用户名: 密码: 验证码:
流延—叠层法制备平板型中温固体氧化物燃料电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)因其零排放、高效率、燃料适应性广而成为一种举世公认的绿色能源,得到了世界范围内的广泛关注。但在走向实用化和商业化进程中,还有一些问题没有解决。其中一个主要问题是SOFC的工作温度过高,从而带来种种技术和材料困难。解决的主要措施是减小工作温度下固体电解质隔膜的电阻、提高电极的催化活性及机械强度。研究中温下具有高离子电导率的固体电解质材料,以及采用匹配性好和机械性能优良的阳极支撑的薄膜电解质,是近年来国际上的热点。
     本论文工作采用环保的醋酸盐为原料,以喷雾热分解技术制备氧化衫掺杂二氧化铈(SDC)粉末,研究实验配方及喷雾热分解工艺对SDC粉末性能的影响,并采用差热-热重分析及热力学计算研究了SDC的形成机制。
     系统研究了水基流延SDC浆料的制备、分散剂及其分散机理、流变学特性、浆料干燥及成膜机理,结果表明:当固相含量大于50wt.%时浆料显示出较明显的假塑性行为。三乙醇胺的分散机理主要为静电稳定机理。以20-25℃干燥16-24后,得到了表面平整光滑、显微结构均匀、强度和柔韧性高的SDC、NiO-SDC和NiO-YSZ:氧化钇稳定氧化锆)单膜生坯,生坯厚度与刮刀第2道刀口间隙的高度之间满足1/2.5-1/3的关系。
     研究了不同的脱脂和烧结制度对流延成型的SDC电解质性能的影响,结果表明:高温烧成后SDC的相结构没有发生改变,而晶粒尺寸增大。1400℃烧结2小时后得到了相对密度为97%的SDC电解质。烧结过程的动力学模型指出升高温度、细化粉末粒径可以促进烧结过程的进行。SDC电解质的离子电导率表现出Arrhenius行为。1300℃,1400℃和1500℃烧结2小时的SDC电解质的电导活化能分别为1.24 eV,0.90 eV和1.08 eV。1400℃烧结2小时的SDC在600℃时得到最大的离子电导率为9.5×10-3S·cm-1。
     系统研究了电解质厚度、叠层层数、叠层温度、叠层压力、共烧制度等因素对叠层法制备NiO-SDC和NiO-YSZ阳极,以及NiO-SDC阳极或NiO-YSZ阳极支撑的SDC薄膜电解质性能的影响。结果表明:在较低的温度和压力下制备出了平整无裂纹的叠层片。经1400℃共烧2h后,NiO-YSZ阳极达到了较高的机械性能并达到实用要求。采用叠层法成功制备出了直径为25mm,厚度为1.2mm的NiO-YSZ阳极支撑SDC薄膜电解质半电池。
     从理论上推导了单电池电动势与温度的关系及电流与氢气用量间的关系,并首次提出了氢气用量的阈值。研究了温度和氢气用量对单电池Ni-YSZ//SDC//LSCF-SDC电学性能的影响。结果表明:单电池于500℃,600℃,700℃,800℃时的最大功率密度分别为26.60 mW/cm2,42.30 mW/cm2,66.78 mW/cm2,93.03 mW/cm2,开路电压分别为0.978V,0.921V,0.861V,0.803V。各个温度下单电池的浓差极化较大,较低温时欧姆极化较大。单电池中Ni-YSZ阳极和SDC电解质界面间发生反应形成了低电导率的中间层。在未达到氢气用量阈值之前,单电池产生的电流I和其氢气用量v之间满足v=1.25×10-71I的定量关系:阈值之后,电流不随氢气用量的增大而增大。
     本文最后对流延-叠层法制备阳极支撑平板型中温固体氧化物燃料电池的发展方向进行了展望,指出采用双层流延制备Ni-SDC//SDC//LSCF-SDC单电池,从而得到电极与电解质间无界面反应、匹配性好的单电池是进一步提高其性能的关键。
Due to the zero emission, high efficiency, good fuel flexibility and being a clean energy conversion device, the Solid Oxide Fuel Cell (SOFC) has now got a lot of attention in the world. To provide commercial and practical applications, some problems should be resolved. Among them, one is that the operating temperature of SOFC is too high, which leads to some technical and materials problems. The main method of reducing operating temperature of SOFC is decreasing the resistance of electrolyte, increasing the catalytic activity and mechanical properties of electrodes. Developing electrolyte materials with high ionic conductivity at intermediate temperature, and using the anode-supported film electrolyte with good matching and mechanical properties have become hotspots in recent years.
     Using the environment-friendly acetate as raw materials, Sm2O3 doped CeO2 (SDC) powder was prepared by spray paralysis. The effect of composition and processing technics of spray paralysis on the properties of SDC powder was investigated. The formation mechanics of SDC was studied by TG-TDA analysis and thermodynamics.
     This paper focuses systematically on the preparation of aqueous tape casting SDC slurry, dispersant and dispersing mechanism, the film forming mechanism and the rheological behaviors of suspensions. Results showed that the pseudoplastic behavior was appeared when the solid content was above 50 wt.%. The dispersing mechanism of triethanolamine was electrostatic stabilization. After dried at 20~25℃for 16~24 h, SDC, NiO-SDC and NiO-YSZ green tapes with smooth face, good microstructure and high strength were obtained. The thickness of green tapes was 1/2.5~1/3 of the gap height of the second doctor blade.
     The effect of binder burnout and sintering process on the properties of SDC electrolyte prepared by tape casting was investigated. Results showed that the phase structure of SDC was not changed besides grain sized was increased. The relative density of SDC reached 97% of the theory density after sintered at 1400℃for 2 h. The dynamics model indicated that increasing the sintering temperature and reducing the particle size could improve the sintering process. The ionic conductivity of SDC showed itself an Arrhenius behavior. The activation energy for conduction of SDC electrolyte sintered at 1300℃,1400℃and 1500℃for 2 h was 1.24 eV,0.90 eV and 1.08 eV, respectively. The ionic conductivity of SDC electrolyte sintered at 1400℃ for 2 h reached a maximum value of 9.5×10-3 S·cm-1 (tested at 600℃).
     The effect of electrolyte thickness, laminating number of sheets, laminating temperature amd press, and co-sintering process on the properties of NiO-SDC anode, NiO-YSZ anode, NiO-SDC anode-supported or NiO-YSZ anode-supported SDC film electrolytes prepared by tape casting were studied. Results showed that the laminated green tapes with smooth face were prepared at low temperature and pressure. NiO-YSZ anode reached good mechanical properties and practical utility after co-sintered at 1400℃for 2 h. The half cell with NiO-YSZ anode-supported SDC film electrolyte and with a diameter of 25 mm and a thickness of 1.2 mm was successfully prepared by laminating process.
     The relationships between electromotive force and temperature, current and hydrogen consumption were deduced theoretically. The threshold value of hydrogen consumption was firstly demonstrated. The effect of temperature and hydrogen consumption on the electrical properties of Ni-YSZ//SDC//LSCF-SDC single cell was studied. Results showed that the maximum power density of single cell reached 26.60 mW/cm2,42.30 mW/cm2,66.78 mW/cm2,93.03 mW/cm2 at 500℃,600℃,700℃, 800℃, respectively. And the open circuit voltage was 0.978 V,0.921 V,0.861 V, 0.803 V, respectively. The concentration polarization kept high at various temperatures, and the ohmic polarization was high only at relatively lower temperature. A boundary layer with low conductivity was formed between Ni-YSZ anode and SDC electrolyte. Before reaching the threshold value, the current (I) of single cell and hydrogen consumption (v) had a relationship of v=1.25×10-7I. After reaching the threshold value, the current did not change with the increasing of hydrogen consumption.
     Lastly, the developing perspective of anode-supported planar ITSOFC prepared by tape casting and laminating was described. It was pointed out that the Ni-SDC//SDC//LSCF-SDC single cell with good match, no interface reaction and better performance could be prepared by double layer tape casting.
引文
[1]Jacobson A J. Materials for solid oxide fuel cells[J]. Chemistry of Materials,2010,22: 660-674.
    [2]Karaca T, Altincekic T G, Oksuzomer M F. Synthesis of nanocrystalline samarium-doped CeO2 (SDC) powders as a solid electrolyte by using a simple solvothermal route[J]. Ceramic International,2010,36(3):1101-1107.
    [3]Zhao L J, Huang X Q, Zhu R b, et al. Optimization on technical parameters for fabrication of SDC film by screen-printing used as electrolyte in IT-SOFC[M]. Journal of Physical and Chemistry of Solids,2008,69:2019-2024.
    [4]Sui J, Liu J. Slip-cast Ce0.8Sm0.2O1.9 cone-shaped SOFC[J]. Journal of the American Ceramic Society,2008,94(4):1335-1337.
    [5]Sun L P, Li Q, Zhao H, et al. Preparation and electrochemical properties of Sr-doped Nd2Ni04 cathode materials for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources,2008,183:43-48.
    [6]Li Q, Fan Y, Zhao H, et al. Preparation and electrochemical propeties of a Sm2-xSrxNiO4 cathod for an IT-SOFC[J]. Journal of Power Sources,2007,167:64-68.
    [7]Xu Q, Huang D P, Zhang F, et al. Structure, electrical conducting and thermal expansion properties of La0.6Sr0.4Co0.8Fe0.2O3-δ-Ce0.8Sm0.2O2-δ composite cathode[J]. Journal of Alloy and Compounds,2008,454:460-465.
    [8]中国科学院上海硅酸盐研究所,科技发展部[EB/OL]. [2009-11-16]. http://www.sic.cas.cn/glbm/kjfzb/sdhzc/xmzs/200810/t20081024_1816082.html.
    [9]He C R, Wang W G, Alumina doped Ni/YSZ anode materials for solid oxide fuel cells[J]. Fuel Cells,2009,9(5):630-635.
    [10]中国科学院宁波材料技术与工程研究所,宁波材料所SOFC研发团队取得电池堆研发重要进展[EB/OL]. [2009-04-24]. http://www.sofc.com.cn/zh/news/2009042901.html.
    [11]美国不列颠百科全书公司编著,中国大百科全书出版社不列颠百科全书编辑部编译.不列颠百科全书(大英百科全书)[M].北京:中国大百科全书出版社,2004:1-100.
    [12]World Energy Council (WEC). Survey of Energy Resources[R].1998:1-30.
    [13]Dufour A U. Fuel cells-a new contributor to stationary power[J]. Journal of Power Sources, 1998,71:19-25.
    [14]Damberger T A. Fuel cells for hospital[J]. Journal of Power Sources,1998,71:45-50.
    [15]Singhal S C, Kendall K,著,韩敏芳,等,译.高温固体氧化物燃料电池——原理、技术和应用[M].北京:科学出版社,2007:10-113.
    [16]NASA, Inc. History of science of NASA[EB/OL]. [2003-02-03]. http://science.nasa.gov/headlines/y2003/images/fuelcell/sofc-brochure-new.gif
    [17]王零森.二氧化锆陶瓷(一)[J].陶瓷工程,1997,31(1):40-44.
    [18]王零森.二氧化锆陶瓷(二)[J].陶瓷工程,1997,31(1):43-50.
    [19]Zha S W, Xia C R, Meng G Y. Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. Journal of Power Sources,2003,115:44-48.
    [20]Datta P, Majewski P, Aldinger F. Structural studies of Sr-and Mg-doped LaGaO3[J]. Journal of Alloys and Compounds,2007,438:232-237.
    [21]Keegan C W, Joyce S C. Taxonomies of SOFC material and manufacturing alternatives[J]. Journal of Power Sources,2005,140:280-296.
    [22]Haile S M. Fuel cell materials and components[J]. Acta Materialia,2003,51(19):5981-6000.
    [23]Zhu W Z, Deevi S C. A review on the status of anode materials for SOFCs[J]. Materials Science and Engineering A,2003,362:228-239.
    [24]Muller A C, Herbstritt D, Weber A, et al. Properties of Ni/8YSZ cermets for SOFC anode: first steps in development of a multilayer anode [C]. Proceedings of the Fourth European Solid Oxide Fuel Cell Forum,2000,2:579-588.
    [25]Muller A C, Herbstritt D, Ivers-Tiffee E. Development of a multilayer anode for solid oxide fuel cells[J]. Solid State Ionics,2002,152:537-542.
    [26]Ohara S, Maric R, Zhang X G, et al. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrode, I. Ni-SDC cermet anode[J]. Journal of Power Sources,2000,86:455-458.
    [27]Zhang X G, Ohara S, Maric R, et al. Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte[J]. Journal of Power Sources,1999,83 (1-2):170-177.
    [28]Mogensen M, Lindegaard T, Hansen U R, et al. Physical properties of mixed conductor SOFC anodes of doped CeO2[J] Journal of the Electrochemical Society,1994,141: 2122-2128.
    [29]Wang J S, Jang J C, Huang T J. Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells[J]. Journal of Power Sources,2003,122:122-131.
    [30]Suda S, Takahashi S, Kawano M, et al. Effects of atomization conditions on morphology and SOFC anode performance of spray pyrolyzed NiO-Ce0.8Sm0.2O1.9 composite particles[J]. Solid State Ionics,2006,177:1219-1225.
    [31]Yoshida H, Deguchi H, Kawano M. Study on pyrolysisng behavior of NiO-SDC composite particles prepared by spray pyrolysis technique[J]. Solid State Ionics,2007,178:399-405.
    [32]Kawano M, Yoshida H, Hashino K, et al. Synthesis of matrix-type NiO-SDC composite particles by spay pyrolysis with acid addition for development of SOFC cermet anode[J]. Journal of Power Sources,2007,21:9735-9743.
    [33]Misono T, Murate K, Fukui T, et al. Ni-SDC cermet anode fabricated from NiO-SDC composite powder for intermediate temperature SOFC[J]. Journal of Power Sources,2006, 157(3):754-757.
    [34]Costa-Nunes O, Gorte R J, Vohs J V. Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO and syngas[J]. Journal of Power Sources, 2005,141(2):241-2497.
    [35]Mogensen M, Sammes N M, Tompsett G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics,2000,129:63-94.
    [36]Doshi R, Richards V L, Carter J D, et al. Development of solid-oxide fuel cells that operate at 500℃[J]. Journal of Electrochemical Society,1999,146(4):1273-1278.
    [37]Matsui T, Inaba M, Mineshige A, et al. Electrochemical properties of ceria-baed oxides for use in intermediate-temperature SOFCs[J]. Solid State Ionics,2005,176:647-654.
    [38]Milliken C, Guruswamy S Properties and performance of cation-doped ceria electrolyte materials in solid oxide fuel cell applications[J]. Journal of the Americam Ceramic Society, 2002,85(10):2479-86.
    [39]张文俊.Y-TZP/MgAl2O4复相陶瓷的制备及力学性能研究[C].武汉理工大学硕士学位论文,2009:15-16.
    [40]Li J G, Wang Y R, Ikegami T, et al. Reactive 10 mol% Re2O3 (Re=Gd and Sm) doped CeO2 nanopowders:Synrhesis, characterization, and low-temperature sintering into dense ceramics[J]. Materials Science and Engineering B,2005, B 121:54-59.
    [41]Balazs G B, Glass R S. Ac impedence studies of rare earth oxide doped ceria[J]. Solid State Ionics,1995,76:155-162.
    [42]Yamashita K, Ramanujachary K V, Greenblatt M. Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramic[J]. Solid State Ionics,1995, 81:60-63.
    [43]Minh N Q, Takahashi T. Science and technology of ceramic fuel cells[M]. Amsterdam: Elsevier,1995:152.
    [44]王大明.溶胶-凝胶法制备碳化硅研究进展[J].无机盐工业,2009,41(2):6-9.
    [45]Huang W, Shuk P, Greenblat M. Properties of sol-gel Ce1-xSmxO2-x/2 solid electrolytes[J]. Solid State Ionics,1997,100:23-27.
    [46]Mitsunobu K, Koji H, Hiroyuki Y, et al. Synthesis and Characterizations of Composite Particles for Solid Oxide Fuel Cell Anodes by Spray Pyrolysis and Intermediate Temperature Cell Performance[J]. Journal of Powder Sources,2005,152:196-199.
    [47]胡国荣,方正升,刘智敏,等.喷雾热解法制备锂离子电池正极材料的进展[J].电池,2005,35(3):244-245.
    [48]Seiichi S, Mikio I, Eri N, et al. Preparation of SOFC Anode Composites by Spray Pyrolysis[J]. Journal of European Ceramic Society,2006,26:593-597.
    [49]Hiroyuki Y, Hiroshi D, Mitsunobu K, et al. Study on Pyrolysing of NiO-SDC Composite Particles Prepared by Spray Pyrolysis Technique[J]. Solid State Ionics,2007,178:399-405.
    [50]Gaudon M, Menzler N H, Djurado E, etc. YSZ electrolyte of anode-supported SOFCs prepared form sub micron YSZ powders[J]. Journal of materials science,2005,40: 3735-3743.
    [51]周永慧,林君,于敏,等.喷雾热解法制备发光材料研究进展[J].发光学报,2002,23(5):503-506.
    [52]Partil B B, Pawar S H. Spray paralytic synthesis of samarium doped ceria (Ce0.8Sm0.2O1.9) films for solid oxide fuel cell applications[J]. Applied Surface Science,2007,253: 4994-5002.
    [53]Rupp J L M, Gauckler 1 J. Microstructures and electrical conductivity of nanocrystalline ceria-based thin films[J]. Solid State Ionics,2006,177:2513-2518.
    [54]Boch P, Rogeaux B. Vibratory assistance to the pressing of ceramic powders[J]. British Ceramic Proceedings,1986,38:91-100.
    [55]Ahn S J, Kim Y B, Moon J, et al. Co-planar type single chamber solid oxide fuel cell with micro-patterned electrodes[J]. Journal of Electroceramics,2006,17:689-693.
    [56]Luo L H, Tok AIY, Boey F Y C, et al. Aqueous tape casting of 10 mol%-Gd203-doped CeO2 nano-particles[J]. Materials Science and Engineering A,2006,429:266-271.
    [57]Snijkers F, Wilde A D, Mullens S, et al. Aqueous tape casting of yttria stabilized zirconia using natural product binder[J]. Journal of European Ceramic Society,2004,24:1107-1110.
    [58]Yoon D H, Lee B I. Processing of barium titanate tapes with different binders for MLCC applications-part I:optimization using design of experiments. Journal of the European Ceramic Society[J],2004,24(5):739-752.
    [59]Howatt G N. Method of producing high-dielectric high-insulation ceramic plates[P].美国专利,2582993,1952.
    [60]Howatt G N, Breckenzidge R G, Brownlow J M. Fabricarion of thin ceramic sheets for capacitors. Journal of the American Ceramic Society[J],1947,30(1):237-242.
    [61]Santangelo P E, Tartarini P. Fuel cell systems and traditional technologies. Part I Experimental CHP approach[J]. Applied Thermal Engineering,2007,27:1278-1284.
    [62]黄勇,向军辉,谢志鹏,等.陶瓷材料流延成型研究现状[J].硅酸盐通报,2001,5:22-27.
    [63]Fu Y P, Chen S H. Aqueous processing of Ce0.8Sm0.2O1.9 green tapes[J]. Ceramic International, 2009,35:821-825.
    [64]Feng J H, Dogan F. Aqueous processing and mechanical properties of PLZT green tapes[J]. Materials Science and Engineering A,2000,283A:56-64.
    [65]Ozel E, Kurama S. Production of cordierite ceramic by qrueous tape casting process[J]. Journal of Materials Processing Technnology,2008,198:68-72.
    [66]Tan Q, Zhang Z T, Tang Z, et al. Rheological properties of nanometer tetragonal polycrystal zirconia slurries for aqueous gel tape casting process[J]. Materials Letters,2003,57: 2375-2381.
    [67]卡恩R W,哈森P,克雷默E J主编,清华大学新型陶瓷与精细工艺国家重点实验室译.材料科学与技术丛书-陶瓷工艺(第1部分)[M].北京:科学出版社,1999:47-226.
    [68]Bessette N F, George R A. Electrocal performance of westinghouse's air electrode supported solid oxide fuel cell[C]. Japan:Proceedings of 2nd Internal Fuel Cell Conference,1996: 267-270.
    [69]Stephen E V. Tubular SOFC project[C]. Japan:Proceedings of 2nd Internal Fuel Cell Conference,1996:271-274.
    [70]赵晓锋.中温平板式CeO2基固体氧化物燃料电池的研究[C].武汉理工大学硕士学位论文,2008:25.
    [71]Kakigami S, Kuihara T, Hisatome N, et al. Development of SOFC module[C]. Germany: Proceedings of 5th International Symposium on SOFC,1996:271-274.
    [72]Mizutani Y, Foeger K. Experience with the first Japanese-made solid oxide fuel cell system[J]. Journal of Fuel Cell Science and Technology,2005,2(3):179-185.
    [73]福建在线,存档文章[EB/OL]. [2006-02-21]. http://www.fjsme.cn/archives/2006-01/0616075.htm.
    [74]汽车电子圈,存档文章[EB/OL]. [2006-02-20]. http://industry.yidaba.com/dzdgdq/hyyw/20864456.shtml.
    [75]Kakac S, Pramuanjaroenkij A, Zhou X Y. A review of numerical modeling of solid oxide fuel cells[J]. International Journal of Hydrogen Energy,2007,32:761-786.
    [76]Yano M, Tomita A, Sano M, et al. Recent advances in single-chamber solid oxide fuel cells:a review[J]. Solid State Ionics,2007,177:3351-3359.
    [77]Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature,2004,431(7005):170-173.
    [78]Hwan M, Sun D K, Sang H H, et al. Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing[J]. International Journal of Hydrogen Energy,2008,32:1758-1768.
    [79]Kim S D, Hyun S H, Moon J, et al. Fabrication and characterization of anode-supported electrolyte thin film for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources,2005,139:67-72.
    [80]中华人民共和国国家技术监督局.GB/T 1966-1996.多孔陶瓷显气孔率、容重试验方法[S].北京:中国标准出版社,1996-09-13.
    [81]中华人民共和国国家技术监督局.GB/T 13022-91.塑料薄膜拉伸性能试验方法[S].北京:中国标准出版社,1991-07-03.
    [82]江莞,王刚,吴历斌,等.MSP试验法评价Mo/PSZ系复合材料的强度特性(Ⅰ)[J].无机材料学报,2002,17(4):827-832.
    [83]Shindo Y, Narita F, Horiguchi K, et al. Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test[J]. Acta Materialia, 2003,51:4773-4782.
    [84]中华人民共和国国家技术监督局.GB/T 9790-1988.金属覆盖层及其他有关覆盖层维氏和努氏显微硬度试验[S].北京:中国标准出版社,198-09-05.
    [85]Dean J A,著,魏俊发,译.兰氏化学手册[M].北京:科学出版社,2003:315-459.
    [86]Binnewis M, Milke E. Thermochemical Data of Elements and Compounds[M]. Weinheim: Wiley-VCH Press,2002:22-215.
    [87]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:442-479.
    [88]Brain I, Knacke O. Thermochemical Properties of Inorganic Substances[M]. Berlin:Springer, 1977:129-172.
    [89]杨南如.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,1993:2-94.
    [90]邵刚勤.碳化钨-钴纳米品复合粉末的流态化制备技术及性能研究[C].武汉工业大学博十学位论文,1999:27.
    [91]王喜忠,于才渊,周才君.喷雾干燥[M].北京:化学工业出版社,2003.
    [92]赵新宇,张煜,古宏晨,等.喷雾热解制备稀土超细粉末(Ⅱ)——氧化钇粒子形态与形成机理[J].高等学校化学学报,1998,19(4):507-510.
    [93]Gaudon M, Djurado E, Menzler N H. Morphology and Sintering Behavior of Yttria Stabilized Zirconia (8-YSZ) Powders Synthesized by Spray Pyrolysis[J]. Ceramics International,2004, 30:2295-2303.
    [94]Mistler R E. Tape casting:the basic process for meeting the needs of the electronics industry[J]. American Ceramic Society Bulletin,1990,69:1022-1026.
    [95]曹峻,张擎雪,庄汉锐,等.流延法制备A1N陶瓷基板的研究[J].无机材料学报,2001,16(2):269-276.
    [96]曾宇平,江东亮,谭寿洪,等.定向排布层状SiC晶须补强A12O3复相陶瓷的制备及其性能.硅酸盐学报,1998,28(5):558-564.
    [97]贺连星,温廷琏,吕之奕.流延法制备陶瓷燃料电池电解质膜的研究进展[J].材料科学与工程,1997,15(3):15-18.
    [98]Charties T, Bruneau A. Aqueous tape casting of alumina substrates[J]. Journal of the European Ceramic Society,1993,12:243-247.
    [99]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001:8
    [100]苏致兴.以三乙醇胺为主要组成的水溶性冷却液的功能[J].润滑与密封,1982,5:18-21.
    [101]Rahaman M N. Ceramic processing and sintering[M]. New York:Marcel Dekker, Inc., 1995.
    [102]Schindler P W. Surface complexes at oxide-water interface[M]. Ann Arbor:Ann Arbor Science Publishers,1981.
    [103]Zhang J X, Jiang D L, Tan S H, et al. Aqueous processing of SiC green sheets I:Dispersant. Journal of Materials Research,2002,17(8):2012-2018.
    [104]Chou Y T, Ko Y T, Yan M F. Fluuid flow model of ceramic tape casting[J]. Journal of the American Ceramic Society,1987,70:280-282.
    [105]Otsuka k, Ohsawa Y, Sekibate M. A study on the alumina ceramics casting conditions by the doctor-blade method and their effect on the properties of green tape[J]. Yogyo Kyokai Shi, 1986,94(3):351-359.
    [106]Yamamoto K I, sugimoto M. Experimental study on shape separation of particles by using radial settling characteristics through stationary liquid in totaing vessel[J]. Journal of Chemical Engineering of Japan,1995,4:449-455.
    [107]Yoon D H, Lee B I. Processing of barium titanate tapes with different binders for MLCC applications-part I:optimization using design of experiments[J]. Journal of the European Ceramic Society,2004,24(5):739-752.
    [108]Doreau F, Tari G, Guedes M, et al. Mechanical and lamination properties of alumina green tapes obtained by aqueous tape-casting[J]. Journal of the European Ceramic Society,1999, 19:2867-2873.
    [109]Feng J H, Dogan F. Aqueous processing and mechanical properties of PLZT green tapes[J]. Materials Science and Engineering A,2000,283A:56-64.
    [110]Panhans M A, Blumenthal R N,. A theromodynamic and electrical conductivity study of nonstoichimetric cerium dioxide[J]. Solid State Ionics,1993,60:279-298.
    [111]Cima M J, Dudziak M, Lewis J A. Observation of poly(vinyl butyral)-dibutyl phthalate binder capillary migration[J]. Journal of the American Ceramic Society,1989,72(6): 1087-1090.
    [112]Calvert P, Cima M J. Theoretical models for binder burnout[J]. Journal of the American Ceramic Society,1990,73(3):575-579.
    [113]Coble R L. Sintering crystalline solids I:intermediate and final state diffusion models[J]. Journal of Applied Physics,1961,32(5):787-792.
    [114]周亚栋.无机材料物理化学[M].武汉:武汉理工大学出版社,2004:222-311.
    [115]刘毅.交流阻抗谱方法对钇稳定氧化锆晶界电性能的研究[J].物理实验,2005,25(11):15-17.
    [116]崔晓莉,将志裕.交流阻抗谱的表示及应用[J].上海师范大学学报(自然科学版),2001,30(4):53-61.
    [117]韩敏芳,彭苏萍,李伯涛,等.YSZ电解质电性能研究[J].中国科技大学学报,2002,32:274-278.
    [118]Andreas R. New lamination technique to join ceramic green tapes for the manufacturing of multiplayer devices[J]. Journal of the European Ceramic Society,2000,21:1993-1996.
    [119]Donald A K, Chartoff R. Development of a curved layer LOM process for monolithic ceramic matrix composites[J]. Rapid prototyping Journal,1999,5:61-71.
    [120]张宇民,郝晓东,等.LOM技术中的挤制陶瓷片的研究[J].材料工程,1999,5:32-35.
    [121]Richard E M. Tape casting:past, present, potential[J]. The American Ceramic Society Bulletin,1998,77:82-86.
    [122]李国荣,陈大任.流延成膜技术制备高性能多层片式压电陶瓷微驱动器研究[J].硅酸盐学报,1999,27:533-539.
    [123]陈铭,温廷琏,等.YSZ陶瓷膜流延等静压复合成型工艺研究[J].无机材料学报,1999,14:745-750.
    [124]程继贵,邓莉萍,孟广耀.燃料电池阳极材料的物理机械性能研究[J].合肥工业大学学报,2002,25(6):1196-1200.
    [125]Xie Y S, Zhan X E, Robertson M et al. Mechanical strength and interface adhesion of a solid oxide fuel cell with doped ceria electrolyte[J]. Mater. Sci. Forum,2007,1421:539-543.
    [126]Radovic M, Lara-Curzio E. Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen[J]. Acta Mater.2004,52: 5747-5756.
    [127]冯长根,张江山,王亚军.低温合成纳米级固溶体Ce1-xZexO2的研究[J].硅酸盐学报,2004,32(4):502-506.
    [128]Gonzalez-velasco J R, Gutierrez-oritiz M A, Marc J L. Contribution of cerium/zirconium mixed oxides to the activity of a new generation of three way catalysts[J]. Applied Catalysis B:Environmental,1999,22:167-178.
    [129]Hori C E, Permana H, Simon K Y, et al. Thermal stability o oxygen storage properties in a mixed CeO2-ZeO2 system [J]. Applied Catalysis B:Environmental,1998,16:105-117.
    [130]Huang Y H, Dass R I, Xing Z L, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science,2006,312(5771):254-257.
    [131]Zha S W, Xia C R, Meng G Y. Calculation of the e.m.f. of solid oxide fuel cells[J]. Journal of the Applied Electrochemistry,2001,31:93-98.
    [132]Kudo T, Obayashi H. Mixed electrical conduction in the fluorite-type Ce1-xGdxO2-x/2[J]. Journal of the Electrochemical Society,1976,123(3):415-419.
    [133]许大鹏,王权泳,吕哲,等.CeO2-ZrO2系统的高压固态反应和性质[J].科学通报,2001,48(4):288-292.
    [134]Omata T, Kishimoto H, Otsuka-Yao-Matsuo S, et al. Vibrational spectroscopic and X-ray diffraction studies of cerium zirconium oxides with Ce/Zr composition ratio=1 prepared by reduction and successive oxidation of t'-(Ce0.5Zr0.5)O2 phase[J]. Journal of Solid State Chemistry,1999,147:573-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700