用户名: 密码: 验证码:
装备保障网络优化设计问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代高技术战争中装备保障的重要性愈加突出,对保障系统的反应速度和保障能力要求越来越高。装备保障网络是以装备保障设施为依托,将各种保障资源按照一定的要求和原则合理部署而最终形成的一个网络化布局的保障体系,其优化设计是装备保障系统构建决策过程中的重要工作和关键环节,最终的决策方案对保障系统的服务能力、服务质量、运行成本都具有直接、重要的影响。
     论文结合装备保障问题的特殊性,借鉴现代供应链与物流理论、决策理论和规划方法等的研究成果,对装备保障网络优化设计问题进行深入研究,目的是结合不同的决策时机、决策目标以及不同的保障业务类型,探讨装备保障网络的优化设计方法。主要研究内容如下:
     (1)针对装备保障网络设计问题的多利益主体特性,提出了综合多属性决策的保障网络设计方法。该方法首先从安全性条件、交通条件、展开条件和水电能源条件以及气候、地质结构条件等方面抽取决策属性,建立评价指标体系,由装备保障部门据此对保障设施备选位置进行多准则评价,确定可用的设施备选址点集合;然后,综合考虑被保障单位对保障服务的实际要求(如对物资的品种、数量、以及保障时效性要求等)与保障部门的实际保障能力,建立网络设计决策的数学规划模型,以在备选点集合中选择建设保障设施,确立保障服务关系,并对应配置资源。该方法实现了多属性决策方法和数学规划方法的优势互补。
     (2)建立了装备战略保障设施的多级覆盖设施选址模型,提出了基于分布估计算法的模型求解算法。首先结合战略保障设施的作用和建设时机,分析总结了战略保障所具有的多源保障和多重时效性标准特征;然后,在现有的最大覆盖设施选址模型基础上对“覆盖”概念进行了有效地扩展,以使有限的设施及其储备的资源对潜在作战方向或作战区域的保障效果最大化为目标,建立了装备战略保障多级覆盖设施选址模型,并基于分布估计算法研究了模型求解方法;最后,通过计算示例进一步阐述了多级覆盖建模的思想,并用实验分析了算法参数对算法质量和效率的影响。
     (3)建立了战役供应保障网络设计模型,设计了模型的启发式求解框架。以既定战役作战任务和作战方案条件下的装备弹药供应保障问题为背景,对装备保障前进基地和补给站的设施选址问题进行了研究,建立了综合考虑战役供应保障系统的多层次性、多物资特性、多种保障方式综合运用等特性,以及装备保障的时效性要求、保障设施的容量限制和运力限制等因素的网络优化设计模型,模型目标是最大化能及时运达的作战物资对战役任务的支撑程度。然后基于禁忌搜索算法研究建立了模型的启发式求解框架,并以计算示例验证了该模型和算法的有效性。
     (4)以防御作战样式下陆军装甲装备的战役维修保障为背景,研究了战役装备维修保障网络优化设计问题。首先分析了该问题的特性,然后根据维修资源有限与否、资源有限条件下的资源配置方法以及保障单位与作战单位之间保障关系的确立规则,分六种情形建立了不同的决策环境下由维修基地和维修站两级设施构成的维修保障网络设计问题的数学规划模型,给出了模型的启发式求解过程。模型优化的目标是在保证装备维修保障的军事性目标,即损伤装备在各维修设施处的无等待修复率高于给定水平的前提下,优化保障设施的选址、设施与作战单位间的保障关系以及设施处的资源配置方案,以最小化系统的总期望成本,提高保障网络建设的经济性。最后用计算示例对所建立的优化模型和求解过程进行了验证。
     文章最后总结了全文的研究内容,并对进一步的研究工作进行了展望。
The prominent importance of equipment support in the high-tech war puts forward the higher requirement for the response velocity and support capability of the support system. The equipment support network is the basis to provide support service. All kinds of resources are deployed on the facilities in the network such as military bases and warehouses to constitute a support system according to rules and requirements. The design of the support network is an important aspect to construct an enquipments support system, and the decision has direct and crucial effect on the service ability, the quality of support, and the cost of the support system.
     Taking account of the particularity of equipment support problem, this thesis researches the optimal design problem of equipment support network based on the investigation results of supply chain and logistics, decision science and mathematics programming. It aims to find some methods to optimal design the support network in consideration of different decision opportunities, decision objects and different support operation types. The following are the major contributions of this dissertation:
     Firstly, the multi-attribute integrated support network design method is proposed, which considers the multi-stockholders characteristic of the problem. According to the method, the equipment support departments extract some attributes such as safety conditions, traffic conditions, deployment conditions, energy-obtaining ability, climate and geologic conditions to construct the indices. And the practicable sites can be found from the candidates by a multicriteria decision progress with the indices. Then the network optimal design mathematical programming models would be presented to locate the facilities, establish the service relationships and allocate resources. In the models the requirements for the support services of different supported units and the support ability of the support department are considered. This method takes the advantages of the multi-attribute decision method and of the planning method to reinforce each other.
     Secondly, the multi-quality-of-coverage facility location model for the strategic support facilities is presented, and its solution approach is provided. The multi sources and multi time limits characteristics of strategic support are analyzed according to the strategic support facilities’function and construction opportunity. Then the definition of‘covering’is extended based on the maximal covering location problem, and a multiple quantity-of-coverage facility location model is proposed to maximize the support effect of limited number of strategic support facilities to the potential conflict areas. In the model the multiple sources need of a demand point and the different time requirements to the sources when the services are from many facilities are typically considered. A heuristic based on Estimation of Distribution Algorithms is developed to solve the problem. Moreover, an illustrative example is given to explicate on the model, and the influences of the parameters to the algorithm’s quality and efficiency are given based on experiments.
     Thirdly, the combat logistics network optimal design model and its solution framework are investigated. The characteristics of the depots’location problem are analyzed with the background of ammunition supply problem in a compaign with the given mission and the combat project. A multi-commodity two-stage capacitated facility location-transportation model is proposed to maximize the support of the resources arrived timely to the combat. In the model the capacity limitation of the facilities, the transportation capability at the facilities, the support time requirements for different resources at different need points, and the multi-modal network flows have been taken into account. Then a solution approach based on Tabu Search algorithm is given, and the results demonstrate the validity of the model.
     Fourthly, the optimal design problem of cavalryman armaments repair network with 2-level repair facilities of repair depots and the repair base under the defence combat pattern is considered. The characteristics of the problem are discussed. According to whether the servers are limited or not, whether the server distribution plan could be adjusted or not, and whether the service relationships between combat units and repair facilities have been assigned in advance or not, it’s devided into 6 sub-problems. Then the integrated optimization models are proposed to find locations for the repair depots, to find the best service relationships between combat units and the depots, and to decide the number of servers and base stock levels which should be allocated at the repair facilities for different decision conditions, so that the total expected cost to construct and operate the support system is minimized and the probabilities that damaged armaments could be repaired by the facilities without waiting are above some specified levels. At the same time the heuristics for the models are proposed. The experimental results verify the models and algorithms.
     Finally, remarks are made for all researches and some plans for future work are presented.
引文
[1]王进发,李励.军事供应链管理-支持军事行动的科学与艺术[M].北京:国防大学出版社,2004.
    [2]甘茂治,康建设,高崎.军用装备维修工程学[M].北京:国防工业出版社,2005.
    [3]张玉良主编.战役学[M].北京:国防大学出版社,2006.
    [4]孟宪民.现代军事评论:作战保障的发展变化[N/OL].中国国防报. 2005.8.21[2008.1.20]. http://mil.news.sina.com.cn/2005-8-21/2016314666.html.
    [5]邓伟,倪明仿.现代军事物流经典案例赏析—海湾战争美军物流特点回顾与总结[J].物流科技,2004,27(4):67-69.
    [6]蓝田玉文摘.美国军事指挥机构[EB/OL]. http://www.lantianyu.net/zblog/post/8.html,2008.3.29.
    [7] Debbie B. GCSS Operational architecture. http://www.stc-online.org/cd-ron/1998/ speaker/summary/borovit.html,1998.
    [8] Major K M, Barnes J W, Brigantic R T. A review of strategic mobility models supporting the defense transportation system[EB/OL]. http://www.me.utexas.edu/~barnes/research/files/update_06_2003/RSMMSDTS.pdf,2003.
    [9] Reitter N L. A decision support system for sea-based sustainment operations[R]. http://handle.dtic.mil/100.2/ADA371745,1999.
    [10] Consolidated air mobility planning system(CAMPS).http://jtic.fhu.disa.mil/gccs-iop/interfaces/camps_html,2003.
    [11]王国华主编.中国现代物流大全:现代物流总论[M].北京:中国铁道出版社. 2004.
    [12]龚延成.战时军事物流系统决策理论与方法研究[D].长安大学博士学位论文.2004.
    [13]王宗喜.军事物流概论[M].北京:海潮出版社,1994.
    [14]王宗喜,徐东,夏文祥.运用现代物流理论,推动军事后勤发展[J].中国军事科学,2003,16(2):106-110.
    [15]鲁晓春,詹荷生.关于配送中心重心法选址的研究[J].北方交通大学学报, 2000,24(6):108-110.
    [16]王东胜.地域评估选优模型[C].姜永兴主编论文集《军事运筹学研究与创新》.北京:军事科学出版社,2000:339-402.
    [17]王东胜.库所评估选优模型[C].姜永兴主编论文集《军事运筹学研究与创新》.北京:军事科学出版社,2000:656-658.
    [18]翁东风,费奇,刘晓静等.高技术条件下军事设施选址多目标决策[J].军事运筹与系统工程,2004,18(2):53-58.
    [19] Jr Miravite Alexander, Charles F Schlegel. Global En Route Basing Infrastructure Location Model[R].Air Force Inst of Tech Wright-Patterson AFB OH School of Engineering and Management,2006.
    [20]方磊,何建敏.综合AHP和目标规划方法的应急系统选址规划模型[J].系统工程理论与实践.2003,12(12):116-120.
    [21] Weber A. On the location of industries[M]. Chicago:University of Chicago Press, 1929.
    [22] Hakimi S L. Optimum locations of switching centers and the absolute centers and medians of a graph[J].Operations Research,1964,12(3):450-459.
    [23] Hale T Trevor. Hale’s location science references[EB/OL].http://www.gater.dt.uh.edu/~halet/thlocation.html,2008-3-28.
    [24] Brandeau M L, Chui S S. An overview of representative problems in location research[J].Management Science,1989,35(6):645-674.
    [25] Hamacher H W, Nickel S. Classification of location models[J].Location Science, 1998,6(1):229-242.
    [26] Klose A, Drexl A. Facility location models for distribution system design[J]. European Journal of Operational Research,2004,162(1):4-29.
    [27] Hongzhong Jia, Fernando Ordó?ez, Maged Dessouky. A modeling framework for facility location of medical services for large-scale emergencies[J].IIE Transactions,2007,39(1):41-55.
    [28] Toregas C, Swain R, ReVelle C,et al. The location of emergency service facilities[J]. Operations Research,1971,19(6):1363-1373.
    [29] Plane D R, Hendrick T E. Mathematical programming and the location of fire companies for the Denver fire department[J].Operations Research,1977,25(4): 563-578.
    [30] Daskin M S, Stern E H. A hierarchical objective set covering model for emergency medical service vehicle deployment[J].Transportation Science,1981, 15(2):137-152.
    [31] Church R L, ReVelle C. The maximal covering location problem[J].Papers of the Regional Science Association,1974,32(1):101-118.
    [32] Owen S H, Daskin M S. Strategic facility location: a review[J].European Journal of Operational Research,1998,111(3):423-447.
    [33] Church R L, Meadows B. Location modeling using maximum service distance criteria[J].Geographical Analysis,1979,11(6):358-373.
    [34] Minieka E. The centers and medians of a graph[J].Operations Research,1977, 25(4):641-650.
    [35] Kariv O, Hakimi S L. An algorithmic approach to network location problems,Part1:The p-centers[J].SIAM Journal Applied Mathematics,1979,37(1):513-538.
    [36] Kariv O, Hakimi S L. An algorithmic approach to network location problems:Part II:The p-medians[J].SIAM Journal of Applied Mathematics,1979,37(3):539-560.
    [37] Daskin M S. Network and discrete location: models, algorithms and applications[M]. New York:Wiley Interscience,1995.
    [38] Rolland E, Schilling D A, Current J R. An efficient tabu search procedure for the p-median problem[J].European Journal of Operational Research,1996,96(2):329- 342.
    [39] Murray A T,Church R L. Applying simulated annealing to location-planning Models[J].Journal of Heuristics,1996,2(1):31-53.
    [40] Osman A L P, Erkut E. An efficient genetic algorithm for the p-median problem[J]. Annals of Operations Research,2003,122(1):21-42.
    [41] Lorena L A N, Senne E L F. A column generation approach to capacitated p-median problems[J].Computers and Operations Research,2004,31(6):863-876.
    [42] Enrique Alba, Enrique Domínguez. Comparative analysis of modern optimization tools for the p-median problem[J].Stat Comput,2006,16(3):251-260.
    [43]秦固.基于蚁群优化的多物流配送中心选址算法[J].系统工程理论与实践.2006,26(4):120-124.
    [44] Caruso C, Colorni A, Aloi L. Dominant, an algorithm for the p-center problem[J]. European Journal of Operational Research,2003,149(1):53-64.
    [45] Megiddo N, Zemel E, Hakimi S L. The maximum coverage location problem[J]. SIAM Journal on Algebraic and Discrete Methods,1983,4(2):253-261.
    [46] Balas E, Carrera M C. A dynamic subgradient-based branch-and-bound procedure for set covering[J]. Computers and Operations Research,1996,44(6):875-890.
    [47] Lorena L A N, Lopes F B. A surrogate heuristic for set covering problems[J]. European Journal of Operational Research,1994,79(1):138-150.
    [48] Haddadi S. Simple Lagrangian heuristic for the set covering problem[J].European Journal of Operational Research,1997,97(1):200-204.
    [49] Solar M, Parada V, Urrutia R. A parallel genetic algorithm to solve the set-covering problem[J]. Computers and Operations Research,2002,29(9):1221- 1235.
    [50] Monfroglio A. Hybrid heuristic algorithms for set covering[J].Computers and Operations Research,1998,25(6):441-455.
    [51] Galvao R D, Espejo L G A, Boffey B. A comparison of Lagrangean and surrogate relaxations for the maximal covering location problem[J].European Journal of Operational Research,2000,124(2):377-389.
    [52] Marvin A A Jr, Sukran N K, Basheer M K. An empirical comparison of Tabu Search, Simulated Annealing, and Genetic Algorithms for facilities locationproblems[J]. International Journal of Production Economics,2006,103(2):742– 754.
    [53]杨丰梅,华国伟,邓猛等.选址问题研究的若干进展[J].运筹与管理,2005,14(6): 1-7.
    [54]黎青松,杨伟,曾传华.中心问题与中位问题的研究现状[J].系统工程,2005, 23(5):11-16.
    [55] Oded Berman, Dmitry Krass. The generalized maximal covering location problem[J]. Computers and Operations Research,2002,29(6):563-581.
    [56] Oded Berman, Dmitry Krass, Zvi Drezner. The gradual covering decay location problem on a network[J].European Journal of Operational Reseach,2003,151(3): 474-480.
    [57] Orhan Karasakal, Esra K.Karasaka. A maximal covering location model in the presence of partial coverage[J].Computers and Operations Research,2004,31(9): 1515-1526.
    [58] Othman I A, Graham K R. Extensions to emergency vehicle location models[J]. Computers and Operations Research,2006,33(9):2725-2743.
    [59]马云峰,杨超,张敏等.基于时间满意度的最大覆盖选址问题[J].中国管理科学.2006,14(2):45-51.
    [60] Dawson M C. Minimizing security forces response times through the use of facility location methodologies[D].Wright-Patterson Air Force Base,Ohio:Air Force Institute of Technology.Master of Science in Logistics Management,2005.
    [61] Güven? ?ahin, Haldun Süral. A review of hierarchical facility location models[J]. Computers & Operational Research,2007,34(8):2310-2331.
    [62] Erenguc S S, Simpson N, Vakharia A J. Integrated production/distribution planning in supply chains:an invited review[J].European Journal of Operational Research,1999,115(2):219-236.
    [63] Geoffrion A M, Powers R F. 20 years of strategic distribution system design-an evolutionary perspective[J].Interfaces,1995,25(5):105-127.
    [64] Goetschalckx M, Vidal C J, Dogan K. Modeling and design of global logistic systems:A review of integrated strategic and tactical models and design algorithms[J].European Journal of Operational Research,2002,143(1):1-18.
    [65] Sarmiento A M, Nagi R. A review of integrated analysis of production-distribution systems[J].IIE Transactions,1999,31(11):1061-1074.
    [66] Thomas D, Griffin P. Coordinated supply chain management[J].European Journal of Operational Research,1996,94(1):1-15.
    [67] Akinc U, Khumawala B M. An efficient branch and bound algorithm for capacitated warehouse location problem[J].Management Science,1977,23(3):585- 594.
    [68] Barcelo J, Casanovas J. A heuristic Lagrangean algorithm for the capacitated plant location problem[J].European Journal of Operational Research,1984,15(2):212- 226.
    [69] Geoffrion A M, McBride R. Lagrangean relaxation applied to capacitated facility location problem[J].IIE Transactions,1978,10(1):40-55.
    [70] Nauss R M. An improved algorithm for capacitated facility location problem[J]. The Journal of the Operational Research Society,1978,29(12):1195-1201.
    [71] Jacobson S K. Heuristics for the capacitated plant location model[J].European Journal of Operational Research,1983,12(2):253-261.
    [72] Feldman E, Lehrer F A, Ray T L. Warehouse locations under continuous economies of scale[J].Management Science,1966,2(1):121-132.
    [73] Sridharan R. The capacitated plant location problem[J].European Journal of Operational Research,1995,87(2):203-213.
    [74] Klincewicz J C, Luss H. A Lagrangian relaxation heuristic for capacitated facility location with single source constraints[J].The Journal of the Operational Research Society, 1986,37(5):495-500.
    [75] Sridharan R. A Lagrangian heuristic for the capacitated plant location problem with single source constraints[J].European Journal of Operational Research,1993, 66(3):305-312.
    [76] Ronnqvist M, Tragantalerngsak S, Holt J. A repeated matching heuristic for the single-source capacitated facility location problem[J].European Journal of Operational Research,1999,166(1):51-68.
    [77] Kaj Holmberg, Mikael R?nnqvist, Di Yuan. An exact algorithm for the capacitated facility location problems with single sourcing[J].European Journal of Operational Research,1999,113(3):544-559.
    [78] Tragantalerngsak S, Holt J, R?nnqvist M. An exact method for the two-echelon, single-source,capacitated facility location problem[J].European Journal of Operational Research,2000,123(3):473-489.
    [79] Warzawski A. Multi-dimensional location problems[J].Operational Research Quarterly,1973,24(1):165-179.
    [80] Neebe A W, Khumawala B M. An improved algorithm for the multi-commodity location problem[J].Journal of Operational Management,1981,32(2):143-159.
    [81] Barnhart C, Sheffi Y. A network-based primal-dual heuristic for the solution of multicommodity network flow problems[J].Transportation Science,1993,27(2): 102-117.
    [82] Crainic T G. Dual-ascent procedures for multicommodity location-allocation problems with balancing requirements[J].Transportation Science,1993,27(2):90- 101.
    [83] Aggarwal A K, Oblak M, Vemuganti R R. A heuristic solution procedure formulticommodity integer flows[J].Computers and Operations Research,1995, 22(10):1075-1088.
    [84] Benders J F. Partitioning procedures for solving mixed-variables programming problems[J].Numerische Mathematik,1962,4(3):238-252.
    [85] Geoffrion A M, Graves G W. Multi-commodity distribution system design by Benders decomposition[J].Management Science,1974,20(5):822-844.
    [86] Lee C Y. An optimal algorithm for the multiproduct,capacitated facility location problem with a choice of facility type[J].Computers and Operations Research, 1991,18(2):167-182.
    [87] Pirkul H, Jayaraman V. Production,transportation,and distribution planning in a multi-commodity tri-echelon system[J].Transportation Science,1996,30(4):291- 302.
    [88] Jayaraman V, Pirkul H. Planning and coordination of production and distribution facilities for multiple commodities[J].European Journal of Operational Research, 2001,133(2):394-408.
    [89] Hindi K S, Basta T. Computationally efficient solution of a multi-product, two-stage distribution-location problem[J].The Journal of the Operations Research Society,1994,45(13):1316-1323.
    [90] Pirkul H, Jayaraman V. A multi commodity,multi-plant,capacitated facility location problem:formulation and efficient heuristic solution[J].Computers and Operations Research,1998,25(10):869-878.
    [91] Narula S C. Hierarchical location problems:a classification scheme[J].European Journal of Operational Research,1984,15(1):93–99.
    [92] Tragantalerngsak S, Holt J, Ronnqvist M. Lagrangian relaxation heuristic for two-echelon, single source, capacitated facility location problem[J].European Journal of Operational Research,1997,102(3):611-625.
    [93] Klose A. An LP-based heuristic for two-stage capacitated facility location problems[J].The Journal of the Operational Research Society,1999,50(1):157-166.
    [94] Klose A. A lagrangian relax-and-cut approach for two-stage capacitated facility location problems[J].European Journal of Operational Research,2000,126(2):408- 421.
    [95] Marin A, Pelegrin B. A branch-and-bound algorithm for the transportation problem with location of p-transshipment points[J].Computers and Operations Research,1997,24(7):659-678.
    [96] Marin A,Pelegrin B. Applying lagrangian relaxation to the resolution of two-stage location problems[J].Annals of Operations Research,1999,86(1):179-198.
    [97] Ro H, Tcha D. A branch-and-bound algorithm for the two-level uncapacitated facility location problem[J].European Journal Operational Research,1984,18(3): 349-358.
    [98] Keskin B B,üster H. A scatter search-based heuristic to locate capacitated transshipment points[J].Computers and Operations Research,2007,34(10):3112- 3125.
    [99] Syarif A, Yun Y, Gen M. Study on multi-stage logistic chain network:a spanning tree-based genetic algorithm approach[J].Computers and Industrial Engineering, 2002,43(1):299-314.
    [100] Lee C Y. The multi-product warehouse location problem: applying a decomposition algorithm[J].International Journal of Physical Distribution and Logistics Management,1993,23(6):3-13.
    [101] Lee C Y. A cross decomposition algorithm for a multi-product, multi-type facility location problem[J]. Computers and Operations Research,1993,20(5): 527-540.
    [102] Keskin B B,üster H. Meta-heuristic approaches with memory and evolution for a multi-product production/distribution system design problem[J]. European Journal of Operational Research,2007,182(2):663-682.
    [103] Deniz ?zdemir, Enver Yücesan, Yale T Herer. Multi-location transshipment problem with capacitated transportation[J].European Journal of Operational Research,2006,175(1):602-621.
    [104]张长星.供应链中分销网络设计模型及算法研究[D].大连理工大学博士学位论文,2004.
    [105]赵晓煌.供应链中二级分销网络设计方法的研究[D].东北大学博士学位论文,2002.
    [106]李延晖.基于供应链多阶响应周期的配送中心选址模型研究[D].华中科技大学博士学位论文,2004.
    [107]代颖.再制造物流网络优化设计问题研究[D].西南交通大学博士学位论文, 2006.
    [108] Louveaux F V. Stochastic location analysis[J].Location Science,1993,1(2):127- 154.
    [109] Lawrence V Snyder. Facility location under uncertainty: a review[R]. Technical Report (Number:04T-015).Department of Industrial & Systems Engineering, Lehigh University,2004.
    [110] Rosenhead J, Elton M, Gupta S K. Robustness and optimality as criteria for strategic decisions[J].Operational Research Quarterly,1972,23(4):413-431.
    [111] Eduardo Conde. Minmax regret location-allocation problem on a network under uncertainty[J].European Journal of Operational Research,2007,179(3):1025-1039.
    [112] Carbone R. Public facilities location under stochastic demand[J]. INFOR,1974, 12(3):261-270.
    [113] J. Zhou Ph.D, B. Liu Ph.D. Modeling capacitated location-allocation problem with fuzzy demands[J].Computers & Industrial Engineering,2007,53(3):454-468.
    [114] Larson R C. A hypercube queuing model for facility location and redistricting in urban emergency services[J].Computers and Operations Research,1974(1),1:67- 95.
    [115] Daskin M S. A maximum expected covering location problem:Formulation, properties and heuristic solution[J].Transportation Science.1983,17(1):48-70.
    [116] Batta R, Dolan J M, Krishnamurthy N N. The maximal expected covering location problem:Revisited[J].Transportation Science,1989,23(4):277-287.
    [117] ReVelle C, Hogan K. The maximum availability location problem[J]. Transportation Science,1989,23(1):192-200.
    [118] Fernando Y Chiyoshi, Roberto D Galv?o, Reinaldo Morabito. A note on solutions to the maximal expected covering location problem[J].Computers and Operations Research,2002,30(1):87-96.
    [119] Roberto D Galv?o, Fernando Y Chiyoshi, Reinaldo Morabito. Towards unified formulations and extensions of two classical probabilistic location models[J]. Computers and Operations Research,2005,32(1):15-33.
    [120] Berman O, Larson R, Chiu S S. Optimal server location on a network operating as an M/G/1 queue[J].Operations Research,1985,12(4):746-771.
    [121] Berman O, Larson R, Parkan C. The stochastic queue p-median location problem[J]. Transportation Science,1987,21(2):207-216.
    [122] Batta R. The stochastic queue median over a finite discrete set[J].Operations Research,1989,37(4):648-652.
    [123] Brandeau M L, Chiu S S. A center location problem with congestion[J].Annals of Operations Research,1992,40(1):17-32.
    [124] Brandeau M L, Chiu S S. A unified family of single-server queueing location models[J].Operations Research,1990,38(6):1034-1044.
    [125] Brandeau M L, Chiu S S. Facility location in a user-optimizing environment with market externalities:Analysis of customer equilibria and optimal public facility locations[J].Location Science,1994,2(3):129-147.
    [126] Marianov V, ReVelle C. The queuing probabilistic location set covering problem and some extensions[J].Socio-Economic Planning Sciences,1994,28(30):167-178.
    [127] Marianov V, ReVelle C. The queuing maximal availability location problems:a model for the sitting of emergency vehicles[J].European Journal of Operational Research,1996,93(1):110-120.
    [128] Marianov V, Serra D. Probabilistic maximal covering location-allocation for congested system[J].Journal of Regional Science.1998,38(2):401-424.
    [129] Marianov V, Serra D. Location-allocation of multiple-server service centers with constrained queues or waiting times[J].Annals of Operations Research,2002, 111(1):35-50.
    [130] Marianov V, Serra D. Location models for airline hubs behaving as M/D/c queues[J]. Computers and Operations Research,2003,30(7):983-1003.
    [131] Brimberg J, Mehrez A. Allocation of queuing facilities using a minisum criterion[J]. Location Science,1997,5(2):89-101.
    [132] Martin Desrochers, Patrice Marcotte, Mihnea Stan. The congested facility location problem[J].Location Science,1995,3(1):9-23.
    [133] Segall R S. Some quantitative methods for determining capacities and locations of military emergency medical facilities[J].Applied Mathematical Modelling,2000, 24(5):365-389.
    [134] Mandell M. Covering models for two-tiered emergency medical services systems[J]. Location Science,1998,6(1):355-368.
    [135] Marianov V, Serra D. Hierarchical location-allocation models for congested systems[J]. European Journal of Operational Research,2001,135(1):195-208.
    [136] Van Ommeren J C W, Bumb A F, Sleptchenko A V. Locating repair shops in a stochastic environment[J].Computers and Operations Research,2006,33(6):1575- 1594.
    [137] Hassan Shavandi, Hashem Mahlooji. A fuzzy queuing location model with a genetic algorithm for congested systems[J].Applied Mathematics and Computation,2006,181(1):440-456.
    [138] Brian Boffey et al. A review of congestion models in the location of facilities with immobile servers[J].European Journal of Operational Research,2007,178(3): 643-662.
    [139] Sheppard E S. A conceptual framework for dynamic location-allocation analysis[J]. Environment and Planning,1974,6(5):547-564.
    [140] Serra D, Ratick S, ReVelle C. The maximum capture problem with uncertainty[J]. Environment and Planning-B,1996,26(1):49-59.
    [141] Serra D, Marianov V. The p-median problem in a changing network: the case of Barcelona[J]. Location Science,1998,6(1):383-394.
    [142] Gang Chen, Daskin M S, Zuo-Jun Shen,et al. A new model for stochastic facility location modeling[R]. Research report(number:2005-8). Department of Industrial and Systems Engineering,University of Florida, Gainesville, FL 32611.
    [143] Snyder L V. Supply chain robustness and reliability: models and algorithms[D]. Ph.D Dissertation. Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208. 2003.
    [144] Eiselt H A, Gendreau M, Laporte G. Location of facilities on a network subject to a single-edge failure[J].Networks,1992,22(1):231-246.
    [145] Bundschuh M, Klabjan D, Thurston D L. Modeling robust and reliable supply chains[R], working paper, University of Illinois at Urbana-Champaign,2003.
    [146] Ballou R H. Dynamic warehouse location analysis[J]. Journal of MarketingResearch,1968,5(3):271-286.
    [147] Cem Canel, Basheer M Khumawala, Japhett Law, et al. An algorithm for the capacitated, multi-commodity multi-period facility location problem[J].Computers and Operations Research,2001,28(5):411-427.
    [148] Melo M T, Nickel S, Saldanha da Gama F. Dynamic multi-commodity capacitated facility location:a mathematical modeling framework for strategic supply chain planning[J].Computers and Operations Research,2005,33(1):181-208.
    [149]牟伦英,黄丹.物流网络节点的动态选址研究[J].工业工程与管理.2005,10(2): 102-105.
    [150] Hokey Min, Vaidyanathan Jayaraman, Rajesh Srivastava. Combined location-routing problems: a synthesis and future research directions[J].European Journal of Operational Research,1998,108(1):1-15.
    [151] Gábor Nagy, Sa?d Salhi. Location-routing: issues, models and methods[J]. European Journal of Operational Research.2007,177(2):649-672.
    [152]汪寿阳,赵秋红,夏国平.集成物流管理系统中的定位-运输路线安排问题的研究[J].管理科学学报,2000,3(2):69-75.
    [153]张潜,高立群,刘雪梅等.定位-运输路线安排问题的两阶段启发式算法[J].控制与决策,2004,19(7):773-777.
    [154] Erlebacher S J, Meller R D.The interaction of location and inventory in designing distribution systems[J].IIE Transactions,2000,32(2):155-166.
    [155] Daskin M S, Coullard C R. An inventory-location model: formulation, solution algorithm and computational results[J].Annals of Operations Research,2002, 110(1):83-106.
    [156] H. Edwin Romeijn, Jia Shu, Chung-Piaw Teo. Designing two-echelon supply networks[J]. European Journal of Operational Research,2007,178(2):449-462.
    [157]罗纳德.H.巴罗著,王晓东、胡瑞娟等译.企业物流管理—供应链的规划组织和控制[M].北京:机械工业出版社,2002.
    [158]王慧.军事物流管理理论与运作模式研究[D].北方交通大学博士学位论文, 2000.
    [159]张衡,花兴来.基于马尔科夫链的机动保障分队选址模型[J].军事运筹与系统工程,2006,20(3):35-38.
    [160]周晓宇,彭希文,安卫平著.联合作战新论[M].北京:国防大学出版社,2000.
    [161]郭梅初主编.高技术局部战争论[M].北京:军事科学出版社,2003.
    [162]徐宗昌主编.装备保障性工程与管理[M].北京:国防工业出版社,2006.
    [163]徐勇,徐国成,耿卫东主编.高技术条件下陆军战役学[M].北京:军事科学出版社,2003
    [164]姜大立,王丰,张剑芳等.军事物流系统模型与应用[M].北京:中国物资出版社,2006.
    [165]岳超源.决策理论与方法[M].北京:科学出版社,2003.
    [166]孙秀德.战略后勤学[M].北京:国防大学出版社,1991年第二版.
    [167]中国人民解放军后勤部.外军后勤战例选编:苏军白俄罗斯战役后勤保障[M]. 1982.
    [168]周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124.
    [169] Larranaga P, Lozano J A. Estimation of distribution algorithms: a new tool for evolutionary computation[M]. Boston: Kluwer Academic Publishers.2002.
    [170] Zhang Q, Mühliebei H. On the convergence of a class of estimation of distribution algorithms[J].IEEE Transation on Evolutionary Computation,2004,8(2): 127-136.
    [171]张志涌等编著.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003.
    [172]邢文讯,谢金星.现代优化计算方法(第二版)[M].北京:清华大学出版社,2005.
    [173] http://www.ilog.cn/products/cplex/index.php.
    [174]傅攀峰,罗鹏程,周经纶.对武器装备体系效能评估的几点看法[J].系统工程学报,2006,21(5):548-552.
    [175]唐应辉,唐小我.排队论-基础与分析技术[M].北京:科学出版社,2006.
    [176] Avsar Z M, Zijm W H M. Resource-constrained two-echelon inventory models for repairable item systems[R].Department of Applied Mathematics,University of Twente,Enschede,Netherlands,2000.
    [177]张子丘,王建平主编.装备技术保障概论[M].北京:军事科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700