥梁系统动力响应与车辆走行性研究.北京交通大学硕士学位论文.2007
    99.高淑英,沈火明.线性振动教程.中国铁道出版社,2003
    100.朱伯芳.有限单元法原理与应用.第二版.中国水利水电出版社,1998
    101.余泽西,李成辉,王小韬.高速铁路线路过渡段动态不平顺研究.中国铁路.2009,4:55-57
    102.李成辉,万复光.高速铁路轨道位移波分析.铁道学报.1993,2:76-79
    103.肖新标,金学松,温泽峰.钢轨扣件失效对列车动态脱轨的影响.交通运输工程学报.2006,6(1):10-15
    104.肖新标,金学松,温泽峰.轨下支承失效对直线轨道动态响应的影响.力学学报.2008,40(1):67-78
    105.陈秀方.轨道工程.北京:中国建筑工业出版社,2005.
    106.向俊,杨桦,赫丹.轨枕悬空条件下的列车-轨道系统竖向振动响应研究.铁道科学与工程学报.2007,4(1):8-12
    107.张健,吴昌华,肖新标,温泽峰,金学松.轨枕空吊对轨枕动态性能的影响.西南交通大学学报.2010,45(2):203-208
    108.朱剑月,张艳.轨枕吊空对轨道结构动力性能的影响.中国铁道科学.2011,32(3):8-15
    109. Lundqvist A, Dahlberg T. Load impact on railway track due to unsupported sleepers. Journal of Rail and Rapid Transit,2005,219(2):67-77.
    110.李玲.车轮多边形化对直线电机车辆动力学行为的影响.西南交通大学硕士学位论文,2010
    111. Wheel and Rail Roughness Measuring System. Odegaard & Danneskiold-Samsoe A/S.仪器使用手册
    112.金学松,张雪珊,张剑,孙丽萍,王生武.轮轨关系研究中的力学问题.机械强度.2005,27(4):408-418
    113.金学松,郭俊,肖新标,温泽峰,周仲荣.高速列车安全运行研究的关键科学问题.工程力学.2009,26(增刊):8-22
    114.雷晓燕.高速列车诱发地面波与轨道强振动研究.铁道学报.2006,28(3):78-82
    115.雷晓燕.高轨道临界速度与轨道强振动研究.岩土工程学报.2006,28(3):419-422
    116. Ngai KW, Ng CF. Structure-borne noise and vibration of concrete box structure and rail viaduct. J Sound Vib,2002,255(2):281-297
    117. JENS C.O. NIELSEN, ROGER LUNDEN, ANDERS JOHANSSON, TORE VERNERSSON. Train-Track Interaction and Mechanisms of Irregular Wear on Wheel and Rail Surfaces. Vehicle System Dynamics,2003,40(1-3):3-54
    118.徐跃良.数值分析.西南交通大学出版社,2005
    119.王光钦,丁贵保,刘长虹,杨杰.弹性力学.中国铁道出版社,2004
    120.方安平,叶卫平Origin 8.0实用指南.机械工业出版社,2009
    121.陈才生.数学物理方程.东南大学出版社.2005
    122. Vigay K. Garg, Rao V. Dukkipati. Dynamics of railway vehicle systems. Acadmdic press,1984
    123. ANSYS中国ANSYS基本过程手册,1994
    124.博弈创作室.参数化有限元分析技术及应用实例.中国水利水电出版社,2004
    125.W.W.塞托著,胡宗武译.机械振动.煤炭工业出版社,1982
    126.雷晓燕,圣小珍.铁路交通噪声与振动.北京科学出版社,2004
    127.张志勇.精通Matlab 6.5.北京航空航天大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700