用户名: 密码: 验证码:
蛋白质修饰检测及定量新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质作为生命有机体的主要成分,与各种生命活动紧密相关,是生命现象的直接体现者,也是各种细胞功能的重要执行者。研究表明,蛋白质的翻译后修饰状况以及各种蛋白标记物的浓度变化与生命体新陈代谢情况直接相关,已成为疾病诊断、病情预测以及药效评估的重要依据,受到极大的关注与重视,多种疾病如癌症、糖尿病、代谢综合症、神经综合症的发生都和蛋白质的异常修饰、表达有着不同程度的相关性。因此,发展简单、快速、灵敏、准确的蛋白质修饰及定量新方法研究,已成为蛋白质研究的重点和热点,在生命科学研究和疾病的临床诊断领域具有十分重要的意义。作者在这一方面开展工作并取得了如下研究结果。
     1.模拟蛋白质生物素化的电化学研究
     利用电化学技术对转录调节和代谢中都起到重要作用的蛋白质生物素化进行了研究。在此项工作中,利用蛋白诱导的抑制元A (BirA)及其特异性底物多肽序列构建了蛋白质生物素化的模型,从而模拟了脂肪酸合成的关键步骤。作者使用金纳米颗粒(Au-NPs)将肽段自组装至金电极表面并被BriA酶生物素化后,亲合素修饰的辣根过氧化物酶复合物(Sav-HRP)被进一步连接至电极表面,从而催化过氧化氢(H2O2)和3,3',5,5'-四甲基联苯胺(TMB)之间的氧化还原反应,所获得的电化学信号响应及其变化,不仅证明了体外模拟生物素化的可能性,而且研究为蛋白质生物素化提供了新的技术支持。
     2.基于Au-NPs聚集检测蛋白质聚二磷酸腺苷核糖化的比色法研究
     在这一工作中,我们基于Au-NPs的非共价交联所引起紫外-可见吸收峰红移提出了检测人重组聚二磷酸腺苷核糖聚合酶(PARP)蛋白的自聚二磷酸腺苷(ADP)核糖化的新方法。研究表明,当体系中加入引发剂dsDNA后,PARP被活化形成同型二聚体,催化均匀分散在Au-NPs周围的保护剂NAD产生ADP核糖,开始分子间聚ADP核糖修饰。伴随NAD的消耗,Au-NPs因表面电荷被屏蔽而发生聚集,导致紫外-可见吸收峰红移。在此过程中,我们不仅可以通过紫外-可见吸收光谱动力学曲线准确表征自聚ADP核糖化的实时过程,还可以通过肉眼观察体系颜色变化简单判定聚ADP核糖化的发生。整个实验过程简单、灵敏,适用于PARP家族多种蛋白质的聚ADP核糖化研究。
     3.乳腺癌细胞表面糖蛋白灵敏检测的电化学研究
     基于Au-NPs和酶联催化构建了一种新型的检测乳腺癌细胞表面糖蛋白CD147的“三明治”构型电化学生物传感器。研究发现,只有当CD147存在时,才能够将生物素修饰的CD147多克隆抗体连接至电极表面,从而在电极表面形成抗体-抗原-抗体的“三明治”结构。进一步利用生物素和亲和素的高亲和力,将Sav-HRP连接至电极表面,通过检测TMB被HRP氧化的电信号来表征乳腺癌细胞表面糖蛋白的含量。在最优化的实验条件下,我们实现了125至1000pg/mL范围CD147蛋白的检测,检测限为52pg/mL,并且计算出单个乳腺癌细胞表面糖蛋白的表达量为2.57×104分子/细胞。这种检测乳腺癌细胞表面糖蛋白CD147的电化学生物传感器具有很好的灵敏度和选择性,有望用于肿瘤相关临床诊断及预后。
     4.基于小分子配体连接的DNA构建检测蛋白标记物的通用电化学方法
     作者利用小分子配体连接DNA和缺刻内切酶辅助信号放大构建了一种新型的针对蛋白标记物的电化学检测体系。具体而言,当与DNA连接的小分子配体和靶蛋白结合时,该DNA片段就能够避免被核酸外切酶降解。这种情况下,缺刻内切酶辅助信号放大过程被激活,导致之前修饰在电极表面的DNA探针被不断消化,从而使得电极表面自组装单层对电信号分子[Fe(CN)6]3-/4-的阻挡作用下降,引起电化学信号的明显上升。由于整个过程是由靶蛋白所激活,因此可以基于以上过程实现对靶蛋白标记物的电化学检测。在最优化的实验条件下,所构建的检测体系可以在0.3至15ng/mL范围内实现对一种模型标记物——叶酸受体的检测,其检测限为0.19ng,mL。该检测体系还可以通过简单替换与DNA连接的小分子结构域从而实现对其他蛋白标记物的检测。
     5.蛋白酶活性检测方法的电化学研究
     基于电极表面电荷变化提出了检测蛋白酶活性的电化学方法。首先,合成了一段两末端分别为半胱氨酸和精氨酸的带正电荷肽段,之后通过巯基与金的特殊作用力将肽段自组装到金电极表面。在pH=6.0的条件下修饰电极表面呈现正电性,对带正电荷的电信号分子有较强的静电排斥,因而电信号较小,而当修饰的肽段被蛋白酶水解后,带正电荷的精氨酸离开电极表面,修饰电极与电信号分子的静电排斥力减弱,因而电信号增大。在最优化的实验条件下,我们实现了模型蛋白酶0.5至15μg/mL范围检测。基于相同原理,通过改变底物肽段中酶切部分的序列,也可以实现对其他蛋白酶活性的电化学检测。
Protein, as one of the main components of living organisms, plays a key role in various activities of life. It not only directly reflects life phenomena, but also executes a variety of cell functions. Post-translational modification of protein includes the proteolytic cleavage and chemical modification at specific sites of newly synthesized proteins. Studies have shown that the status of protein post-translational modification, as well as the concentration of protein biomarkers, is directly related to human metabolism, disease diagnosis, prognosis and efficient evaluation of response to drug intervention. Many kinds of diseases, including cancer, diabetes, metabolic and neurological syndrome all correlate with the abnormal modification and expression of the proteins. Therefore, development of simple, rapid, sensitive and accurate method for protein modification and quantification has become the focus of protein research, which has great significance in life science and clinical diagnosis. In this thesis, the author will present the following findings.
     1. Simulation and assay of protein biotinylation with electrochemical technique.
     Protein biotinylation plays an important role in metabolism and transcription regulation, so study of protein biotinylation has received more and more interests. In this work, the bifunctional Escherichia coli biotin-inducible repressor protein A (BirA) and its substrate for protein biotinylation, a unique peptide with a specific sequence, are introduced as a model to electrochemically simulate the committed step in fatty acid biosynthesis. With the help of gold nanoparticles and peroxidase-labeled streptavdin involved in the electrochemical system, protein biotinylation is achieved on the surface of the working electrode, and the process of protein biotinylation can be electrochemically assayed by the obtained electrochemical response. Therefore, a new method to assay protein biotinylation is proposed and this work may provide a new perspective for understanding protein biotinylation in vitro.
     2. Gold nanoparticles based colorimetric assay of protein poly(ADP-ribosyl)ation.
     Protein poly(ADP-ribosyl)ation (PARylation) is a unique post-translational modification process catalyzed by poly(ADP-ribose) polymerases (PARP) involved in various cellular processes. In this chapter, auto-PARylation which is vital in poly(ADP-ribose) metabolism is studied with gold nanoparticles (Au-NPs). When the catalytic substrate of protein PARylation, nicotinamide adenine dinucleotide (NAD), is not cleaved into nicotinamide and ADP-ribose unit, the negative-charged NAD molecules are adsorbed on the surface of Au-NPs, keeping Au-NPs stable, so the color of the test solution is red. Nevertheless, after PARylation takes place, Au-NPs will aggregate due to unprotection of NAD, thus the color of the test solution changes to be blue. Furthermore, the spectrophotometric time-dependent curve of Au-NPs may character the process of auto-PARylation more sensitively and specifically. Due to the unnecessasity of coupled enzymes or modified catalytic substrates, this work may be followed by investigating the PARylation of other proteins in the future.
     3. Sensitive detection of CD147and its expression on cancer cells with electrochemical technique.
     Cluster of differentiation147(CD147), also known as extracellular matrix metalloproteinase inducer (EMMPRIN), plays an essential role in tumor progression and metastasis, the expression of which on cell surface is a critical clinical testing index for cancer therapy. In this work, an electrochemical method to assay CD147/EMMPRIN expression on tumor cell surface is proposed. While the oxidation of3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by horseradish peroxidase (HRP) can be employed for electrochemical measurement, the signal enhancement amplified by Au-NPs can be also utilized in this study. Therefore, under optimized conditions, the fabricated biosensor responds linearly to the CD147/EMMPRIN concentration from125to1000pg/mL with a detection limit as low as52pg/mL. Moreover, the CD147/EMMPRIN expressed on a single breast cancer cell can be calculated as2.57×104molecules/cell. So, the proposed strategy in this study with considerable potential for monitoring the dynamic protein expression on cancer cells may contribute to the effective diagnosis and treatment for cancers in the future.
     4. Protein detection based on small molecule-linked DNA with electrochemical technique.
     In this chapter, based on small molecule-linked DNA and the nicking endonuclease-assisted amplification (NEA) strategy, a novel electrochemical method for protein detection is proposed in this work. Specifically, the small molecule-linked DNA (probe1) can be protected from exonuclease-catalyzed digestion upon binding to the protein target of the small molecule, so the DNA strand may hybridize with another DNA strand (probe2) that is previously immobilized onto an electrode surface. Consequently, the NEA process is triggered, resulting in continuous removal of the DNA strands from the electrode surface, and the blocking effect against the electrochemical species [Fe(CN)6]3-/4-becomes increasingly lower; thus, increased electrochemical waves can be achieved. Because the whole process is activated by the target protein, an electrochemical method for protein quantification is developed. Taking folate receptor (FR) as an example in this work, we can determine the protein in a linear range from0.3to15ng/mL with a detection limit of0.19ng/mL. Furthermore, because the method can be used for the assay of FR in serum samples and for the detection of other proteins such as streptavidin by simply changing the small molecule moiety of the DNA probes, this novel method is expected to have great potential applications in the future.
     5. Sensitive detection for protease activity with electrochemical technique.
     In this study, we have designed and synthesized a positively charged peptide, which has a cysteine at one end, an arginine at the other end. The peptide can self-assemble onto a gold electrode through the special force of Au-S bond and the modified electrode shows positive charge, which has a strong electrostatic repulsion of the positively charged signal molecules. When the modified electrode incubates with protease, arginine leaves from the electrode surface leading to the weakened repulsion, thus the electrochemical signal increases. Therefore, taking trypsin as an example, under optimized conditions, the fabricated biosensor responds to trypsin concentration from0.5to15μg/mL. Furthermore, based on the same principle, via the change of cleavage sequence of the peptide, the system is applicable for the detection of other protease activities.
引文
1. Heineman W.R., Hawkridfe F.M., Blount H.N. Electroanalytical Chemistry (Bard, A.J. Ed.) New York, Marcel Dekker,1984,13.
    2. Buttry D.A. Electroanalytical Chemistry (Bard, A.J. Ed.) New York, Marcel Dekker,1991,17.
    3. Wang J. Analytical Electrochemistry New York:VCHPublishers,1994.
    4. Bard A.J., Abruna H.D., Chidsey C.E., Faulkner L.R., Fedldberg S.W., Itaya K., Melroy O., Murry R.W., Porter M.D., Soriaga M.P., Whiter H.S. J. Phys. Chem. 1993,97,7147.
    5. Watkins B.F., Behling J.R., Kariv E., Miller L.L. Chiral electrode, J. Am. Chem. Soc.1975,97,3549.
    6. Moses P.R., Wier L., Murry R.W. Anal. Chem.1975,47,1882.
    7. Snyder S.R., White H.S. Anal. Chem.1992,64,116R.
    8. Lui N. Y., Fan F.R.F., Lui C. W., Bard A.J. J. Am. Chem. Soc.1986,108,3838.
    9. Shirsat M.D., Too C.O., Wallace G. Electroanalysis 2008,20,150.
    10. Zhang L., Zhang Q., Li J.Adv. Funct. Mater.2007,17,1958.
    11. De Wael K., Van Vlierberghe S., Buschop H., Dubruel P., Vekemans B., Schacht E., Vincze L., Adriaens A. Surf. Interface. Anal.2009,41,389.
    12. Loftus A.F., Reighard K.P., Kapourales S.A., Leopold M.C. J. Am. Chem. Soc. 2008,130,1649.
    13. Xiang C., Zou Y., Sun L., Xu F. Electrochem. Comm.2008,10,38.
    14. Chen X., Fu C., Yang W. Analyst 2009,134,2135.
    15. Bunker B.C., Pieke P.C., Tarasevich B.J. Science 1994,264,48.
    16.杨生荣,任嗣利,高等学校化学学报2001,22,470.
    17. Crooks R.M., Ricco A.J. Acc. Chem. Res.1998,31,219.
    18.李景虹,程广金,董绍俊 化学通报1995,10,11.
    19. Stoermer R.L., Cederquist K.B., McFarland S.K., Sha M.Y., Penn S.G., Keating C.D. J. Am. Chem. Soc.2006,128,16892.
    20. Nakamura F., Ito E., Sakao Y, Ueno N., Gatuna I.N., Ohuch, F.S., Hara M. Nano Lett.2003,3,1083.
    21. Glynou K., Ioannou P.C., Christopoulos T.K., Syriopoulou V. Anal. Chem.2003, 75,4155.
    22. Lao R., Song S., Wu H., Wang L., Zhang Z., He L., Fan, C. Anal. Chem.2005,77, 6475.
    23. Zhang J., Song S., Zhang L., Wang L., Wu H., Pan D., Fan C. J. Am. Chem. Soc. 2006,128,8575.
    24. Liu D., Bruckbauer A., Abell C., Balasubramanian S., Kang D.J., Klenerman D., Zhou D. J. Am. Chem. Soc.2006,128,2067.
    25. Devadoss A., Burgess J.D. Langmuir 2002,18,9617.
    26. Yasutomi S., Morita T., Kimura S. J. Am. Chem. Soc.2005,127,14564.
    27. Lu C., Czanderna A.W. Applications of Piezoelectric Quartz Crystal Microbalances 1984, Amsterdam:Elsevier.
    28. Bai C. Scanning tunneling microscopy and its applications 2000, New York: Springer Verlag.
    29. Giessibl F.J. Rev. Mod. Phys.2003,75,949.
    30. Lui N.Y., Fan F.R. F., Lui C.W., Bard, A J. J. Am. Chem. Soc.1986,108,3838.
    31. Appel R.D, Bairoch A. Post-translational modifications:A challenge for proteomics and bioinformatics. Proteomics 2004,4,1525.
    32. Mann M., Jensen O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol.2003,21,255.
    33. Seo J., Lee K.J. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J. Biochem. Mol. Biol.2004,37, 35.
    34. Fan C.H., Wang H.Y., Sun S. et al. Anal. Chem.2001,73,2850.
    35. Shen M, Wang J, Yang M. et al. Electrochem. Commun.2011,13,114.
    36. Wang J, Liang Z Q, Wang L H, et al. Sensor Actuat B,2007,125,17.
    37. Li GX. Protein-based voltammetric sensors. Vol.8 of Encyclopedia of sensors, Grimes C.A., Dickey E.C., Pishko M.V.(Eds.), Stevenson Ranch:American Scientific Publishers,2006,301.
    38. Li G.X. Heme protein-based electrochemical biosensors. Vol.5 of Handbook of porphyrin science, Kadish K.M., Smith K.M., Guilard R.(Eds.), Singapore: World Scientific Publishing,2010,203.
    39. LI G.X(李根喜)Electrochemical study of protein enzyme. Journal of Shanghai University (Natural Science)(上海大学学报(自然科学版)),2011,17,567.
    40. Xiao H., Zhou H., Chen G.F. et al. J. Proteome. Res.2007,6,1426.
    41. Zhang K., Zhu X.L., Wang J. et al. Anal. Chem.2010,82,3207.
    42. Liu T., Zhu W., Yang X. et al. Anal. Chem.2009,81,2410.
    43. Yang Q.L., Zhao J., Zhou N.D. et al. Biosens. Bioelectron.2011,26,2228.
    44. Huang J.Y, Chen L., Zhang X., et al..Electrochem. Comm,2008,10,451.
    45. Zhou N.D., Cao Y., Li G.X. Sci. China. Chem.2010,53,720.
    46. Cao Y., Wang J., Xu Y. et al. Biosens. Bioelectron.2010,26,87
    47. Berg J.M., Tymoczko J.L., Stryer L. Biochemistry.5th edition. New York: W H Freeman; Many Enzymes Are Activated by Specific Proteolytic Cleavage.2002.
    48. Hooper N.M. Proteases in Biology and Medicine. London: Portland Press,2002.
    49. Neurath H. Proteolytic enzymes, past and future. Proc. Natl. Acad. Sci.1999,96, 10962.
    50. Birkedal-Hansen H., Moore W.G., Bodden M.K., Windsor L.J., Birkedal-Hansen B., DeCarlo A., Engler J.A. Crit. Rev. Oral. Biol. Med.1993,4,197
    51. Kessenbrock K., Plaks V., Werb Z. Cell 2010,141,52
    52. Deryuqina E.I., Quiqley J.P. Cancer Metastasis Rev.2006,25,9.
    53. Westermarck J., Kahari V.M. FASEB J.1999,13,781.
    54. Liu G., Wang J., Wunschel D.S., Lin Y. J. Am. Chem. Soc.2006,128,12382.
    55. Ji J., Gan J., Kong J., Yang P., Liu B., Ji C. Electrochem. Commun.2012,16,53.
    56. Zhao N., He Y., Mao X., Sun Y., Zhang X., Li C.Z., Lin Y and G Liu. Electrochem. Commun.2010,12,471.
    57. Adjemian J., Anne A., Cauet G. Langmuir 2010,26,10347.
    58. Ohtsuka K., Maekawa I., Waki M. Anal. Biochem.2009,385,293.
    59. Xiao H., Liu L., Meng F.B. Anal. Chem.2008,80,5272.
    60. Zhang J.J., Zheng T.T., Cheng F.F. Chem. Commun.2011,47,1178.
    61. Manning G, Whyte D.B., Martinez R. et al. Science 2002,298,1912.
    62. Cohen P. Nat. Rev. Drug. Discov.2002,1,309.
    63. Song H., Kerman K., Kraatz H. Chem. Commun.2008,44,502.
    64. Kerman K., Kraatz H.B. Electrochemical detection of protein tyrosine kinase-catalysed phosphorylation using gold nanoparticles.10th World Congress on Biosensors. MAY 14-16,2008.
    65. Wang J., Cao Y., Li Y. et al. J. Electroanal. Chem.2011,656,274.
    66. Miao P., Ning L.M., Li X.X. et al. Bioconjugate Chemistry 2012,23,141.
    67. Yang Y., Guo L.H., Qu N. et al. Biosens Bioelectron,2011,28,284.
    68. Wieckowska A., Li D., Gill R. Chem. Commun.2008,20,2376.
    69. Freeman R., Finder T., Gill R. Nano. Lett.2010,10,2192.
    70.LI J.(李军),DU X.(杜鑫),Bulletin of Science and Technology(科技通报),2009,25,773.
    71. Varki A. Glycobiology 1993,3,97.
    72. Ohtsubo K., Marth J. D. Cell 2006,126,855.
    73. Marth J.D.,Grewal P.K. Nat. Rev. Immunol.2008,8,874.
    74. Crocker P.R., Feizi, T. Curr. Opin. Struct. Biol.1996,6,679.
    75. Feizi T. Immunol. Rev.2000,173,79.
    76. Bertozzi C.R., Kiessling L.L. Science 2001,291,2357.
    77. Du D., Ju H.X., Zhang X.J. Biochemistry 2005,44,11539.
    78. Zhang J.J., Cheng F.F., Zheng T.T. Anal. Chem.2010,82,3547.
    79. Adamczyk M., Chen Y.Y., Johnson D.D. et al. Bioorg. Med. Chem.2006,16, 1324-1328.
    80. Nathan D.M., Turgeon H., Regan S. Diabetologia.2007,50,2239.
    81. Park J.Y., Chang B.Y., Nam H. et al. Anal. Chem.2008,80,8035.
    82. Song S.Y., Yoon H.C. Sensor Actuat. B.2009,140,233.
    83. Suzuki K., Yagi K., Oka R. et al. Clin. Chem. Lab. Med.2009,47,70.
    84. Yang J.H., Zhao J., Xiao H. et al. Electroanalysis 2011,23,463.
    85. Clarke R., Daly L., Robinson K. et al. N. Engl. J. Med.1991,324,1149.
    86. Yang X., Gao Y, Zhou J. Clin. Chim. Acta.2006,364,230.
    87. Perla-Kajan J., Twardowski T., Jakubowski H. Amino Acids 2007,32,561.
    88. Jakubowski H. J. Nutr.2006,136,1741S.
    89. Perla-Kajan J., Marczak L., Kajan L. et al. Biochemistry 2007,46,6225.
    90. Zhao J., Zhu W., Liu T. et al Anal. Bioanal. Chem.2010,397,695.
    91. Zhao S.M., Xu W., Jiang W.Q. Science 2010,327,1000.
    92. Wang Q. Science 2010,327,1004.
    93. Choudhary C., Kumar C., Gnad F. Science 2009,325,834.
    94. Yi C., Ma M.S., Ran L.L. Science 2012,336,474.
    95. So Minjeong, Hvastkovs Eli G. Bajrami Besnik. Anal. Chem.2008,80,1192.
    96.张爱梅,王荣,谢华,谢希晖,施有琴,贾正平.生物技术通讯2011,1,130.
    97. Lequin R.M. Clinical Chemistry 2005,51,2415.
    98. Engvall E., Perlmann P. Immunochemistry 1971,5.
    99. Vanweeme B.K, Schuurs A.H.W. FEBS Letters 1971,15,232.
    100. Zillikens D., Mascaro J.M., Rose P.A. Journal of Investigative Dermatology 1997,109,679.
    101.Wodzig K.W.H, Pelsers M.M.A., vanderVusse G.J. Annals of Clinical Biochemistry 1997,34,263.
    102. Nakano Y., Tajima S., Yoshimi A. Journal of Lipid Research 2006,47,1572.
    103. Jones M.E., Fox A.J., Barnes A.J. Journal of Clinical Pathology 1998,51,652.
    104. Ambrosi A., Airo F., Merkoci A. Anal. Chem.2010,82,1151.
    105. Lee D.C., Stenland C.J., Hartwell R.C. Journal of Virological Methods 2000,84, 77.
    106.毛俐,袁若,杨霞,袁世蓉,廖玉红,牛欢.化学传感器2011,3,1.
    107. Zhou W.H., Zhu C.L., Lu C.H. Chem. Commun.2009,44,6845.
    108. Ho J.A.A, Wauchope R.D. Anal. Chem.2002,74,1493.
    109. Ko S.H., Park T.J., Kim H.S. Biosens. Bioelectron.2009,24,2592.
    110. Li L.L., Liu K.P., Yang G.H. Advanced Functional Materials 2011,21,869.
    111. Janata J. J. Am. Chem. Soc.1975,97,2914.
    112. Qiang Z., Yuan R., Chai Y.Q. Electrochimica ACTA 2006,51,3763.
    113.李毓琦,陈开全,何俊等.分析化学1993,21,129.
    114.彭图治,祝方猛,程琼.分析化学2001,29,383.
    115. Prabhulkar S., Alwarappan S., Liu GD., Biosens. Bioelectron.2009,24,3524.
    116. Akram M., Stuart M.C., Wong D.K.Y. Electroanalysis 2006,18,237.
    117. Fredriksson S., Gullberg M., Jarvius J. Biotechnology 2002,20,473.
    118. Hu J., Wang T., Kim J., Shannon C., Easley J.C. J. Am. Chem. Soc.2012,134, 7066.
    119. Zhao W.A., Ali M.M., Brook M.A. Angew. Chem. Int. Ed.2008,47,6330.
    120. Cheng W., Yan F., Ding L. Anal. Chem.2010,82,3337.
    121. Du D., Zou Z.X., Shin Y.S. Anal. Chem.2010,82,2989.
    122. Tang D.P., Yuan R., Chal Y..Q. Anal. Chem.2008,80,1582.
    123. Polsky R., Harper J.C., Wheeler D.R. Chem. Commun.2007,26,2741.
    124. Wang J., Liu G.D., Lin Y.H. Small 2006,2,1134.
    125. Iliuk Anton B., Hu Lianghai, Tao W. Andy. Anal. Chem.2011,83,4440.
    126. Li J.J., Fang X., Tan W. Biochem. Biophys. Res. Comm.2002,292,31.
    127. Liu Y., Tuleouva N., Ramanculov E. Anal. Chem.2010,82,8131.
    128. Huang C.C., Huang Y.F., Cao Z.H. Anal. Chem.2005,77,5735.
    129. Polsky R., Gill R., Kaganovsky L. Anal. Chem.2006,78,2268.
    130. Lu C.H., Yang H.H., Zhu C.L. Angew. Chem. Int. Ed.2009,48,4785.
    131. Chang H.X., Tang L.H., Wang Y. Anal. Chem.2010,82,2341.
    132. Pu Y, Zhu Z., Han D. Analyst 2011,136,4138.
    133. Xu, Y., Lunnen, K.D., Kong, H.M. Proc. Natl. Acad. Sci.2001,98,12990.
    134. Xu W., Xue X.J., Li T.H.Angew. Chem. Int. Ed.2009,48,6849.
    135. Kong R.M., Zhang X.B., Chen Z. Anal. Chem.2011,83,7603.
    136. Zou B.J., Ma Y.J., Wu H.P. Angew. Chem. Int. Ed.2011,50,7395.
    137. Kiesling T., Cox K., Davidson E.A. Nucleic Acid Research 2007,35,18.
    138. Xue L.Y., Zhou X.M., Xing D. Anal. Chem.2012,84,3507.
    139. Cash K.J., Ricci F., Plaxco K.W. J. Am. Chem. Soc.2009,131,6955.
    140. Henne W.A., Doorneweerd D.D., Lee J. Anal. Chem.2006,78,4880.
    141. Aili D., Selegard R., Baltzer L. Small 2009,5,2445.
    142. Tan Y.N., Su X.D., Zhu Y.ACS nano 2010,4,5101.
    143. Xu X.Y., Zhao Z., Qin L.D. Anal. Chem.2008,80,5616.
    144. Ou L.J., Jin P.Y., Chu X. Anal. Chem.2010,82,6015.
    145. Bonham A.J., Hsieh K.W., Ferguson B.S. J. Am. Chem. Soc.2012,134,3346.
    146. Gorodetsky A.A., Ebrahim A., Barton J.K. J. Am. Chem. Soc.2008,130,2924.
    147. Shen M., Yang M., Li H. Electrochimica ACTA 2012,60,309.
    148.江丽,兰小鹏Chinese Journal of Biochemistry and Molecular Biology 2009, 25,99.
    149. Wang X.H., Wu L., Ren J.S. Biosens. Bioelectron.2011,26,4804.
    150. Wang X.H., Wang C.Y., Qu K.G. Advan. Mater.2010,20,3967.
    151. Gerasimov J.Y., Lai R.Y. Chem. Commun.2010,46,395.
    152. Wu J., Cropek D.M., West A.C. Anal. Chem.2010,82,8235.
    153.张立德,牟季美.纳米材料和纳米结构与性质,科学出版社,北京,2001.
    154.张阳德.纳米生物技术丛书,化学工业出版社,北京,2005.
    155.贺集诚一郎.表面,1988,26,27.
    156. Comotti M., Della Pina C., Matarrese R., Rossi M. Angew. Chem., Int. Ed.2004, 45,5812.
    157. Corma A., Garcia H. Chem. Soc. Rev.2008,37,2096.
    158. Luo W.J., Zhu C.G., Su S.ACS nano 2010,4,7451.
    159. Henglein A. et al. Chem. Rev.,1989,89,1861.
    160. Brust M., Fink J., Bethell D., Schiffrin D.J., Kiely C.J. Chem. Commun.1995, 1655.
    161. Nakamura K., Kawabata T., Mori Y. Powder Technol.2003,131,120.
    162. Schmid G., Chi L. F. Adv. Mater.1998,10,5151.
    163. Brust M., Kiely C.J. Colloids Suif. A:Physicochem. Eng. AsP.2002,202,175.
    164. Binnig G., Quate C.F., Gerber C. Phys. Rev. Lett.1986,56,930.
    165. Frens G. Nature Phys. Sci.1973,241,20.
    166. Vander Hulst H.C. Light scattering by small metal particles. New York:John Wiley& Sons 1957.
    167. Holland J.T., Lau C., Brozik S. J. Am. Chem. Soc.2011,133,19262.
    168. Zayats M., Katz E., Baron R. J. Am. Chem. Soc.2005,127,12400.
    169. Liu L., Zhu X.L., Zhang D.M. Electrochem. Commun.2007,9,2547.
    170. Zhang J.J., Zheng T.T., Cheng F.F. Anal. Chem.2011,83,7902.
    171. Authier L., GrossiordC., Brossier P. Anal. Chem.2001,73,4450.
    172. Suprun E., Shumyantseva V., Bulko T. Biosens. Bioelectron.2008,24,825.
    173. Zhu Z.Q., Su Y.Y., Li J. Anal. Chem.2009,81,7660.
    174. Deng C., Chen J., Nie Z., Wang M., Chu X., Chen X., Xiao X. Lei C., Yao S. Anal. Chem.2009,81,739.
    175. Storhoff J.J., Elghanian R., Mucic R.C., Mirkin C.A., Letsinger R.L. J. Am. Chem. Soc.1998,120,1959.
    176. Elghanian R., Storhoff J.J., Mucic R.C., Letsinger R.L., Mirkin C.A., Science 1997,277,1078.
    177. Zhu X.L., Zhao J., Wu Y. Anal. Chem.2011,83,4085.
    178. Zhao J., Liu T., Fan Q. Chem. Commun.2011,47,5262.
    179. Chen C., Zhao C.Q., Yang X.J. Advan. Mater.2010,22,389.
    180. Song G.T., Chen C., Ren J.S. ACS nano 2009,3,1183.
    181. Lu W.Y., Arumugam R., Senapati D. ACS nano 2010,4,1739.
    182. Li H., Rothberg L. PNAS 2004,101,14036.
    183. Li H., Rothberg L. J. Am. Chem. Soc.2004,216,10958.
    184. Lee J.H., Wang Z.D., Liu J.W. J. Am. Chem. Soc.2008,130,14217.
    185. Li W., Nie Z., He K., Xu X., Li Y. Chem. Commun.2011,47,4412.
    1. Pacheco A.D., Solorzano-Vargas R.S. et al. Arch. Med. Res.2002,33,439.
    2. Rodriguez-Melendez R., Zempleni J. J Nutr. Biochem.2003,14,680.
    3. Gravel R. A., Narang M.A. J Nutr. Biochem.2005,16,428.
    4. Rodriguez-Melendez R., Cano S., Mendez S.T., JNutr.2001,131,1909.
    5. Abdel-Hamid A.M., Cronan J.E. J. Bacteriol.2007,189,369.
    6. Beckett D. Biotin Sensing at the Molecular Level. J. Nutr.2009,139,167.
    7. Lee C.K. et al Proteins-Structure Function and Bioinformatics 2008,72,613.
    8. Ng B. et al. Anal. Biochem.2008,376,131.
    9. Pendini N.R. et al. Arch. Biochem. Biophys.2008,479,163.
    10. Beckett D., Kovaleva E., Schatz P. J. Protein Sci.1999,8,921.
    11. Fernandez-Suarez M., Chen T.S., Ting A.Y. et al. J. Am. Chem. Soc.2008,130, 9251.
    12. Athavankar S., Peterson B.R. Chem. Biol.2003,10,1245.
    13. Brown P.H., Cronan J.E., Grotli M., Beckett D. J. Mol. Biol.2004,337,857.
    14. Howarth M., Takao K., Hayashi Y., Ting A.Y. Proc. Natl. Acad. Sci.2005,102, 7583.
    15. Mani V., Chikkaveeraiah B.V., Patel V., Gutkind J.S., Rusling, J.F. Acs Nano 2009, 3,585.
    16. Ahirwal GK., Mitra C.K. Sensors 2009,9,881.
    17. Choi-Rhee E., Schulman H., Cronan J.E. Protein Sci.2004,13,3043.
    18. Liu J.Y., Tian S.J., Tiefenauer L. et al. Anal. Chem.2005,77,2756.
    19. Liu G. et al.J. Am. Chem. Soc.2008,130,6820.
    20. Luo X.L., Xu J.J., Zhang Q., Yang G.J., Chen, H.Y. Biosens. Bioelectron.2005, 21.190.
    21. Storhoff, J.J., Elghanian. R., Mucic, R. C., Mirkin, C. A., Letsinger, R. L., J. Am. Chem. Soc.1998,120,1959.
    22. Liu J., Lu Y., Nat. Protocol.2006,1,246.
    1. Schreiber V. et al. Nature Reviews Molecular Cell Biology 2006,7,517.
    2. Kim M.Y., Zhang T. et al. Genes. & Dev.2005,19,1951.
    3. L'ASZL'O VIR'AG, CSABA SZAB'O. Pharmacological reviews 2002,54, 375.
    4. Beneke S., Burkle A. Nucleic Acids Research 2007,35,7456.
    5. Beneke S., Burkle A. Poly(ADP-ribosyl)ation, PARP, and Aging. Science of Aging Knowledge Environment.2004.
    6. Tao W., Cynthia M., Simbulan R. et al. J. Cell. Biochem.2008,104,318.
    7. Luo R.B., Smulson M.E. et al. Cancer Research 1999,59,2190.
    8. Smulson M.E., Pang D., Jung M. et al. Cancer Res.1998,58,3495.
    9. Miwa M., Masutani M. Cancer Sci.2007,98,1528.
    10. Masutani M., Miwa M. Jpn J Clin Oncol.2002,32,483.
    11. Trofimova I., Dimtchev A., Jung M. et al. Cancer Research.2002,62,6879.
    12. Cepeda V., Fuertes M.A., Castilla J. et al. Recent Patents on Anti-Cancer Drug Discovery.2006,1,39.
    13. Jorgensen T.M., Chen K., Chasovskikh S. et al. J. Mol. Recognit.2009,22,446.
    14. Phyllis L. Panzeter, Felix R. Althaus.1994,33,9600.
    15. Lonskaya I., N. Potaman V.N., Shlyakhtenko L.S. et al. Journal of Cellular Biochemistry.2005,280,17076.
    16. Soldatenkov V.A., Vetcher A.A., Duka T., Ladame S. ACS Chem. Biol.2008,3, 214.
    17. Decker P., Miranda E.A., Murcia G. de, Muller S. Clin. Cancer Res.1999,5, 1169.
    18. Liu X.S., Palma J., Kinders R., Shi Y. et al. Analytical Biochemistry 2008,381, 240.
    19. Putta K.S., Hergenrother P.J. Analytical Biochemistry 2004,326,78.
    20. Edina B., Peter B., Eva S., Janos H. et al. The Journal of Histochemistry & Cytochemistry 2002,50,91.
    21. Nottbohm A.C., Dothager R.S., Putt K.S. et al. Angew. Chem. Int. Ed.2007,46, 2066.
    22. Storhoff J.J., Lazarides A.A., Mucic R.C. et al. J. Am. Chem. Soc.2000,122, 4640.
    23. Storhoff, J.J., Elghanian. R., Mucic, R. C. et al. J. Am. Chem. Soc.1998,120, 1959.
    24. Zhao W.A., Chiuman W. et al. Chem. Commun.2007,36,3729.
    25. Jia H.Y., Liu Y., Zhang X.J. et al. J. Am. Chem. Soc.2009,131,40.
    26. Medley CD., Smith J.E., Tang Z. et al. Anal. Chem.2008,80,1067.
    27. Hauser E. A., Colloidal phenomena:an Introduction to the Science of Colloids, McGraw-Hill, New York-London,1939.
    28. Li H., Rothberg L., Proc. Natl. Acad. Sci.2004,101,14036.
    29. Sato K., Hosokawa K., Maeda M., J. Am. Chem. Soc.2003,125,8102.
    30. Wang L., Liu X., Hu X., Song S. Chem. Commun.,2006,2,3780.
    31. Lonskaya I., Potaman V.N., Shlyakhtenko L.S. et al. J. Biol. Chem.2005,280, 7076.
    32. Soldatenkov V.A., Vetcher A.A., Duka T.et al. ACS Chem. Biol.,2008,3,214..
    33. Emmanuelle P., Ullmann G.M., Jean-Christophe A. et al. Biochemistry 2005,44, 14670.
    34. Centi S., Tombelli S., Minunni M., Mascini M.Anal, Chem.2007,79,1466.
    1. Biswas C., Zhang Y., Decastro R. et al. Cancer. Res.1995,55,434.
    2. Kim S., Takahashi H., Lin W.W. et al. Nature 2009,457,102.
    3. Stewart C.J.R., Crook M.L. Pathol. Res. Pract.2011,207,30.
    4. Liotta L.A., Kohn E.C. Nature 2001,411,375.
    5. Zheng H.C., Takahashi H., Mural Y. et al. Brit. J. Cancer.2006,95,1371.
    6. Ju X.Z., Yang J.M., Zhou X.Y. et al. Clin. Cancer Res.2004,14,494.
    7. Reimers N., Zafrakas K., Assman V. et al. Clin. Cancer Res.2004,10,3422.
    8. Du Z.M., Hu C.F., Shao Q., Huang M.Y. et al. Int. J. Cancer.2009,125,1832.
    9. Guo H.M., Li R.S., Zucker S., Toole B. Cancer Res.2000,60,888.
    10. Wang J., Cao Y, Li Y, Liang Z.Q., Li G.X. J Electroanal. Chem.2011,656,274.
    11.Orendorff C.J.,Gole A., Sau T.K., Murphy C.J. Anal. Chem.2005,77,3261.
    12. Zhu X.L., Cao Y., Liang Z.Q., Li G.X. Protein Cell 2010,1,842.
    13. Fan Q., Zhao J., Li H., Zhu X.L., Li G.X. Biosens. Bioelectron.2012,33,211.
    14. Wu Y, Zheng J.W., Li Z. et al. Biosens. Bioelectron.2009,24,1389.
    15. Zhang X.N., Teng Y.Q., Fu Y. et al. Protein Cell 2010,1,842.
    1. Nam J.M., Thaxton C.S., Mirkin C.A. Science 2003,301,1884.
    2. Mani V., Chikkaveeraiah B.V., Patel V. et al. ACS Nano 2009,3,585.
    3. Wang H.Q., Wu Z., Tang L.J. et al. Nucleic Acids Res.2011,39, e122.
    4. Zhou W.H., Zhu C.L., Lu C.H. et al. Chem. Commun.2009,6845.
    5. Wang J., Cao Y., Xu Y.Y., Li G.X. Biosens. Bioelectron.2009,25,532.
    6. Lee J., Icoz K., Roberts A. et al. Anal. Chem.2010,82,197.
    7. Liu X.Q., Freeman R., Golub E., Willner I. ACS Nano 2011,5,7648.
    8. Pu Y., Zhu Z., Han D. et al. Analyst 2011,136,4138.
    9. Lee Y.J., Lee S.W. Biochem. Biophys. Res. Commun.2012,417,521.
    10. Lupold S.E., Hicke B.J., Lin Y., Coffey D.S. Cancer Res.2002,62,4029.
    11. Iliuk A.B., Hu L.H., Tao W.A. Anal. Chem.2011,83,4440.
    12. Lubin A.A., Plaxco K.W. Acc. Chem. Res.2010,43,496.
    13. Shi H., He X.X., Wang K.M. et al. Proc. Natl. Acad. Sci.2011,108,3900.
    14. Song S.P., Wang L.H., Li J. et al. TrAC-Trends Anal. Chem.2008,27,108.
    15. Chang H.X., Tang L.H., Wang Y. et al. Anal. Chem.2010,82,2341.
    16. Xiao Y., Lubin A.A., Heeger A.J., Plaxco K.W. Angew. Chem. Int. Ed.2005,44, 5456.
    17. Wang J., Meng W.Y., Zheng X.F. et al. Biosens. Bioelectron.2009,24,1598.
    18. Huang C.C., Chiu S.H., Huang Y.F., Chang H.T. Anal Chem.2007,79,4798.
    19. Harris D.C., Chu X.Z., Jayawickramarajah J. J. Am. Chem. Soc.2008,130, 14950.
    20. Harris C., Chu X.Z.; Jayawickramarajah J. Supramol. Chem.2009,21,316-323.
    21. Saghatelian A., Guckian K.M., Thayer D.A. et al. J. Am. Chem. Soc.2003,125, 344.
    22. Wu Z., Wang H.Q., Guo M. et al. Anal. Chem.2011,83,3104.
    23. Wu Z., Zhen Z., Jiang J.H. et al. J. Am. Chem. Soc.2009,131,12325.
    24. Harris D.C., Saks B.R., Jayawickramarajah J. J. Am. Chem. Soc.2011,133, 7676.
    25. Melkko S., Zhang Y.X., Dumelin C.E. et al. Angew. Chem. Int. Ed.2007,46, 4671.
    26. Kleiner R.E., Dumelin C.E., Tiu G.C. et al. J. Am. Chem. Soc.2010,132,11779.
    27. Henne W.A., Doorneweerd D.D., Lee J. et al. Anal. Chem.2006,78,4880.
    28. Puig-Kroger A., Sierra-Filardi E., Dominguez-Soto A. et al. Cancer Res.2009, 69,9395.
    29. Low P.S., Henne W.A., Doorneweerd D.D. Ace. Chem. Res.2008,41,120.
    30. Zhu X.L., Zhao J., Wu Y., Shen Z.M., Li G.X. Anal. Chem.2011,83,4085.
    31. Chen J.H., Zhang J., Li J.A. et al. Chem. Commun.2010,46,5939.
    32. Jie G.F., Wang L., Yuan J.X., Zhang S.S. Anal. Chem.2011,83,3873.
    33. Xu W., Xue X.J., Li T.H. et al. Angew. Chem. Int. Ed.2009,48,6849.
    34. Miao P., Liu L., Nie Y.J., Li G.X. Biosens. Bioelectron.2009,24,3347.
    35. Xu Y., Lunnen K.D., Kong H.M. Proc. Natl. Acad. Sci.2001,98,12990.
    36. Cao Y., Wang J., Xu Y.Y., Li G.X. Biosens. Bioelectron.2010,26,87.
    37. Hsieh K., Xiao Y., Soh H.T. Langmuir 2010,26,10392.
    38. Ricci F., Lai R.Y., Heeger A.J. et al. Langmuir 2007,23,6827.
    39. Yin B.C., Wu D., Ye B.C. Anal. Chem.2010,82,8272.
    40. Wu D., Yin B.C., Ye B.C. Biosens. Bioelectron.2011,28,232.
    41. Steel A.B., Herne T.M., Tarlov M. J. Anal. Chem.1998,70,4670.
    42. Lao R.J., Song S.P., Wu H.P. et al. Anal.Chem.2005,77,6475.
    43. Centi S., Tombelli S., Minunni M., Mascini M. Anal. Chem.2007,79,1466.
    44. Eichner E.R., McDonald C.R., Dickson V.L. Am. J. Clin. Nutr.1978,31,1988.
    1. Chichkova N.V., Shaw J., Galiullina R.A. EMBO Journal.2010,29,1149.
    2. Timmer J.C., Zhu W.H., Pop C. Nature Structural & Molecular Biology.2009,16, 1101.
    3. Fayard B., Bianchi F., Dey J. Cancer Research 2009,69,5690.
    4. Xu D.M., Mckee C.M., Cao Y.H. Cancer Research 2010,70,6988.
    5. Haubrich R.H., Riddler S.A., DiRienzo A.G. AIDS.2009,23,1109.
    6. Dekker Lennard J.M., van Kampen Jeroen J.A., Reedijk Mariska L. Rapid Communications In Mass Spectrometry 2009,23,1183.
    7. Brovko L.Y., Hajdok C., Tapp C. Luminescence 2006,21,271.
    8. Zauner Thomas, Berger-Hoffmann Renate, Mueller Katrin. Anal. Chem.2011,83, 7356.
    9. Fan H.L., Jiang X.H., Zhang T., Jin Q.H. Biosens. Bioelectron.2012,34,221.
    10. Zhang J.J., Zheng T.T., Cheng F.F. Chem. Commun.2011,47,1178.
    11. Xiao H., Liu L., Meng F.B., Huang J.Y., Li G.X. Anal. Chem.2008,80,5272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700