用户名: 密码: 验证码:
狭小通道内电子元器件的散热设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对某探测天线性能小样进行散热设计时,根据发热元器件在阵面内的分布特点,选用定点喷流冷却技术方案。介绍了等沿程阻力系数定点喷流管道和分支管道的设计理论,并通过计算程序得到了孔径和分支管道内径;进行了主管道进口静压与总风量关系实验和阵内温度实验;为进一步研究管道均匀送风规律,对分支管道送风进行数值计算,选用Spalart-Allmaras湍流模型,并将模拟与实验结果进行比较,发现两者相符,说明该湍流模型可以模拟管道送风;考虑定点喷流管道内沿程阻力系数变化,得到新的定点喷流管道,应用Spalart-Allmaras湍流模型对这两种定点喷流管道的孔口出风量进行数值计算,结果发现两种管道在设计条件下送风均匀性都不理想,原因在于孔口流量系数是一个沿程逐渐增大的变量,因此还需要考虑孔口流量系数的变化,经过推导,得到计算孔口面积的新公式,模拟结果显示修正后的管道送风均匀性明显得到改善;最后以文中的研究结论为基础,用MFC编写了均匀送风管道设计软件。
This paper introduces the heat-dissipating design of a certain small detecting antenna. According to the distribution characteristic of electronic components that release thermal energy in antenna, the plan of cooling technology with fixed-point jet flow is the best choice. Firstly, the design theory of fixed-point jet flow pipelines and the branch pipelines with constant resistance coefficient has been introduced, the apertures of the fixed-point jet flow pipelines and the inside diameters of the branch pipelines have been obtained through calculation program. As follow, the experiment of the relationship between the static pressure of the main pipeline inlet and total air volume and the temperature experiment in the antenna have been done. For further research on the law of the uniform ventilation, the air supply of the branch pipelines has been studied through numerical simulation with Spalart-Allmaras turbulent model. compared the simulated results with the experimental results,both of them are nearly identical, Which shows the turbulent model can simulate the air supply of pipeline. Concerned of the changes of the resistance coefficient along the fixed-point jet flow pipeline, new fixed-point jet pipeline has been obtained. The air volumes from the orifices of the two kinds of fixed-point jet pipelines are calculated with Spalart-Allmaras turbulent model, the uniformity is not ideal under design conditions. The reason lies in discharge coefficient of the orifices is not a constant, but is a variable that gradually increases along the way. So the change of discharge coefficient should be considered. A new formula about the area of orifice can be gained through deduction. The simulated results show that the uniformity of the pipeline which has been revised obviously becomes better. At last, based on the research conclusion of this paper, the software of Uniform Supply Air Duct has been completed with MFC.
引文
[1]姚寿广,马哲树,罗林等,电子电器设备中高效热管散热技术的研究现状及发展,华东船舶工业学院学报(自然科学版),2003年,第17卷第4期:9~11。
    [2]徐超,何雅玲,杨卫卫,现代电子器件冷却方法研究动态,制冷与空调,2003年,第3卷第4期:10~13。
    [3]余建祖,电子设备热设计及分析技术,北京:高等教育出版社,2002。
    [4]MIL-HDBK-217B Reliability prediction of electronic equipment.U S Dept Defense,Springfield,Va NTIS,1974.
    [5]陈旭,李元山,毕人良,巨型计算机热设计技术现状及趋势,电子工艺技术,2002年,第23卷第6期:231~235。
    [6]朱可,热管冷板在电子设备散热中的应用,江苏南京,南京航空航天大学,2007年。
    [7]寿荣中,何慧姗,飞行器环境控制,北京航空航天大学出版社,2004年。
    [8]李庆友,王文,周根明,电子元器件散热方法研究,电子器件,2005年,第28卷第4期:938~941。
    [9]王传声,张崎,朱咏梅,多芯片组件(MCM)的封装技术,微电子技术,2000年,第28卷第4期:40~45。
    [10]周德俭,吴兆华,覃匡宇,MCM热分析和热设计技术,电子工艺技术,1997年,第18卷第1期:11~14。
    [11]Robert E, Simons, The Evolution of IBM High Performance Cooling Technology ,IEEE PARTA,VOL.8, NO. 4, DECEMBER.1995.
    [12]Richard, Danielson etc, Cooling a Super fast Computer, Electronic Packaging& Production, July 1988, 44~45.
    [13]VAFAI K, WANG W. Analysis of flow and heat transfer characteristics of an asymmetrical flat plate heat pipe, International Journal of Heat and Mass Transfer, 1992, 35(9):2087~2099.
    [14]ZHU N, VAFAI K. Vapor and liquid flow in an asymmetrical flat plate heat pipe: a three-dimensional analytical and numerical investigation. International Journal of Heat and Mass Transfer .1998, 41(1):159~174.
    [15]ZHU N ,VAFAI K. Analytical modeling of the startup characteristics of asymmetrical flat plate and disk-shaped heat pipes, International Journal of Heat and Mass Transfer ,1998 ,41(17) :2619~2637.
    [16]WANG Y, VAFAI K. Transient characterization of flat plate heat pipe during startup and shutdown operation. International Journal of Heat and Mass Transfer .2000 ,43(15) :2641~2655.
    [17]WANG Y, VAFAI K. Experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe. International Journal of Heat and Mass Transfer .2000 ,43(15) :2657~2668.
    [18]KEN G T B .Study of multiple heat sources on a flat plate heat pipe using point source approach,ASME.Fluids Engineering Division .1999 .250:175~182.
    [19]李菊香,热管式均热平板的研究与应用,能源研究与利用,1996(3):30~33。
    [20]魏忠良,相控阵天线阵面的热设计,电子机械工程,2003年,第19卷第4期:15~18。
    [21]罗震,某舰载相控阵雷达热设计技术研究,电子机械工程,2005年第21卷第2期:18~21。
    [22]刘继鹏,王子健,某雷达电子设备结构热设计,火控雷达技术,2004年,第33卷:55~60。
    [23]谭宗啸,齐颖,热设计分析在雷达天线中的应用,空间电子技术,2005年,第3期:55~59。
    [24]黄春江,鞠文耀,赵玲,机载相控阵雷达阵面电源的热设计,现代雷达, 2005年,第27卷第6期:72~75。
    [25]孙爱群,某型雷达循环水冷却系统的设计,雷达与对抗,2007年第1期:63~68。
    [26]张兆光,固态有源相控阵雷达冷却技术探讨,现代雷达,1996年,第1期:88~94。
    [27]杨添润,孙爱群,大型密闭式机柜冷却空气消耗计算,雷达与对抗,2001年,(4):53~56。
    [28]刘天川,正压风道等断面等面积风口近似均匀送风计算,供热制冷,2003年,(2):51~54。
    [29]魏润柏,通风工程空气流动理论,北京:中国建筑工业出版社,1981。
    [30]杨晚生,张吉光,韩海涛,静压式均匀送风道送风机理分析,广东工业大学学报,2005年,22(1):110~114。
    [31]王福军,计算流体动力学分析——CFD软件原理与应用,北京:清华大学出版社,2004。
    [32]韩占忠,王敬,兰小平,FLUENT流体工程仿真计算实例与应用,北京:北京理工大学出版社,2006。
    [33]陶文铨,数值传热学(第2版),西安交通大学出版社,2001。
    [34]周志军,林震,周俊虎等,不同湍流模型在管道流动阻力计算中的应用和比较,热力发电,2007(1):18~22。
    [35]V.Yakhot,S.A.Orzag,Renormalization group analysis of turbulence:basic theory.J Scienct Comput.1:3-11,1986.
    [36]宁方飞,徐力平,Spalart-Allmaras湍流模型在内流流场数值模拟中的应用,工程热物理学报,2001年,22(3):304~306。
    [37]P.Spalart, S.Allmaras, An one-equation turbulence model for aerodynamic flows[R].Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics, 1992.
    [38]赵荣义,范存养,空气调节,北京:中国建筑工业出版社,1994。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700