用户名: 密码: 验证码:
无烟煤粉循环流化床预热燃烧和NO_x生成试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电力工业发展迅速,发电机组在往大容量和大机组方向发展,污染物排放标准更加严格。电力工业对煤粉燃烧提出更高要求:燃烧稳定、低污染、适应负荷变化。电力工业发展导致优质动力煤供应趋紧,而无烟煤在我国储量丰富,占火力发电的比重将越来越高。无烟煤难以着火、难以稳燃、难以燃尽的特性,导致燃用无烟煤的锅炉存在燃烧效率低、NOx排放高以及低负荷下燃烧不稳等问题。
     本论文提出了将无烟煤粉在进入燃烧室燃烧前先经过循环流化床在低空气当量比下预热的新工艺,并描述了对此新工艺开展的一系列试验研究。无烟煤粉在循环流化床内经过加热、挥发分析出、部分气化、部分燃烧等物理化学过程,发生粒径减小、比表面积增大、总孔体积增大、温度超过800℃等变化,预热后的燃料再进入燃烧室燃烧,燃烧稳定,NOx排放低。
     设计建造了30kW无烟煤粉循环流化床预热燃烧试验系统。循环流化床提升管的直径为90mm、高度为1500mm,下行燃烧室的直径为260mm、高度为3000mm。
     在试验系统上,对我国最典型的动力无烟煤——阳泉煤进行了一系列改变燃烧控制参数和空气分级参数的试验。结果表明:采用预热后燃烧的工艺,可以使挥发分含量仅6.74%的无烟煤在循环流化床预热到800℃以上;预热后的高温燃料在下行燃烧室燃烧具有良好的稳定性和温度分布均匀性,下行燃烧室最大温差低于200℃;预热后的高温燃料中的颗粒粒径比加入循环流化床的无烟煤粉粒径显著减小,50%切割粒径d50从82μm降低到19μm,比表面积显著增大,从4.9m2/g增大到111.0m2/g,总孔体积也明显增加,从0.014cm3/g提高到0.096cm3/g;预热产生的烟气中包含部分可燃气体,换算到干冷状态下的低位发热量为1.53MJ/Nm3;减小加入循环流化床的无烟煤粉粒径,有利于提高燃烧效率;只要总过量空气系数和预热温度在合理范围内,改变这两个参数对无烟煤粉的燃烧特性影响不大;阳泉无烟煤粉在本试验台上的燃烧效率达到94.17%。
     预热燃料在下行燃烧室燃烧,燃料N向NOx的转化率低于32%,尾部烟气排放NOx浓度不高于400mg/m3;随着加入循环流化床无烟煤粉粒径的减小、还原区空气当量比的增大以及燃料在还原区停留时间的缩短,尾部烟气NOx排放增大;系统总过量空气系数对NOx排放浓度的影响不大。
With the rapid development of electric power industry in China, generator sets are required to be developed of bigger capacity and lower emission level. Thus some higher requirements of coal combustion were put forward, such as burning stability, low pollution and flexibility of boiler load variation. Electric power industry development also leads to the lack of high quality power coal. Since the anthracite coal reserves in China are large, it can be seen that the percentage of anthracite in thermal power plant fuel will be increasing continuously. However, anthracite has some intrinsic problems for combustion. It is difficult to ignite, to combust stably and to burn out. Such features will make the boiler, which burning anthracite, experiences low combustion efficiency, high NOx emissions and unstable combustion in low boiler load.
     A new technology based on pulverized coal preheated by circulating fluidized bed (CFB) was proposed in this thesis. In the CFB, the properties of pulverized anthracite coal changed through some physical and chemical reactions, such as friction, devolatile, pyrolysis and partial combustion. These changes of property include diameter of pulverized anthracite coal decreasing, specific surface area increasing, pore volume increasing, temperature increasing up to800℃, which are advantaged to stable combustion. The preheated pulverized anthracite entered the combustion chamber to combust, with low NOx emissions.
     A30kW bench-scale rig of pulverized anthracite combustion in a down-fired combustion chamber (DFCC) was developed. The CFB riser has a diameter of90mm and a height of1,500mm. The down-fired combustion chamber has a diameter of260mm and a height of3,000mm.
     A series of experiments were carried out by the parameters variation of combustion and air-staged. The results showed that Yangquan anthracite with volatile as air dry basis6.74%can be preheated up to800℃in CFB. The combustion of preheated pulverized anthracite was stable and uniform with the maximum temperature difference less than200℃; the size of preheated pulverized anthracite significantly decreased, the50%cut size decreased from82μm to19μm after preheating. The specific surface area increased from4.9m2/g to111.0m2/g, and the pore volume increased from0.014cm3/g to0.096cm3/g. The gas generated in preheating process included combustible gas, whose net calorific value is1.53MJ/Nm3. Combustion efficiency increased when the size of pulverized anthracite feed into the CFB decreased. As long as the variations of excess air ratio and temperature of preheated pulverized anthracite were in a reasonable scope, these two parameters have little impact on combustion efficiency. Combustion efficiency of Yangquan pulverized anthracite in this30kW bench-scale rig was94.17%.
     As a result of air-staged combustion, the conversion ratio of fuel-N to NOx was less than32%, and the NOx concentration was less than400mg/m3. The NOx concentration increased with the size of pulverized anthracite decreased, air ratio in the reducing zone increased and the residence time shortened. The excess air ratio has little effect on NOχ concentration.
引文
[1]BP Statistical Review of Word Energy [R]. London: British Petroleum, 2010.
    [2]金红光,温室气体CO2减排的紧迫性和我们的对策[R].北京:中国科学院工程热物理研究所,2006.
    [3]国家环境保护总局,国家质量监督检验检疫总局.GB13223-2003火电厂大气污染物排放标准[M].北京;中国环境科学出版社.2003.
    [4]环境保护部,国家质量监督检验检疫总局.GB13223-2011火电厂大气污染物排放标准[M].北京;中国环境科学出版社.2011.
    [5]李禾.我国二氧化硫“十一五”减排目标提前实现[N].科技日报,2010-1-27.
    [6]刘孜,易斌,高晓晶等.我国火电行业氮氧化物排放现状及减排建议[J].环境保护,2008,16(7-10.
    [7]2009年中国无烟煤市场研究及预测报告[R].太原:山西汾渭能源开发咨询有限公司,2009.
    [8]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算[M].北京:科学出版社,2003.
    [9]白少林,李宗绪,张建生等.提高大型低挥发分煤锅炉运行经济性研究[J].中国电力,2006,39(9):79-83.
    [10]任官平,朱法华.燃煤电厂启停和低负荷稳燃耗油及烟尘排放现状与对策[J].环境保护,2006,6(44-46.
    [11]徐旭常,曾瑞良.预燃室中煤粉火焰稳定原理[J].动力工程,1987,6(
    [12]徐旭常,施学贵.煤粉火焰稳定原理——“三高区”原理的实验验证和数值模拟分析[J].锅炉技术,1994,25(1):2-7.
    [13]贾臻,郑谋生,郑伯苍等.煤粉浓淡分流及分路燃烧装置[P]:中国,91217302.5.
    [14]秦裕琨,孙绍增,邢春礼等.一种浓缩煤粉燃烧器[P]:中国,92224103.1.
    [15]张海,吕俊复,徐秀清等.水平浓淡富集型直流煤粉燃烧器[P]:中国,200620119026.9.
    [16]杨定华,吕俊复,张海等.富集型燃烧器的原理与应用[J].动力工程,2008,28(1):45-49.
    [17]张海,徐秀清,曾瑞良等.富集型燃烧器及多重富集型燃烧器研究[J].锅炉技术,2004,35(3):23-27.
    [18]陈世英,刘贵苏,曾汉才等.美国CE-WR型燃烧器稳燃机理的探讨[J].动力工程,1995,15(2):15-19.
    [19]王纪宏.多级浓缩燃烧技术在100 MW机组上的应用[J].华中电力,2004,17(4):44-45.
    [20]谭厚章,陈二强,徐通模等.一种煤粉周向浓缩分区驻涡的旋流燃烧器[P]:中国,200810018042.2.
    [21]华寿清.日本石川岛播磨(IHI)公司煤粉锅炉燃烧技术的最新发展[J].电站系统工程,1990,1(46-62.
    [22]郝福民,袁荣泉.煤粉预燃室燃烧器[J].电厂技术,1989,2(29-32.
    [23]何伯述,张文宏,许晋源.锅炉着火稳定性及其有关技术发展[J].中国电力,1999,32(8):4-7.
    [24]张凯,周屈兰,徐通模等.新型轴向叶片式旋流燃烧器性能的实验研究[J].西安交通大学学报,1999,33(6):20-23.
    [25]谢毓麟,胡仁德.多煤种燃烧器[P]:中国,91100191.3.
    [26]熊立红,资静斌,曾东和.大型燃煤锅炉旋流燃烧器稳燃技术研究[J].电站系统工程,2008,24(1):38-40.
    [27]徐旭常,王云山,金茂庐等.关于煤粉火焰稳定性和煤粉预燃室及火焰稳定船的作用[J].工程热物理学报,1988,9(4):384-389.
    [28]包建锋,胡家震,姜义道等.旋流式煤粉燃烧器应用分析[J].黑龙江电力,2000,22(6):28-31.
    [29]吴生来,郝振亚.德国低NOx煤粉燃烧器[J].热力发电,1997,26(5):51-61.
    [30]赵伶玲,周强泰.旋流燃烧器的花瓣稳燃器[P]:中国,200420062219.6.
    [31]傅维镳,韩洪樵,贾臻等.大速差射流燃烧技术的应用现状及其前景[J].动力工程,1990,10(1):24-26.
    [32]傅维镳,何裕昆,韩洪樵等.大速差射流型双一次风通道通用煤粉主燃烧器[J].工程热物理学报,1994,15(2):210-213.
    [33]原鲲,陈丽芳,吴承康.采用偏置射流预燃室稳定燃烧水煤浆的原理及应用研究[J].工程热物理学报,2002,23(123-126):
    [34]赵惠富,杨平.逆向复式射流预燃室燃烧器[J].工程热物理学报,1994,15(2):214-218.
    [35]邓晶,李要建,王蕊等.等离子体电弧炉内流动与传热数值模拟[J].工程热物理学报,2010,31(5):879-882.
    [36]Li Y J, Huang Z Q, Xu Y X, et al. Plasma-Arc Technology for the Thermal Treatment of Chemical Wastes [J]. Environ Eng Sci, 2009, 26(4):731-737.
    [37]胡宏斌,徐纲,房爱兵等.非平衡等离子体助燃低热值气体燃料[J].工程热物理学报,2010,31(9):1603-1606.
    [38]范良.等离子点火技术在电厂中的应用[J].电气技术,2008,5):97-98.
    [39]马忠云,梁志宏,赵耕春.等离子燃烧技术在超临界锅炉上的应用研究[J].热电技术,2005,3):39-42.
    [40]聂欣,周俊虎,汪洋等.我国电站锅炉煤粉直接点火技术的发展以及现状[J].热能动力工程,2008,23(4):333-338.
    [41]吴永德,李健胡,郭斌等.等离子煤粉点火技术在电厂的应用[J].发电设备,2005,2):91-93.
    [42]常兆麟.烧褐煤蒸汽锅炉的无油点火[J].宁夏电力,1992,1):37-40.
    [43]津村俊一,杉田隆一,坂口安英等.粉煤点火燃烧器[P]:中国,CN87106630.
    [44]石伟.感应加热煤粉多级无油点火的试验研究和数值模拟[D].杭州:浙江大学,2003.
    [45]陈燕,王恒,赵立合等.高风温点火燃烧器中煤粉气流的着火规律[J].动力工程,2007,27(2):38-42.
    [46]Suda T, Takafuji M, Hirata T. A study of combustion behavior of pulverized coal in high-temperature air [M]. Proceedings of the combustion institute. Japan. 2002.
    [47]吕清刚,那永洁,包绍麟等.一种为煤粉锅炉的煤粉直燃提供高温空气的方法[P]:中国,200510011811.2.
    [48]朱建国.煤粉的高温低氧空气燃烧和氮氧化物生成特性研究[D].北京:中国科学院工程热物理研究所,2008.
    [49]Zhu J, Lu Q, Niu T, et al. NO emission on pulverized coal combustion in high temperature air from circulating fluidized bed-An experimental study [J]. Fuel Process Technol,2009,90(5):664-670.
    [50]Lu Q, Zhu J, Niu T, et al. Pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed [J]. Fuel Process Technol,2008,89(11):1186-1192.
    [51]袁保建,宋文河.预燃室燃烧器在煤粉锅炉上的应用[J].电力技术,1989,22(4):75-76.
    [52]李建生,牛蔚然.预燃室型煤粉燃烧器的开发和应用[J].中国电力,2008,41(4):44-47.
    [53]郭秀峰,李硕,史勋博.宽煤种微油点火燃烧器[P]:中国,200510132419.3.
    [54]张振杰.流化床煤粉预燃加热燃烧器[P]:中国,93107510.6.
    [55]吕清刚,朱建国,牛天钰等.煤粉高温预热方法[P]:中国,200710175526.3.
    [56]吕清刚,牛天钰,朱建国等.高温煤基燃料的燃烧特性及NOx排放试验研究[J].中国电机工程学报,2008,28(23):81-86.
    [57]Su S, Pohl J H, Holcombe D, et al. A proposed maceral index to predict combustion behavior of coal [J]. Fuel,2001,80(5):699-706.
    [58]范卫东,章明川,周月桂等.无烟煤燃烧方法[P]:中国,200610118898.8.
    [59]黄伟,杨剑峰,谢国鸿等.大型W火焰锅炉灭火原因分析及对策[J].电站系统工程,2009,26(2):21-23.
    [60]王健.国内W型火焰锅炉的探讨[J].中国特种设备安全,2006,22(9):22-24.
    [61]孙超凡,李乃钊,华杨等.W火焰锅炉燃用劣质无烟煤的稳燃技术[J].中国动力工程学报,2005,25(2):201-206.
    [62]Guo X N, Chinese Soc Power E. Suitability of W-flame boilers to burn low volatile coal and their combustion systems [M]. Shanghai:Chinese Soc Power Engineering, 1995.
    [63]许传凯,许云松.我国低挥发分煤燃烧技术的发展[J].热力发电, 2001,10(5):2-6.
    [64]Makino K. Technologies for NOx Reduction in PC Fired Utility Boilers-A Manufacturers Perspective [J]. IFRF Combustion Journal, August 2000,
    [65]牛天钰.高温煤基燃料燃烧和氮氧化物生成特性的试验研究[D].北京:中国科学院工程热物理研究所,2008.
    [66][日]新井纪男主编;赵黛青等译.燃烧生成物的发生与抑制技术[M].北京:科学出版社,2001.
    [67]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,1998.
    [68]Xiang J, Li M, Sun L S, et al. Comparison of nitrogen oxide emissions from boilers for a wide range of coal qualities [J]. Int J Therm Sci, 2000, 39(8): 833-841.
    [69]秦裕琨,李争起,孙锐等.风包粉系列浓淡煤粉燃烧技术的研究[J].中国工程科学,2002,4(11):42-47.
    [70]张晓辉,孙锐,孙绍增等.立体分级燃烧对NOx排放特性的影响[J].机械工程学报,2009,45(2):199-205.
    [71]Company B W. Auxiliary Equipment: Burners (Coal) [M]. http://www.babcock.com/products/auxiliary_equipment/burners_coal.html.
    [72]陈锋,顾彤,曹鲁华.双调风燃烧器改造与调试[J].锅炉技术,2008,39(1):66-68.
    [73]朱利军.300MW燃煤锅炉低氮氧化物燃烧的改造[J].广东电力,2009,22(4):64-67.
    [74]佐双吉.乌拉山发电厂3号锅炉空气分级燃烧改造及运行试验[J].热力发电,2007,36(4):61-64.
    [75]Wendt J O L, Sternling C V, Matovich M A. Reduction of Sulfur Trioxide and Nitrogen Oxides by Secondary Fuel Injection [M]. 14th Symposium (International) on Combustion. Pittsburgh; The Combustion Institute.1973: 897-904.
    [76]Jochem M, Thierbach H. Burner for coal dust and air mixture-has central duct for coal dust and surrounding concentric air ducts with rotating baffles to control relative air flows, DE19607676-A; DE19607676-A1; ZA9701783-A; US5878676-A.
    [77]吴碧君,刘晓勤.燃煤锅炉低NOx燃烧器的类型及其发展[J].电力环境保护,2004,20(3):24-27.
    [78]曾庆广,王阳,董建勋等.常规煤粉作为再燃燃料的燃料分级燃烧试验研究[J].中国电力,2005,38(4):5-8.
    [79]Kawai K, Yoshikawa K, Kobayashi H, et al. High temperature air combustion boiler for low BTU gas [J]. Energy Conv Manag, 43(9-12):1563-1570.
    [80]Gupta A K. Flame characteristics with high temperature air combustion [M]. The 38th aerospace sciences meeting and exhibit. Reno. 2000.
    [81]Kiga T, Yoshikawa K, Sakai M, et al. Characteristics of pulverized coal combustion in high-temperature preheated air [J]. J Propul Power, 2000, 16(4): 601-605.
    [82]Liu H, Zailani R, Gibbs B M. Comparisons of pulverized coal combustion in air and in mixtures of O-2/CO2 [J]. Fuel,2005,84(7-8):833-840.
    [83]Hu Y Q, Kobayashi N, Hasatani M. The reduction of recycled-NOx in coal combustion with O-2/recycled flue gas under low recycling ratio [J]. Fuel, 2001, 80(13):1851-1855.
    [84]傅维标,张恩仲.煤焦非均相着火温度与煤种的通用关系及判别指标[J].动力工程,1993,13(3):34-42.
    [85]夏敏文,施豫祖,廖万彬.热能设计工程手册[M].北京:化学工业出版社,1998.
    [86]范晓旭.循环流化床多联供系统试验研究[D].北京:中国科学院工程热物理研究所,2007.
    [87]Jiang X M, Zheng C G, Yan C, et al. Physical structure and combustion properties of super fine pulverized coal particle [J]. Fuel, 2002,81(6):793-797.
    [88]Turns著,姚强,李水清等.燃烧学导论:概念与应用[M].北京:清华大学出版社,2009.
    [89]韩才元,徐明厚,周怀春.煤粉燃烧[M].北京:科学出版社,2001.
    [90]李荫堂,李军,刘艳华.煤焦燃烧动力学参数随煤质的变化[J].热能动力工程,2000,15(5):477-479.
    [91]张妮,曾凡桂,降文萍.中国典型动力煤种热解动力学分析[J].太原理工大学学报,2005,36(5):549-552.
    [92]傅维标,郑双铭,张百立.煤焦燃烧反应动力学的通用规律研究[J].工程热物理学报,1994,15(4):435-440.
    [93]傅维标,张百立.煤焦燃烧反应动力学参数与煤种的通用关系[J].燃烧科学与技术,1997,3(1):1-14.
    [94]余明高,郑艳敏,路长.贫烟煤氧化热解反应的动力学分析[J].火灾科学,2009,18(3):143-147.
    [95]向银花,房倚天.煤焦的燃烧特性和动力学模型研究[J].煤炭转化,2000,23(1):10-15.
    [96]仝晓波,申春梅,吴少华等.煤拔头半焦燃烧特性[J].过程工程学报,2009,9(5):897-903.
    [97]盛宏至,刘典福,魏小林等.煤部分气化后生成半焦的特性[J].燃烧科学与技术,2004,10(2):187-191.
    [98]赵俊,肖国先,李秀秀.高温悬浮态的煤焦燃烧反应动力学研究[J].水泥工程,2010,4):14-17.
    [99]严建华,倪明江,张宏焘等.煤在燃烧过程中表面灰层内气体扩散传质特性的研究[J].工程热物理学报,1994,15(3):341-344.
    [100]王苑,罗永浩,林鹏云等.煤在燃烧过程中灰层有效扩散系数的实验研究与应用[J].动力工程学报,2010,30(8):573-577.
    [101]张喜文.粉煤燃烧时氧气的容积扩散特性[J].电站系统工程,1989,5(1):72-85.
    [102]Williams A. Combustion Theory, 2nd Ed. [M]. Redwood City, CA: Addison-Wesley, 1985.
    [103]傅维镳,严鸿飞.分析煤粒非均相着火的方法[J].中国科学A辑, 1990,6):607-614.
    [104]国家质量监督检验检疫总局.GB/T 18511-2001煤的着火温度测定方法[M].北京;中国标准出版社.2001.
    [105]Li S, Xu T, Hui S, et al. Optimization of air staging in a 1 MW tangentially fired pulverized coal furnace [J]. Fuel Process Technol, 2009, 90(1): 99-106.
    [106]李森.低NOx燃煤技术试验研究与数值模拟[D].西安:西安交通大学,2007.
    [107]范从振.锅炉原理[M].北京:中国电力出版社,2000.
    [108]陈学俊,陈听宽.锅炉原理[M].北京:机械工业出版社,1991.
    [109]Douglas等编,傅维镳等译.煤的燃烧与气化[M].北京:科学出版社,1992.
    [110]孙庆雷,李文,李保庆.神木煤显微组分半焦的气化特性和气化动力学研究[J].煤炭学报,2002,27(1):28-33.
    [111]董春花.煤粉预热对燃烧和氮氧化物影响的实验研究[D].武汉:华中科技大学,2008.
    [112]Fenimore C P. Formation of nitric oxide in premixed hydrocarbon flames [J]. Symposium (International) on Combustion, 1971,13(1):373-380.
    [113]曹欣玉,牛志刚,应凌俏等.无烟煤燃料氮的热解析出规律[J].燃料化学学报,2003,31(6):538-542.
    [114]Kambara S, Takarada T, Toyoshima M, et al. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion [J]. Fuel,1995,74(9):1247-1253.
    [115]赵科,谭厚章,周屈兰等.煤的模型化合物热解过程中HCN、NH3的逸出规律[J].热能动力工程,2004,19(3):246-248.
    [116]Li C-Z, Tan L L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NF3 during pyrolysis [J]. Fuel, 2000,79(15):1899-1906.
    [117]Thomas K M. The release of nitrogen oxides during char combustion [J]. Fuel,1997,76(6):457-473.
    [118]吴碧君.燃烧过程中氮氧化物的生成机理[J].电力环境保护,2003,19(4):9-12.
    [119]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2001.
    [120]冯志华,常丽萍,任军等.煤热解过程中氮的分配及存在形态的研究进展[J].煤炭转化,2000,23(3):6-12.
    [121]Leichtnam J N, Schwartz D, Gadiou R. The behaviour of fuel-nitrogen during fast pyrolysis of polyamide at high temperature [J]. J Anal Appl Pyrolysis, 2000,55(2):255-268.
    [122]Xu W C, Kumagai M. Nitrogen evolution during rapid hydropyrolysis of coal [J]. Fuel,2002,81(18):2325-2334.
    [123]Schafer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part 1. Homogeneous reactions [J]. Fuel, 2000,79(10):1239-1246.
    [124]Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion [J]. Fuel,1994,73(9):1398-1415.
    [125]Hamalainen J P, Aho M J. Conversion of fuel nitrogen through HCN and NH3 to nitrogen oxides at elevated pressure [J]. Fuel, 1996, 75(12):1377-1386.
    [126]刘银河,张晓燕,刘艳华等.程序升温气化过程中氮的释放规律研究[J].工程热物理学报,2009,30(12):2125-2128.
    [127]樊俊杰,金晶,钟海卿等.煤粉燃烧时NOx析出规律的试验研究[J].锅炉技术,2005,36(3):38-41.
    [128]Yan X, Che D, Xu T. Effect of rank, temperatures and inherent minerals on nitrogen emissions during coal pyrolysis in a fixed bed reactor [J]. Fuel Process Technol,2005,86(7):739-756.
    [129]陈鸿伟,金保升.燃煤流化床中N2O生成与分解的均相反应机理[J].环境科学,1994,15(6):74-78.
    [130]冯波,袁建伟,林志杰等.流化床燃烧工况下N2O多相分解的机理研究[J].工程热物理学报,1995,16(1):111-114.
    [131]Liu H, Kojima T, Feng B, et al. Effects of heterogeneous reactions of coal char on nitrous oxide formation and reduction in a circulating fluidized bed [J]. Energy Fuels,2001,15(3):696-701.
    [132]Kilpinen P, Hupa M. Homogeneous N2O chemistry at fluidized bed combustion conditions:Akinetic modeling study [J]. Combust Flame, 1991,85(1-2): 94-104.
    [133]Molina A, Eddings E G, Pershing D W, et al. Char nitrogen conversion: implications to emissions from coal-fired utility boilers [J]. Prog Energy Combust Sci,2000,26(4-6):507-531.
    [134]Glarborg P, Jensen A D, Johnsson J E. Fuel nitrogen conversion in solid fuel fired systems [J]. Prog Energy Combust Sci, 2003,29(2):89-113.
    [135]梁秀俊,高正阳,阎维平.煤粉再燃过程中HCN与NH3的反应机理分析[J].华北电力技术,2004,4):19-21.
    [136]Man C K, Jacobs J, Gibbins J R. Selective maceral enrichment during grinding and effect of particle size on coal devolatilisation yields [J]. Fuel Process Technol,1998,56(3):215-227.
    [137]金晶,李瑞阳,陈占军等.煤粉粒度对煤粉燃烧NOx排放特性影响的试验研究[J].热力发电,2004,33(9):16-18.
    [138]金晶,张忠孝,李瑞阳等.超细煤粉燃烧氮氧化物释放特性的研究[J].动力工程,2004,24(5):716-720.
    [139]Abbas T, Costen P, Lockwood F C, et al. The effect of particle size on NO formation in a large-scale pulverized coal-fired laboratory furnace: Measurements and modeling [J]. Combust Flame, 1993,93(3):316-326.
    [140]冯兆兴,安连锁,李永华等.煤粉燃烧污染物排放特性的试验研究[J].动力工程,2007,27(3):427-431.
    [141]Ribeirete A, Costa M. Impact of the air staging on the performance of a pulverized coal fired furnace, Montreal, QC, Canada, F, 2009 [C]. Elsevier Ltd.
    [142]Habib M A, Elshafei M, Dajani M. Influence of combustion parameters on NOx production in an industrial boiler [J]. Comput Fluids, 2008,37(1):12-23.
    [143]Chae J O, Chun Y N. Effect of 2-stage combustion on NOx emissions in pulverized coal combustion [J]. Fuel, 1991,70(6):703-707.
    [144]Chaiklangmuang S, Jones J M, Pourkashanian M, et al. Conversion of volatile-nitrogen and char-nitrogen to NO during combustion [J]. Fuel, 2002, 81(18): 2363-2369.
    [145]Li S, Xu T M, Sun P, et al. NOx and SOx emissions of a high sulfur self-retention coal during air-staged combustion [J]. Fuel, 2008,87(6):723-731.
    [146]Man C K, Gibbins J R, Witkamp J G, et al. Coal characterisation for NOx prediction in air-staged combustion of pulverised coals [J]. Fuel, 2005,84(17): 2190-2195.
    [147]Kim H S, Baek S W, Yu M J. Formation characteristics of nitric oxide in a three-staged air/LPG flame [J]. International Journal of Heat and Mass Transfer, 2003,46(16):2993-3008.
    [148]Baxter L L, Mitchell R E, Fletcher T H, et al. Nitrogen release during coal combustion [J]. Energy Fuels,1996,10(1):188-196.
    [149]曹欣玉,董洪彬,牛志刚等.无烟煤挥发分和焦炭独立燃烧过程中NO生成规律[J].燃料化学学报,2005,33(2):140-145.
    [150]Spliethoff H, Greul U, Rudiger H, et al. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility [J]. Fuel,1996, 75(5):560-564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700