用户名: 密码: 验证码:
氧化石墨烯装载多柔比星的性能及抗多发性骨髓瘤细胞效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     恶性肿瘤是严重危害人类健康的疾病,也是当今社会蔓延最快的疾病之一,全世界每年约有1000多万新增病例。根据2008年WHO统计,因肿瘤致死人数占世界总死亡人数的13%。在美国、新加坡等国家,肿瘤致死人数占到了总死亡人数的1/4-1/3,仅次于心脏病致死率。虽然近5年来,肿瘤生存率与过去几十年相比有了明显提高,但肿瘤相关死亡率没有显著的变化,生存率的提高归功于肿瘤的早期发现及治疗手段的提高。在西方国家,急性白血病、恶性淋巴瘤、多发性骨髓瘤等血液肿瘤均位于恶性肿瘤发病的前十位,在我国发病率也呈逐年升高的趋势。我国每年新增淋巴瘤患者约2.5万人,其中非霍奇金淋巴瘤的发病人数年递增率达到3%-5%,是所有恶性肿瘤中增长速度最快的。目前,恶性血液肿瘤的治疗主要有化疗、放疗、诱导分化治疗以及造血干细胞移植等方法。化疗是一种有效而经典的肿瘤治疗手段,但化疗药物通常在杀死肿瘤细胞的同时也杀死正常细胞如小肠内皮细胞和骨髓细胞,从而产生严重的不良反应和并发症,不但限制了化疗药物足量应用而达到最佳疗效,还直接导致原发肿瘤不能被控制,最终导致治疗效果不理想。因此,针对恶性血液肿瘤的靶向药物治疗已成为近年来的研究热点。纳米技术的发展使得纳米靶向药物在肿瘤治疗领域显示出巨大的应用潜能。
     纳米医学是一门新型学科,该学科是随着纳米生物医药发展起来的用一系列纳米技术解决医学问题的学科。纳米技术的发展将给生物医学领域产生深刻的影响,主要体现在诊断和治疗肿瘤方面。纳米药物因其科学价值和潜在应用前景日益受到关注。多柔比星是临床上常用治疗恶性血液肿瘤的蒽环类化疗药物之一,其对血液肿瘤的治疗效果显著。但由于多柔比星在实际应用中的副作用,如心脏毒性、肝脏毒性、骨髓抑制等,导致多柔比星在临床上的应用受到一定限制。为了达到较好的疗效而最大限度减少多柔比星的毒副作用,开发具有高吸附能力和快速吸附的新药物载体引起国内外同行的密切关注。氧化石墨烯(graphene oxide, GO)是碳家族的一种新型二维纳米材料,有学者在2004年成功制备出氧化石墨烯,由于成功制备了氧化石墨烯而在2010年获得诺贝尔奖。氧化石墨烯在很多方面的应用研究取得了很好的成果,但在药物载体方面潜在价值的研究还处在初级阶段,在药物载体方面的研究得到了本课题的密切关注。
     目的和方法
     本课题首先成功制备了纳米新碳材料-氧化石墨烯,应用相应仪器和技术对氧化石墨烯进行了一系列的表征,然后以斑马鱼为动物模型研究了氧化石墨烯的胚胎发育毒性。第二,研究了氧化石墨烯负载抗血液肿瘤药物(多柔比星)的载药量和氧化石墨烯负载多柔比星的影响因素,为制备抗血液肿瘤纳米药物提供理论基础。第三,利用细胞培养和细胞毒试验研究了氧化石墨烯负载多柔比星后对多发性骨髓瘤细胞的杀伤作用,为血液肿瘤靶向纳米药物的开发提供理论依据。
     研究结果
     1.通过Hummers方法制备了氧化石墨烯,利用透射电子显微镜(TEM)、傅里叶红外光谱仪、Zeta电位仪、元素分析等仪器或方法对氧化石墨烯的理化性进行了表征。氧化石墨烯(GO)的形态结构通过透射电子显微镜(TEM)进行表征,结果显示氧化石墨烯是单层纳米材料。元素分析显示氧化石墨烯的元素组成有碳(C)、氮(N)、氢(H)和氧(0),这些元素在氧化石墨烯中所占比例分别为碳(C),45.17%;氮(N),0.78%;氢(H),3.15%:氧(0),50.90%。用傅里叶红外光谱对氧化石墨烯所含的官能团进行分析,结果显示氧化石墨烯含有羟基(-OH)官能团、羰基(C=0)官能团和C-0官能团,这些官能团都是含氧官能团。Zeta电位仪检测zeta电位显示pH值在3.4~8.5之间,氧化石墨烯都是负电位,即氧化石墨烯所带的电荷为负电荷。
     2.以斑马鱼为动物模型,利用斑马鱼胚胎研究了氧化石墨烯的胚胎发育毒性,研究结果如下:在氧化石墨烯浓度为100mg/L的情况下,斑马鱼胚胎的孵化率达0.9446±0.01604,与正常对照组比较,p=0.079,差异没有统计学意义:在氧化石墨烯浓度为100mg/L的情况下,斑马鱼胚胎畸形率为0.2191±0.13236,与正常对照组比较,p=0.087,差异无统计学意义;在氧化石墨烯浓度为100mg/L的情况下,斑马鱼胚胎死亡率达0.2426±0.15717,与正常对照组比较,p=0.068,差异无统计学意义:在氧化石墨烯浓度为100mg/L的情况下,在60hpf时,斑马鱼心跳为35.1840±3.91240/15s,与正常对照组比较,p=0.342,差异无统计学意义;在氧化石墨烯浓度为100mg/L的情况下,在72hpf时,斑马鱼幼鱼体长为3.3835±0.18943,与正常对照组比较,p=0.374,差异无统计学意义。
     3.研究了氧化石墨烯作为抗血液肿瘤药物载体的可行性。研究氧化石墨烯吸附多柔比星的过程,以及在此过程中,氧化石墨烯与多柔比星的接触时间、氧化石墨烯用量、反应温度和pH等参数对氧化石墨烯(GO)吸附多柔比星(DOX)的影响。结果显示在室温时(288K),氧化石墨烯吸附多柔比星的最大吸附值为1428.57mg/g,氧化石墨烯吸附多柔比星的吸附等温线数据符合Langmuir模型,吸附的动力学符合准二级动力学模型。对氧化石墨烯吸附多柔比星的热力学的研究表明氧化石墨烯吸附多柔比星是自发的、吸热的,即在加热的情况下有利于氧化石墨烯吸附多柔比星。同时,氧化石墨烯与药物之间的作用力与溶液的酸碱度相关。氧化石墨烯对多柔比星的高效负载是依靠氧化石墨烯巨大的比表面积以及与多柔比星之间的π-π堆积作用。
     4.以氧化石墨烯、多柔比星、氧化石墨烯装载多柔比星为研究对象,运用细胞培养技术和细胞毒检测技术,研究了氧化石墨烯、多柔比星、氧化石墨烯装载多柔比星对多发性骨髓瘤RPMI8226细胞的杀伤作用。
     4.1cck-8法检测纳米氧化石墨烯、多柔比星、氧化石墨烯装载多柔比星对RPMI8226细胞增殖的影响。氧化石墨烯(浓度为0,10,25,50,100mg/L)时对多发性骨髓瘤细胞的作用与正常对照组比较,细胞存活率(p均<0.05),差异有统计学意义,表明氧化石墨烯在0-100mg/L浓度下对多发性骨髓瘤细胞有低毒性。在氧化石墨烯浓度为50mg/L,多柔比星浓度为2m/L时,氧化石墨烯负载多柔比星(GO50mg/L+DOX2mg/L)时CCK-8检测结果如下:氧化石墨烯组细胞存活率为(84.6±0.4)%,多柔比星组细胞存活率为(71.7±1.0)%,氧化石墨烯装载多柔比星细胞存活率为(62.6+7.3)%。结果显示,氧化石墨烯装载多柔比星组与多柔比星组比较,1p=0.027,差异有统计学意义,但去除氧化石墨烯的影响比较,p>0.05,说明氧化石墨烯不降低多柔比星对多发性骨髓瘤细胞的细胞毒性。
     4.2流式细胞仪测定氧化石墨烯、多柔比星、氧化石墨烯装载多柔比星对RPMI8226细胞的细胞周期的变化。在多柔比星浓度为2m/L,氧化石墨烯浓度为50mg/L,氧化石墨烯负载多柔比星(GO50mg/L+DOX2mg/L)时,细胞周期检测结果显示,GO/Gl、S、G2/M期,实验组与正常对照组相比,P均>0.05,差异均无统计学意义。结果表明氧化石墨烯不影响多发性骨髓瘤细胞的细胞周期。
     4.3氧化石墨烯对多发性骨髓瘤细胞的凋亡检测结果显示正常对照(0mg/L)组与GO组(浓度为10,50,100mg/L)比较,p均>0.05,差异均无显著性。表明GO浓度在0-100m/L时不诱导细胞凋亡。在多柔比星浓度为2mg/L,氧化石墨烯浓度为50mg/L时,氧化石墨烯负载多柔比星(GO50mg/L+DOX2mg/L)时,细胞凋亡检测结果显示多柔比星组、氧化石墨烯负载多柔比星组与正常对照组比较,P<0.05,差异有统计学意义。氧化石墨烯负载多柔比星组与多柔比星组比较(P>0.05),无统计学差异。结果显示多柔比星可以诱导细胞凋亡,氧化石墨烯不降低多柔比星诱导细胞凋亡的能力。
     研究结论
     1、本课题成功制备了氧化石墨烯,并以斑马鱼为动物模型研究发现氧化石墨烯没有明显的胚胎发育毒性;
     2、研究氧化石墨烯作为药物载体时,发现氧化石墨烯具有很强的载药能力,研究影响氧化石墨烯对抗血液肿瘤药物(多柔比星)的载药能力的因素时,发现温度的变化、pH值的改变、氧化石墨烯的加入量能影响氧化石墨烯对抗血液肿瘤药物(多柔比星)的载药能力;
     3、氧化石墨烯负载抗血液肿瘤药物(多柔比星)后对多发性骨髓瘤的杀伤能力的研究发现,氧化石墨烯负载多柔比星对多发性骨髓瘤RPMI8226细胞有显著抑制增殖的作用,但氧化石墨烯不降低多柔比星对细胞的抑制作用。其抑制作用不是通过阻滞血液肿瘤细胞的细胞周期实现的,氧化石墨烯低浓度时不诱导细胞凋亡,不降低多柔比星诱导细胞凋亡的能力。可适合做抗血液肿瘤纳米药物的载体。
Background
     At present, tumor is one of the serious diseases threatening human health, and is also one of the fastest spreading disease in the modern society. There are about10000000new cases of tumor each year all over the world, and the number of tumor patients is increasing year by year. According to the statistics of world health organization (WHO) in2008, the number of people died of tumor has taken up13%of all deaths in the world. The number of tumor deaths accounted for1/4-1/3of all deaths in some countries such as USA and Singapore, ranking behind the heart disease. In the past5years, cancer-related mortality has not decreased evidently though the survival rate of cancer has obviously increased compared with that in the past several decades. Early diagnosis and the improvement of treatment for the patients with tumors are the main reasons to increase the survival rate of tumors. In western countries, hematological malignant tumors including acute leukemia, malignant lymphoma and multiple myeloma are located at top10places in the incidence of malignant tumors, their incidence in China is increasing year by year. There are about25000new cases of lymphoma each year in China, the incidence of Non-hodgkin's lymphoma has increased by3%-5%every year, non-Hodgkin's lymphoma is the most rapid growth in all malignant tumors. At present, the treatment methods of malignant hematological tumors are chemotherapy, radiotherapy, targeted therapy, differentiation therapy and hematopoietic stem cell transplantation. Treatment of hematologic malignant tumors is one of the hotspot in medical research. Chemotherapy is an effective, classic treatment method for hematological malignant tumor, chemotherapy usually kill tumor cells, meanwhile chemotherapy also kill normal cells, such as intestinal endothelial cells and bone marrow cells. This leads to serious adverse reactions, the clinical application of chemotherapy drugs are limited, so treatment effect is not ideal. Therefore, the targeted therapy of hematologicl malignant tumor has become a hot topic in recent years. The nanodrugs show great potential applications in the treatment of tumor.
     Nanodrug is a new discipline, which is the medical discipline use a series of nanotechnology to solve the medical problems as development of nanomedical technology. The development of nanotechnology will bring unexpected changes in the field of biomedical applications, mainly reflected in the treatment and diagnosis of the tumor. Nanodrug is increasingly concerned because of its scientific value and potential prospects of application. As is known to all, doxorubicin (DOX) is one of chemotherapy drugs in clinical treatment of hematological malignant tumor, and has obvious therapeutic effect on hematological malignant tumor. However, DOX have some side effects, such as cardiac toxicity, liver toxicity, bone marrow depression in practical applications, these side effects led the limited of DOX in the clinical application. In order to achieve a better curative effect and minimize the side effects of DOX, to develop novel drug carriers with high and rapid adsorption capacity attracted domestic and foreign experts' attention. Graphene oxide (GO) is new two-dimensional carbon nanomaterial, some scholars had prepared successfully graphene oxide in2004, and they won the Nobel Prize in2010. Research about application of GO in many aspects achieved some good results, but the research about the potential value in nanodrug carrier is still in its primary stage. This paper has been played close attention to research about GO in nanodrug carrier.
     Objective and Methods
     First, GO (new carbon nanomaterial) was successfully prepared in the experiment, physico-chemical properties of GO was characterized by corresponding instruments and technology. To study the embryonic developmental toxicity of GO used zebrafish as animal model.
     Second, the GO loading with DOX and the influence factors of GO loading with DOX were studied, the study provided the theoretical foundation for the preparation of nanodrug in treatment of hematological malignancy tumor.
     Third, cell culture and toxicity assay were used to study the effect in killing cells of the GO loading with DOX on multiple myeloma cells. These studies ultimately provided theoretical basis for the development on hematological malignant tumor-targeting nanodrug.
     Results
     1. GO was prepared by Hummers's method. The physico-chemical properties of GO were characterized by transmission electron microscope (TEM), Fourier infrared spectrometer, Zeta potentiometer, element analysis. The morphological structure of GO was characterized by the TEM, the results showed that GO was single nanomaterial. Elemental analysis showed composition of GO with carbon (C), nitrogen (N), hydrogen (H) and oxygen (O). These elements in the proportion of GO were carbon (C),45.17%; Nitrogen (N),0.78%; Hydrogen (H),3.15%; Oxygen (O),50.90%. Using Fourier transform infrared spectrum analysis of GO contained functional groups such as hydroxyl (OH), carbonyl (C=O) and C-O functional groups, these functional groups were oxygen containing functional groups. Examination of the Zeta potential through Zeta potentiometer showed when pH value was between3.4-8.5, GO was negative potential, namely GO with the charge was negative.
     2. Zebrafish was used as model animal to study the embryonic developmental toxicity of GO. The results were as follows, when GO concentration was100mg/L, zebrafish embryo hatching rate under the condition was0.9446±0.01604, compared with the control group, p=0.079, the difference was no statistically significant; when GO concentration was100mg/L, zebrafish embryo abnormality rate under the condition was0.2191±0.13236, compared with the control group, p=0.087, the difference was no statistically significant; when GO concentration was100mg/L, zebrafish embryo mortality rate under the condition was0.2426±0.15717, compared with the control group, p=0.068, the difference was no statistically significant; when GO concentration was100mg/L, at60hpf, zebrafish heart rate was35.1840±3.91240/15s, compared with the control group, p=0.342, the difference was no statistically significant; when GO concentration was100mg/L, at72hpf, zebrafish larvae's body length was3.3835±0.18943mm, compared with the control group, p=0.374, the difference was no statistically significant.
     3. The feasibility of GO as hematological malignant tumor drug carrier was studied. When adsorption process of DOX onto GO were studies, influence factor of the GO loading with DOX such as the contact time, the dosage of graphene oxide, temperature and pH value were also studied. The results showed that GO had a maximum adsorption capacity of1428.57mg/g at room temperature (288k), and the adsorption isotherm data fitted the Langmuir model. Adsorption kinetics fits a pseudo-second-order model. The thermodynamic studies indicated that the adsorption of DOX onto GO was endothermic, namely heating may increase for GO loaded with DOX. At the same time, the reaction of drug onto GO associated with the pH value of solution. GO has high loading effciency due to its huge specific surface area and DOX adsorbed by GO through π-π stacking interaction.
     4. Grapheme oxide, graphene oxide loaded with DOX (GO/DOX), DOX were used as research objects, using cell culture technigues and cytotoxic testing technigue to study grapheme oxide, DOX, graphene oxide loaded with DOX on multiple myeloma RPMI8226cells in vitro.
     4.1The effect of GO, DOX, GO/DOX on cell viability was evaluated by measurment of CCK-8. The RPMI8226cells were treated with GO (0,10,25,50,100mg/L size<100nm). GO groups compared with the control group, the difference was statistically significant in cell viability (p<0.05). The results showed that GO in the0-100mg/L concentration on multiple myeloma cells had low cytotoxicity. The findings of GO (50mg/L), DOX (2mg/L), GO/DOX(GO50mg/L+DOX2mg/L) were as follows. Cell viability of GO (50mg/L) was (84.6±0.4)%, cell viability of DOX (2mg/L) was (71.7±1.0)%, cell viability of GO/DOX(GO50mg/L±DOX2mg/L) was (62.6±7.3)%. The results showed there was significant defference in cell viability between GO/DOX group and DOX group (p<0.05), but removing the impact of the cell viability of GO, there was no significant defference in cell viability between GO/DOX group and DOX group (p>0.05), indicating that GO did not decrease DOX cytotoxicity.
     4.2Cell cycle of GO, DOX, GO/DOX on RPMI8226cells were detected by flow cytometry. The G0/G1, S, G2/M phase of GO (50mg/L), DOX (2mg/L), GO/DOX (GO50mg/L+DOX2mg/L) on RPMI8226cells respectively compared with control group, there were no statistically significant difference (p>0.05). The results indicated GO did not change the cell cycle of RPMI8226cells.
     4.3There was no significant difference in cell apoptotic rate between GO (10,50,100mg/L) groups and the control groups. The results indicated that GO (0-100mg/L) did not induce cell apoptosis. There was significant difference between DOX (2mg/L) group and control group, and GO/DOX(GO50mg/L+DOX2mg/L) group and control group (P<0.05). There was no significant difference between the DOX/GO group and DOX group (P>0.05). The results indicated that DOX could induce cell apoptosis, and GO did not change the ability of DOX to induce apoptosis.
     Conclusions
     1.GO was prepared successfully, and GO had no obvious embryonic development toxicity on zebrafish.
     2. Study on GO as drug carrier, the test showed GO can have a strong force on drugs. Research on influence factors on GO loaded with drugs of hematologic malignancies (DOX), the test showed that the changes of temperature, pH value, dosage could affect the GO loaded with drugs of hematologic malignancies (DOX).
     3. The study on cell viability of GO, DOX, GO/DOX on multiple myeloma cells found that GO/DOX had significant effect on inhibiting the proliferation of multiple myeloma RPMI8226cells. Research showed that GO could not change toxic effect of DOX on hematologic malignancie tumor cells. GO did not change the cell cycle of RPMI8226cells. The results also indicated that GO did not change the ability of DOX to induce apoptosis. So GO could be suitable for antitumor nanodrug carrier.
引文
[1]K S Novoselov, A K Geim, S V Morozov, D Jiang, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films [J].Science,2004,306(5696),666-669.
    [2]Xiaoyong Zhang, Jilei Yin, Cheng Peng, Weiqing Hu, Zhiyong Zhu, Wenxin Li,Chunhai Fan, Qing Huang. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration [J]. Carbon.2011,49:986-995.
    [3]Zhuang Liu, Joshua T. Robinson, Xiaoming Sun, Hongjie Dai. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs [J].J. Am. Chem. Soc, 2008,130(33):10876-10877.
    [4]Xiaoying Yang, Xiaoyan Zhang, Zunfeng Liu, Yanfeng Ma, Yi Huang, Yongsheng Chen. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide [J] J. Phys. Chem. C,2008,112 (45),17554-17558.
    [5]Shaoling Wu, Xindong Zhao, Yanhui Li, Qiuju Du, Jiankun Sun, Yonghao Wang, Xin Wang, Yanzhi Xia, Zonghua Wang, Linhua Xia. Adsorption properties of doxorubicin hydrochloride onto graphene oxide:equilibrium, kinetic and thermodynamic studies [J]. Materials.2013,6(5),2026-2042.
    [6]Liling Jin, Kai Yang, Kai Yao, Shuai Zhang, Huiquan Tao, Shuit-Tong Lee, Zhuang Liu, Rui Peng. Functionalized graphene oxide in enzyme engineering:a selective modulator for enzyme activity and thermostability [J] ACS. Nano,2012,6:4864-4875.
    [7]Kai Yang, Jianmei Wan, Shuai Zhang, Youjiu Zhang, Shuit-Tong Lee, Zhuang Liu. In vivo pharmacokinetics, long-term biodistribution,and toxicology of pegylated graphene in mice [J].ACS. Nano,2011,5(1):516-522.
    [8]Chao Wang, Liang Cheng, Zhuang Liu. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy [J]. Biomaterials,2011,32:1110-1120.
    [9]Changsheng Shan, Huafeng Yang, Jiangfeng Song, Dongxue Han, Ari Ivaska, Li Niu. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene [J]. Anal.Chem,2009,81(6):2378-2382.
    [10]Fei Liu, Jong Young Choi, Tae Seok Seo. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer [J]. Biosensors and Bioelectronics,2010,25 (10):2361-2365.
    [11]liming Zhang, Jingguang Xia, Qinghuan Zhao, Liwei Liu, Zhijun Zhang. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs [J]. Small 2010,6(4):537-544.
    [12]Yongbin Zhang, Syed F Ali, Enkeleda Dervishi, Yang Xu, Zhongrui Li, Daniel Casciano, Alexandru S Biris. Cytotoxicity effects o f graphene and single-wall carbon nano tubes in neuralphaeo chromocytom a-derived PC12 cells [J]. ACS. Nano,2010,4: 3181-3186.
    [13]Chunhua Lu, Chunling Zhu, Juan Li, Jingjing Liu, Xi Chen, Huanghao Yang. Using graphene to protect DNA from cleavage dur ing cellular delivery [J]. Chem. Commun,2010,46:3116-3118.
    [14]Tonghao Liu, Yanhui Li, Qiuju Du, Jiankun Sun, Yuqin Jiao, Guangming Yang, Zonghua Wang, Yanzhi Xia, Wei Zhang, Kunlin Wang, Hongwei Zhu, Dehai Wu. Adsorption of methylene blue from aqueous solution by graphene [J]. Colloids and Surfaces B; Bopomterfaces,2012,90; 197-203.
    [15]Brand M, Granato M. (2002) Keeping and raising zebrafish//Nusslein-Volhard C, Dahm R. Zebrafish:A practical approach. Oxford:Oxford University Press.
    [16]张晓,杨蓉,王琛,衡成林.功能化氧化石墨烯的细胞相容性(英文),物理化学学报[J].2012,28(6):1520-1524.
    [17]Valerie E. Fako, Darin Y. Furgeson. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity [J]. Advanced Drug Delivery Reviews.2009. 61(6);478-486.
    [18]Karl Fen, Christin J.Weisbrod, AminaWirth-Heller, Uwe Pieles. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages [J]. Aquat. Toxicol,2010,100(2); 218-228.
    [19]Theodore B Henry, Fu-Min Menn, James T Fleming, John Wilgus, Robert N Compton, Gary S Sayler. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression [J]. Environ. Health Perspect.2007.115.1059.
    [20]Jinping Cheng, Emmanuel Flahaut, Shuk Han Cheng. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos [J]. Environ. Toxicol. Chem.2007.26. 708-716.
    [21]Crystal Y. Usenko, Stacey L. Harper, Robert L. Tanguay. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish[J]. Toxicology and Applied Pharmacology.2008.229(1):44-55.
    [22]朱小山,朱琳,郎宇鹏,李燕,端正花.富勒烯及其衍生物对斑马鱼胚胎发育毒性的比较.中国环境科学,2008,28:173-177.
    [23]Crystal Y. Usenko, Stacey L. Harper, Robert L. Tanguay. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish[J]. Carbon.2007.45(9); 1891-1898.
    [24]Cheng JP, Flahaut E, Cheng SH. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos [J]. Environ Toxicol Chem.2007,26(4):708-716.
    [1]Vashist, S.K.; Zheng, D.; Pastorin, G.; Al-Rubeaan, K.; Luong, J.H.T.; Sheu, F.S. Delivery of drugs and biomolecules using carbon nanotubes. [J] Carbon 2011,49, 4077-4097.
    [2]Janes, K.A.; Fresneau, M.P.; Marazuela, A.; Fabra, A.; Alonso, M.J. Chitosan nanoparticles as delivery systems for doxorubicin. [J] J. Control. Release 2011,73, 255-267.
    [3]Niu, G.; Cogburn, B.; Hughes, J. Preparation and characterization of doxorubicin liposomes. [J] Methods Mol. Biol.2010,624,211-219.
    [4]Yi, Y.; Kim, J.H.; Kang, H.W.; Oh, H.S.; Kim, S.W.; Seo, M.H. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: Improvements in cellular uptake and biodistribution. [J] Pharm. Res.2005,22, 200-208.
    [5]Shen, J.; He, Q.; Gao, Y.; Shi, J.; Li, Y. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance:performance and mechanism. [J] Nanoscale 2011,3,4314-4322.
    [6]Chi, F.L.; Guo, Y.N.; Liu, J.; Liu, Y.L.; Huo, Q.H. Size-tunalbe and functional core-sheel structured silica nanoparticles for drug release. [J] J. Phys. Chem. C 2010, 114,2519-2523.
    [7]Chen, Z.; Pierre, D.; He, H.; Tan, S.H.; Pham-Huy, C.; Hong, H.; Huang, J.L. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. [J] Int. J. Pharm.2011,405,153-161.
    [8]Zhang, S.; Yang, K.; Feng, L.Z.; Liu, Z. In vitro and in vivo behaviors of dextran functionalized graphene. [J] Carbon 2011,49,4040-4049.
    [9]Yang, Q.; Pan, X.; Huang, F.; Li, K. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. [J] J. Phys. Chem. C 2010,114,3811-3186.
    [10]Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing Sugar:New functional molecules for the green synthesis of graphene nanosheets. [J] ACS Nano 2010,4,2429-2437.
    [11]Liu, Z.; Robinson, J.T.; Sun, X.M.; Dai, H.J. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. [J] J. Am. Chem. Soc.2008,130, 10876-10877.
    [12]Chang, Y.L.; Yang, S.T.; Liu, J.H.; Dong, E.Y.; Wang, Y.W.; Cao, A.N.; Liu, Y.F.; Wang, H.F. In vitro toxicity evaluation of graphene oxide on A549 cells. [J] Toxicol. Lett.2010,200,201-210.
    [13]Deng, X.J.; Lu, L.L.; Li, H.W.; Luo, F. The adsorption properties of Pb(Ⅱ) and Cd(II) on functionalized graphene prepared by electrolysis method. [J] J. Hazard. Mater.2010,183,923-930.
    [14]Yang, S.T.; Chang, Y.L.; Wang, H.F.; Liu, G.B.; Chen, S.; Wang, Y.W.; Liu, Y.F.; Cao, A.N. Folding/aggregation of graphene oxide and its application in Cu2+removal. [J] J. Colloid Interface Sci.2010,351,122-127.
    [15]Zhang, K.; Dwivedi, V.; Chi, C.Y.; Wu, J.S. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. [J] J. Hazard. Mater. 2010,182,162-168.
    [16]Liu, T.H.; Li, Y.H.; Du, Q.J.; Sun, J.K.; Jiao, Y.Q.; Yang, G.M.; Wang, Z.H.; Xia, Y.Z.; Zhang, W.; Wang, K.; et al. Adsorption of methylene blue from aqueous solution by graphene. [J] Colloids Surf. B 2012,90,191-203.
    [17]Zhao, G.X.; Jiang, L.; He, Y.H.; Li, J.H.; Dong, H.L.; Wang, X.K.; Hu, W.P. Sulfonated graphene for persistent aromatic pollutant management. [J] Adv. Mater. 2011,25,3959-3963.
    [18]Zhao, G.X.; Li, J.X.; Wang, X.K. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. [J] Chem. Eng. J. 2011,173,185-190.
    [19]Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.J.; Shah, M.S.; Su, X.G. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. [J] J. Colloid Interface Sci.2012,368,540-546.
    [20]Luo, Y.B.; Shi, Z.G.; Gao, Q.; Feng, Y.Q. Magnetic retrieval of graphene: Extraction of sulfonamide antibiotics from environmental water samples. [J] J. Chromatogr. A 2011,1218,1353-1358.
    [21]Murugan, A.V.; Muraliganth, T.; Manthiram, A. Facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. [J] Chem. Mater.2009,21,5004-5006.
    [22]Wu, M.; Kempaiah, R.; Huang, P.J.J.; Maheshwari, V.; Liu, J. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. [J] Langmuir 2011,27,2731-2738.
    [23]Depan, D.; Shah, J.; Misra, R.D.K. Controlled release of drug from folate-decorated and graphene mediated drug delivery system:synthesis, loading efficiency, and drug release response. [J] Mater. Sci. Eng. C 2011,31,1305-1312.
    [24]Kayal, S.; Ramanujan, R.V. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. [J] Mater. Sci. Eng. C 2010,30,484-490.
    [25]Yuan, Q.; Sha, J.; Hein, S.; Misra, R.D. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. [J] Acta Biomater.2010,6,1140-1148.
    [26]Li, Y.H.; Wang, S.G.; Cao, A.Y.; Zhao, D.; Zhang, X.F.; Xu, C.L.; Luan, Z.K.; Ruan, D.B.; Liang, J.; Wu, D.H.; et al. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. [J] Chem. Phys. Lett.2001,350,412-416.
    [27]Liu, Z.; Sun, X.M.; Nakayama-Ratchford, N.; Dai, H.J. Superamolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. [J] ACS Nano 2007,1, 50-56.
    [28]Karthikeyan, S.; Balasubramanian, R.; Iyer, C.S. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu (Ⅱ) from aqueous solutions. [J] Bioresour. Technol.2007,98,452-455.
    [29]Unuabonah, E.I.; Adebowale, K.O.; Olu-Owolabi, B.I.; Yang, L.Z.; Kong, L.X. Adsorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solutions onto sodium tetraborate modified kaolinite clay:Equilibrium and thermodynamic studies. [J] Hydrometallurgy 2008,63,1-9.
    [30]Gercel, O.; Gercel, H.F. Adsorption of lead (Ⅱ) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. [J] Chem. Eng. J.2007,132,289-297.
    [31]Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. [J] J. Am. Chem. Soc.1918,40,1361-1403.
    [32]Freundlich, H.M.F. Uber die Adsorption in Losungen. [J] Z. Phys. Chem.1906,57, 385-470.
    [33]Sanson, C.; Schatz, C.; Le Meins, J.F.; Soum, A.; Thevenot, J.; Garanger, E.; Lecommandoux, S. A simple method to achieve high doxorubicin loading in biodegradable polymersomes. [J] J. Control. Release 2010,147,428-435.
    [34]Weng, L.H.; Le, H.C.; Lin, J.Y.; Golzarian, J. Golzarian, Doxorubicin loading and eluting characteristics of bioresorbable hydrogel microspheres:In vitro study. [J] Int. J. Pharm.2011,409,185-193.
    [35]Qi, J.N.; Yao, P.; He, F.; Yu, C.L.; Huang, C. Nanoparticles with dextran/chitosan shell and BSA/chitosan core-doxorubicin loading and delivery. [J] Int. J. Pharm.2010, 393,176-184.
    [36]Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc.1958,80, 1339.
    [1]Kyle RA, Rajkumar SV. Multiple myeloma [J]. N Eng 1 J Med.2004.351(18):1860-1873.
    [2]Anderson KC. Multiple myeloma:how far have we come [J]. Mayo Clin Proc.2003 .78(1):15-7.
    [3]克晓燕,王艳芳,杨玉花,王鲁华.多发性骨髓瘤的过去、现在及未来[J].中国实验血液学杂志,2008,16(2):231-239.
    [4]Raymond Alexanian, Arthur Haut, Asad U. Khan, Montague Lane, Eugene M. McKelvey, Philip J. Migliore, W. J. Stuckey Jr., Henry E. Wilson. Treatment for multiple myelomacom bination chemotherapy with different melphalan dose regimens [J]. Jama,1969,208(9):1680-1685.
    [5]Bennett JM, Silber R, Ezdinli E, Levitt M, Oken M, Bakemeier RF, Bailar JC, Carbone PP. Phase Ⅱ study of adriamycin and bleomycin in patients with multiple myeloma [J].Cancer Treat. Rep.,1978,62(9):1367-1369.
    [6]Koskela K, Pelliniemi TT, Remes K. VAD regimen in the treatment of resistant multiple myeloma:slow or fast infusion [J]. Leuk. Lymphoma,1993,10(4-5):347-351.
    [7]Takamatsu Y, Sunami K, Muta T, Morimoto H, Miyamoto T, Higuchi M, Uozumi K, Hata H, Tamura K; Kyushu Hematology Organization for Treatment Study Group (K-HOT). Bortezomib, doxorubicin and intermediate-dose dexamethasone (iPAD) therapy for relapsed or refractory multiple myeloma:a multicenter phase 2 study [J]. Int. J. Hematol.,2013,98(2):179-185.
    [8]Khan M.F. Shahil, Alexander A. Balandin. Thermal properties of graphene and multilayer graphene:Applications in thermal interface materials [J]. Solid State Commun.2012,152 (15):1331-1340.
    [9]P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries [J]. Electrochim. acta,2011,56:4532-4539.
    [10]Yuan Gao, Yan Li, Liang Zhang, Hui Huang, Junjie Hu, Syed Mazhar Shah, Xingguang Su. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide [J]. Colloid, Interface Science.2012.368(1):540-546.
    [11]Yeon Hwa Kwak, Dong Soo Choi, Ye Na Kim, Hyeongkeun Kim, Dae Ho Yoon, Sang-Sik Ahn, Ji-Woon Yang, Woo Seok Yang, Sungkyu Seo. Flexible glucose sensor using CVD-grown graphene-based field effect transistor [J].Biosensors, Bioelectronics. 2012.37(1):82-87.
    [12]Thathan Premkumar, Kurt E. Geckeler, Graphene-DNA hybrid materials: Assembly, applications, and prospects [J]. Progress in Polymer Science.2012. 37(4):515-529.
    [13]Yang Li, Ying Liu, Yujian Fu, Taotao Wei, Laurent Le Guyader, Ge Gao, Ru-Shi Liu, Yan-Zhong Chang, Chunying Chen. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways [J]. Biomaterials.2012.33(2):402-411.
    [14]Hejiang Zhou, Kai Zhao, Wei Li, Na Yang, Ying Liu, Chunying Chen, Taotao Wei. The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-κB-related signaling pathways [J]. Biomaterials.2012,33(29):6933-6942
    [15]Omid Akhavan, Elham Ghaderi, Alireza Akhavan. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells [J]. Biomaterials.2012.33(32):8017-8025.
    [16]Yanli Chang, Sheng-Tao Yang, Jia-Hui Liu, Erya Dong, Yanwen Wang, Aoneng Cao, Yuanfang Liu, Haifang Wang. In vitro toxicity evaluation of graphene oxide on A549 cells [J].Toxicology Letters.2011.200(3):201-210.
    [17]Shaoling Wu, Xindong Zhao, Yanhui Li, Qiuju Du, Jiankun Sun, Yonghao Wang, Xin Wang, Yanzhi Xia, Zonghua Wang, Linhua Xia. Adsorption properties of doxorubicin hydrochloride onto graphene oxide:equilibrium, kinetic and thermodynamic studies [J]. Materials.2013.6(5):2026-2042.
    [18]Aubel-Sadron Geneveve, Londos-Gagliardi Danielle. Daunorubicinand and doxorubicin, anthracycline antibiotics, a physicochemical and biological review [J]. Biochimie.1984.66(5):333-352.
    [19]Guixia Zhao, Jiaxing Li, Xiangke Wang. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueoussolution to sulfonated graphene nanosheets [J]. Chemical Engineering Journal.2011.173 (1):185-190.
    [20]Bo Pan and Baoshan Xing. Adsorption mechanisms of organic chemicals on carbon nanotubes [J]. Environ. Sci. Technol.2008.42 (24):9005-9013.
    [21]Daohui Lin, Baoshan Xing. Adsorption of phenolic compounds by carbon nanotubes:role of aromaticity and substitution of hydroxyl groups [J]. Environ. Sci. Technol.,2008,42 (19):7254-7259.
    [22]Geim AK, Novoselov KS. The rise of grapheme [J]. Nature Materials.,2007, 6(3):183-191.
    [23]Lyseng-Williamson KA, Duggan ST, Keating GM. Pegylated liposomal Doxorubicin:a guide to its use in various malignancies [J]. BioDrugs.2013, 27(5):533-540.
    [24]Xiaoying Yang, Xiaoyan Zhang, Zunfeng Liu, Yanfeng Ma. Yi Huang. Yongsheng Chen. High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide [J]. Phys. Chem. C.2008.112(54):17554-17558.
    [25]徐志远,李永军,史萍,王博婵,黄晓宇.功能化石墨烯负载毛萼乙素抗肿瘤制剂的研究[J].有机化学,2013,6,25
    [26]徐志远,李永军,史萍,王博婵,黄晓宇.功能化石墨烯负载冬凌草甲素抗肿瘤制剂的研究[J].有机化学,2013,33,573-580.
    [27]Leila Hosseinzadeh, Javad Behravan, Fatemeh Mosaffa, Gholamreza Bahrarni,Ahmadreza Bahrami,Gholamreza Karimi. Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species [J],Food,chem..toxicol,2011,49(5):1102-1109.
    [28]Singh KK. Shukla.PC, Quan A, et al. BRCA2 protein deficiency exaggerated doxorubicin-induced cardiomyocyte apoptosis and cardiac failure [J]. J Biol Chem,2012,287(9):6604-6614
    [29]ZoranM. Markovic, Ljubica M. Harhaji-Trajkovic, Biljana M. Todorovic-Markovic In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes [J].Biomaterials,2011,32(4):1121-1129.
    [30]Yongnian Ni, Fangyuan Zhang, Serge Kokot, Graphene oxide as a nanocarrier for loading and delivery of medicinal drugs and as a biosensor for detection of serum albumin [J]. Analytica Chimica Acta,2013,769:40-48.
    [1]高力,陈幸华,张曦,等.异基因造血干细胞移植55例GVHD)的临床观察[J].重庆医学,2007:1722-1724.
    [2]谢晓恬.造血干细胞移植应用研究[J].同济大学学报(医学报),2009,30:1-4.
    [3]郭坨,侯健.多发性骨髓瘤的治疗现状与进展[J].中国实用内科学杂志,2006,26(12):892-894.
    [4]AS Edward. Multiple myeloma,2004-one or two transplants?[J].N. Engl. J. Med, 2003,349(26):2551-2553.
    [5]A Jemal, R Siegel, J Xu, E Ward. Cancer statistics,2010. CA Cancer J Clin.2010, 60(5):277-300.
    [6]VP Torchilin.Multifunctional nanocarriers. Adv Drug Deliv Rev.2006; 58 (14): 1532-1555.
    [7]B Haley, E Frenkel. Nanoparticles for drug delivery in cancer treatment. Urol Oncol. 2008,26(1):57-64.
    [8]R Duncan. Polymer conjugates as anticancer nanomedicines. Nat. Rev.Cancer.2006. 6(9):688-701.
    [9]Z Chen, D Pierre, H He, S Tan, C Pham-Huy, H Hong, J Huang. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes [J]. Int. J.Pharm,2011, 405(1-2):153-161.
    [10]AA Bhirde, V Patel, J Gavard, G Zhang, AA Sousa, A Masedunskas, RD Leapman, R Weigert, JS Gutkind, JF Rusling. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery.ACS.Nano.2009,3(2):307-316.
    [11]MF Tang, L Lei, SR Guo,WL Huang. Recent progress in nanotechnology for cancer therapy. Chin. J. Cancer.2010,29(9):775-780.
    [12]Chen X,Chen H,Tripisciano C,et al. Chen X, Chen H, Tripisciano C, Jedrzejewska A, Rummeli MH, Klingeler R, Kalenczuk RJ, Chu PK, Borowiak-Palen E Carbon-nanotube-basedstimuli-responsive controlled-release system. Chemistry.2011, 17(16):4454-4459.
    [13]A A Bhirde, A A Sousa, V Patel, AA Azari, JS Gutkind, RD Leapman, JF Rusling. Imaging the distribution of individual platinum-based anticancer drug molecules attached to single-wall carbon nanotubes. Nanomedicine,2009,4(7):763-772.
    [14]S Prakash, M Malhotra, W Shao, C Tomaro-Duchesneau, S Abbasi. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev.2011.63(14-15):1340-1351.
    [15]K Kostarelos, A Bianco, M Prato. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol.2009,4(10):627-633.
    [16]Liu Z, Robinson JT, Sun X,Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J].J Am Chem Soc,2008,130(33):10876-10877.
    [17]Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular Imaging and drug delivery. Nano Res.2008,1(3):203-212.
    [18]Yang XY, Zhang XY, MaYF,et al.Superparamagnetic grapheme oxide-Fe3O4 nanoprticles hybrid for controlled targeted drug carriers[J]. J Mater Chem,2009, 19:2710-2714.
    [19]Zhang L,Xia J,Zhao Q,Liu L,Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small.2010, 6(4):537-544.
    [20]Yang X Y, Zhang X Y, Liu Z F, et al. High-efficiency loading and controlled release of doxombicin hydrochloride on graphene oxide[J]. J Phys Chem C,2008,112: 17554-17558.
    [21]Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K. Drug-loaded carbon nanohornB:adsorption and release of dexamethasone in vitro[J]. Mol Pharm, 2004,1(6):399-405.
    [22]Yokoyama M, Fukushima S, UeharaR, Okamoto K, Kataoka K, Sakurai Y, Okano T. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor[J]. J Control Release,1998,50(1-3):79-92.
    [23]Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system[J]. Adv Drug Deliv Rev,2001; 47(1):55-64.
    [24]Zakharian TY, Seryshev A, Sitharaman B, Gilbert BE, Knight V, Wilson L. A fullerene-paclitaxel chemotherapeutic:synthesis,characterization, and study of biological activity in tissue culture[J]. J. Am. Chem. Soc.2005,127(36):12508-12509.
    [25]Yang J, Alemany LB, Driver J, Hartgerink JD, Barron AR. Fullerene-derivatized amino acids:synthesis, characterization,antioxidant properties, and solid-phase peptide synthesis[J] Chemistry 2007,13(9):2530-2545.
    [26]Tsuchiya T,Oguri I,Yamakoshi YN,Miyata N. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. [J] FEBS Lett.1996,393(1):139-145.
    [27]Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL.Nano-C60 cytotoxicity is due to lipid peroxidation[J].Biomaterials.2005 26(36):7587-7595.
    [28]Sayes C M,Fortner J D,Guo W,Lyon D,Boyd A M,Ausman K D,Tao Y J,Sitharaman B,Wilson L J,Hughes J B,West J L,Golvin V L..The differential cytotoxicity of water-soluble fullerenes[J].Nano letters,2004 4(10):1881-1887.
    [29]Fent K,Weisbrod CJ,Wirth-Heller A,Pieles U. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages[J]. Aquat Toxicol.2010,100(2):218-228.
    [30]Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression [J]. Environ. Health Perspect..2007, 115(7):1059-1065.
    [31]Cheng J,Flahaut E,Cheng SH. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. [J] Environ Toxicol Chem.2007,26(4):708-716.
    [32]Usenko CY,Harper SL,Tanguay RL. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish [J]. Toxicol. Appl. Pharmacol.2008, 229(1):44-55.
    [33]Usenko CY,Harper SL, Tanguag RL. In vivo evaluation of carbon fullerene toxicity using embronic zerbafish [J], Carbon N Y,2007,45(9):1891-1898.
    [34]朱小山,朱琳,朗宇鹏,李燕,端正花.富勒烯及其衍生物对斑马鱼胚胎发育毒性的比较[J].中国环境科学.2008,28(2):173-177.
    [35]张静姝,李大鸣,李云蕊,王春花,何宁,刘英华,张静.富勒烯对人胚肝细胞的氧化损伤[J].生态毒理学报.2011,6(2):149-153.
    [36]崔萌萌,王江伟,曹毅,毛彩霞,袭著革,杨旭.碳纳米管对小鼠心脏和肝脏组织SOD影响的研究[J].医学研究杂志,2008 37(2):21-23.
    [37]Shi Kam NW, Jessop TC, Wender PA, Dai H.Nanotube molecular transporters internalization of carbon nanotube-protein conjugates into mammalian cells [J]. J Am Chem Soc,2004,126 (22):6850-6851.
    [38]Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P.Exposure to carbon nanotube material:assessment of nanotube cytotoxicity using human keratinocyte cells [J]. J Toxicol Environ Health A, 2003,66(20):1909-1926.
    [39]Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes[J]. Nano Lett 200,5(9):1676-1684.
    [40]Cheng J, Flahaut E, Cheng SH. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos [J]. Environ Toxicol Chem 2007;26(4):708-716.
    [41]刘信勇,朱琳,黄碧捷,张阳.对斑马鱼体组织内酶活性的影响[J].环境科学研究.2009,22(07):838-842.
    [42]唐志扬,许楠,李振. 单壁碳纳米管对斑马鱼生理生化特性的影响.[J]生态与农村环境学报2012,28(6):694—699.
    [43]Yamaguchi Atsumi, Fujitani Tomoko, Ohyama Ken-ichi, Nakae Dai, Hirose Akihiko,Nishimura Tetsuji, Ogata Akio. Effects of sustained stimulation with multi-wall carbon nanotubes on immune and inflammatory responses in mice[J].J Toxicol. Sci. 2012,37 (1):177-89.
    [44]Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells [J]. Toxicol Lett,2011,200(3): 201-210.
    [45]王晓丹,周宁琳,汪炜燕,汤毅达,章峻,莫宏,沈健.羧基化氧化石墨烯-镧复合物抗凝血性能的研究[J].功能材料.2011,42(1)104-107.
    [46]Xiaoyong Zhang, Jilei Yin, Cheng Peng, Weiqing Hu, Zhiyong Zhu, Wenxin Li,Chunhai Fan, Qing Huang Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. [J]Carbon 201149:986-995.
    [47]Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I[J]. J.Biol. Chem.1985,260(27): 14873-14878.
    [48]Wani MC,Taylor HL,Wall ME,Coggon P,McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia [J]. J Am Chem Soc.1971,93(9):2325-2327.
    [49]Laginha KM, Verwoert S, Charrois GJ, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. [J]Clin Cancer Res.2005 11(19 Pt1):6944-6949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700