用户名: 密码: 验证码:
液相分散程度在气/液/固多相体系腐蚀过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属表面的液相状态是影响气/液/固多相体系腐蚀行为的重要因素,其中液相分散程度是评价气/液/固多相分散腐蚀体系的主要液相状态特征,与气/液/固三相线界面区的物理特性密切相关。气/液/固三相线界面区定义为气/液/固三相交界线向液相区域内0~100μm液膜厚度范围内的液相反应区域。三相线界面区是比溶液本体相更强的高速阴极反应区,其阴极反应速度取决于三相线界面区面积以及三相线界面区分布状态。液相分散程度可以由液相边缘三相线界面区的长度及宽度参数来进行描述,因此研究三相线界面区的性质对气/液/固多相体系腐蚀行为的影响能反映出液相分散程度在气/液/固多相体系腐蚀过程中的作用。
     本论文采用稳态极化技术、电化学阻抗谱、线性极化电阻技术、接触角测量技术以及显微镜观察技术,分别研究了三相线界面区的长度、宽度及液膜浓度对氧还原阴极过程及腐蚀行为的影响。研究结果表明,三相线界面区长度及宽度对金属腐蚀阴极过程及腐蚀行为有重要影响。测得的阴极极限电流密度及腐蚀电流密度均随单位面积的三相线长度及宽度的增加而线性增加,且单位三相线长度从0增加到1 cm-1时,阴极极限电流密度近似增加一倍,相当于电极反应面积增加了一倍,表明三相线界面区对阴极行为具有很大的影响,是不能忽视的。从腐蚀的角度来说,分散的液相比集中液相更能够加速材料的大气腐蚀过程。气/液/固多相分散腐蚀体系是广泛存在,因而这是一个必须重视的重要现象。
     为了进一步探寻三相线界面区加速阴极过程的作用机理,采用Kelvin探针技术研究了三相线界面区的阴极极限电流密度随液膜厚度的变化规律,初步建立了三相线界面区阴极过程模型,并在此基础之上建立了三相线界面区加速阴极氧还原过程的作用机理模型。
     大气及土壤腐蚀体系均为典型的气/液/固多相分散腐蚀体系,液相在金属表面以高度分散态存在,因此液相分散程度对金属腐蚀行为有重要影响。对于大气腐蚀,结合分形定律,建立了液相分散程度与三相线界面区参数的相关性,并在此基础之上,模拟研究了液相分散程度对大气腐蚀行为的影响。模拟结果表明,大气腐蚀阴极极限扩散电流随液相分散程度的增加而线性增加,证实了液相分散程度对大气腐蚀行为的重要影响。在砂土腐蚀体系中,首先研究了液相分散程度及三相线界面区参数随砂土含水量的变化,在此基础之上建立了液相分散程度影响砂土体系腐蚀行为的作用机理模型。模型计算结果表明,砂土体系的阴极极限电流同样随液相分散程度的增加而线性增加,证实了液相分散程度对砂土体系腐蚀行为的重要影响。
Liquid state on a metal surface is an important factor influencing corrosion behavior of metals in gas/liquid/solid multiphase corrosion systems. Liquid dispersion, one of important properties of liquid state, is closely related with the geometric properties of gas/liquid/solid three-phase boundary (TPB) zone of dispersive liquid on the metal surface. Therefore, studies of effects of geometric properties of TPB zone on cathodic and corrosion behavior of metals can reflect the important role of liquid dispersion in gas/liquid/solid multiphase corrosion systems.
     In this paper, steady-state polarization technique, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) technique, contact angle measurement technique, combined with microscopic observation technique, are employed to investigate the influence of TPB length, width and electrolyte concentration on cathodic and corrosion behavior of metals. The results show that both the cathodic limiting current density and corrosion current density linearly increase with increasing the TPB length and width, indicating that the liquid dispersion plays an important role in gas/liquid/solid multiphase corrosion systems.
     Further, a Kelvin probe technique is used to study the effect of electrolyte layer thickness on the cathodic limiting current density of TPB zone. On this basis, a model is developed to simulate the cathodic oxygen reduction process in this zone. Based on this model, effects of TPB geometric parameters on the cathodic limiting current density of metals are simulated, and the calculated results are in good agreement with the experimental data.
     Atmospheric and soil corrosion systems are typical of gas/liquid/solid multiphase and dispersive corrosion systems, in which liquid dispersion plays a vital role in the corrosion processes of metals. In atmospheric corrosion, the correlation between the liquid dispersion and TPB parameters is established, and the influence of liquid dispersion on the cathodic oxygen reduction process of atmospheric corrosion is simulated. The simulation results show that the cathodic limiting current of metals is linearly dependent on the liquid dispersion, confirming the important role of liquid state in atmospheric corrosion systems. In sandy soil corrosion, the variations of both TPB parameters and liquid dispersion with soil water content are investigated, and on this basis, the influence of liquid dispersion on the cathodic oxygen reduction process of sandy soil corrosion is simulated. The simulation results show that the cathodic limiting current density of metals linearly depends on the liquid dispersion, further confirming the important role of liquid state in sandy soil corrosion systems.
引文
[1]曹楚南主编.中国材料的自然环境腐蚀.北京:化学工业出版社, 2005. 1~10
    [2] C.C. Lee, F. Mansfeld. Automatic classification of polymer coating quality using artificial neural networks. Corrosion Science, 1999: 41 (3): 439~461
    [3] U.R. Evens,华保定译.金属的腐蚀与氧化.北京:机械工业出版社, 1976: 401~430
    [4] K.P. Trethewey, J. Chamberlain. Corrosion for Science and Engineering. Second Edition, London: Pearson Education Ltd., 1995. 280~284
    [5] N.D. Tomashov. Development of the electrochemical theory of metallic corrosion. Corrosion 1964, 20 (76): 7~14
    [6] A. Nishikata, Y. Ichihara, Y. Hayashi, et al. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron. J. Electrochem. Soc. 1997, 144 (4): 1244~1252
    [7] T. Tsuru, A. Nishikata, J. Wang. Electrochemical studies on corrosion under a water film. Mater. Sci. Eng. A,1995,198 (1-2): 161~168
    [8] T. Yamazaki, A. Nishikata, T. Tsuru. Oxygen reduction under a thin electrolyte film ?Measurements of oxygen dissolution and diffusion rates. Zairyo to Kankyo/ Corrosion Engineering, 2001, 50 (1): 30 ~33
    [9]王佳,水流彻.使用Kelvin探头参比电极技术进行薄液层下电化学测量,中国腐蚀与防护学报, 1995, 15 (3): 173~179
    [10]王佳,水流彻.使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响.中国腐蚀与防护学报, 1995, 15 (3): 180~188
    [11] S.L. Pyun, S.M. Moon, E.J. Lee. Effect of electrolyte layer thickness on atmospheric corrosion of Al-1Si-0.5Cu. British Corrosion Journal, 1994, 293, 29 (3): 190~193
    [12] Werner Lang, Rolf Zander. Salting-out of oxygen from aqueous electrolyte solutions: Prediction and Measurement. Ind. Eng. Chem. Fundam., 1986, 25 (4): 775~782
    [13] C. Fiaud, M. Keddam, A. Kadri, H Takenouti. Electrochemical impedance in a thin surface electrolyte layer influence of the potential probe location. Electrochimica Acta, 1987, 32 (3): 445~448
    [14] M. Yamashita, H. Nagano, R.A. Oriani. Dependence of corrosion potential and corrosion rate of a low-alloy steel upon depth of aqueous solution. Corrosion Science, 1998, 40 (9): 1447~1453
    [15] H. Masuda. Effect of magnesium chloride liquid thickness on atmospheric corrosion of pure iron. Corrosion, 2001, 57 (2): 99~109
    [16] M. Stratmann, H. Streckel. On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique. Corrosion Science, 1990, 30 (6-7): 681~696
    [17] M. Stratmann, H. Streckel. On the atmospheric corrosion of metals which are covered with thin electrolyte layers—II. Experimental results. Corrosion Science, 1990, 30 (6-7): 697~714
    [18] M. Stratmann, H. Streckel, K.T. Kim, S. Crockett. On the atmospheric corrosion of metals which are covered with thin electrolyte layers—Ⅲ. The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers. Corrosion Science, 1990, 30(6-7): 715~734
    [19] S.H. Zhang, S.B. Lyon. The electrochemistry of iron, zinc and copper in thin layer electrolytes. Corrosion Science, 1993, 35 (1-4) :713~718
    [20] A. Nishikata, Y. Ichihara, T. Tsuru. An application of electrochemical impedance spectroscopy to atmospheric corrosion study. Corrosion Science, 1995, 37 (6): 897~911
    [21] A. Nishikata, Y. Ichihara, T. Tsuru. Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer. Electrochimica Acta, 1996, 41 (7-8) 1057~1062
    [22] G.A. El-Mahdy, A. Nishikata, T. Tsuru. AC impedance study on corrosion of 55% Al–Zn alloy-coated steel under thin electrolyte layers. Corrosion Science, 2000, 42 (9): 1509~1521
    [23]王凤平,张学元,严川伟,等. NaCl和CO2对Zn在薄液膜下腐蚀的协同作用.金属学报, 2000, 36 (9): 970~974
    [24]张学元,柯克,杜元龙.金属在薄液膜下电化学腐蚀电池的设计.中国腐蚀与防护学报, 2001, 21 (2): 117~122
    [25]王凤平,严川伟,张学元,等.石英晶体微天平研究薄液膜下的腐蚀动力学.物理化学学报, 2001, 17 (4) : 319~323
    [26]赵永韬,吴建华,王佳.船用钢的薄层液膜下腐蚀监测与防蚀研究.腐蚀科学与防护技术, 2001,13 (5): 289~293
    [27] Wang Jia. Electrochemical Studies on the Cathodic Reaction of Marine Atmospheric Corrosion. Chinese J. Oceanology and Limnology, 1996, 14 (4): 291~296
    [28] Qingdong Zhong. Study of behaviour of mild steel and copper in thin film salt solution using the wire beam electrode. Corrosion Science, 2002, 44 (5): 909~916
    [29]张学元,余刚,韩恩厚.电解质对锌在薄层液膜下腐蚀规律的影响.中国腐蚀与防护学报, 2003, 23 (1): 30~33
    [30] Y.L. Cheng, Z. Zhang. A study of the corrosion of aluminum alloy 2024?T3 under thin electrolyte layers. Corrosion Science, 2004, 46 (7): 1649~1667
    [31] Wang Jia, Hou Baorong. Characteristics of the Oxygen Reduction in Atmospheric Corrosion. Chinese J. Oceanology and Limnology, 1997, 15 (1): 36~41
    [32] A. Nazarov, D. Thierry. Rate-determining reactions of atmospheric corrosion. Electrochimica Acta, 2004, 49 (17-18): 2717~2724
    [33] I.L. Rozenfeld. Atmospheric corrosion of metals. Corrosion/121972, NACE, Houston, TX: 44
    [34]李明齐,何晓英,蔡铎昌.薄层液膜下金属电化学腐蚀电池的设计,腐蚀科学与防护技术, 2005, 17 (5): 355~357
    [35]陈素晶,袁庆铭,何建平,等. 7075铝合金在电解液薄层下的电位波动.电化学, 2005, 11 (2): 167~171
    [36]李明齐,蔡铎昌,何晓英. H2S薄层液膜下16Mn钢腐蚀的电化学研究.材料保护, 2006, 39 (1): 1~6
    [37]李亚坤,王佳,胡凡,等.薄液层下金属腐蚀行为研究方法的进展.腐蚀科学与防护技术, 2007, 19 (6): 423~426
    [38] A.P. Yadav, H. Katayama, K. Noda, et al. Effect of Al on the galvanic ability of Zn–Al coating under thin layer of electrolyte. Electrochimica Acta, 2007, 52 (7): 2411~2422
    [39] D. Boughrara, L. Hamadou, A. Kadri, et al. Thin electrolyte layer thickness effect on corrosion behaviour of invar in sulphate solutions. Corros. Eng., Sci. Technol. 2007, 42 (3): 207~214
    [40]何晓英,邓祖宇,邓海英. (NH4)2SO4薄层液膜下X70钢腐蚀的电化学研究.腐蚀科学与防护技术, 2008, 20 (3): 213~215
    [41] T. Zhang, C. Chen, Y. Shao, et al. Corrosion of pure magnesium under thin electrolyte layers. Electrochimica Acta, 2008, 53 (27): 7921~7931
    [42]邓祖宇,廖钫,何晓英,等. NaCl薄层液膜下X70钢腐蚀的电化学研究.西华师范大学学报(自然科学版), 2008, 29 (1): 89~92
    [43] T. Prosek, A. Nazarov, U. Bexell, et al. Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corrosion Science, 2008, 50 (8): 2216~2231
    [44] M. J?nsson, D. Persson, C. Leygraf. Atmospheric corrosion of field-exposed magnesium alloy AZ91D. Corros. Sci. 2008, 50 (5): 1406~1413
    [45] A.Q. Fu, X. Tang, Y.F. Cheng. Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe. Corros. Sci. 2009, 51 (1): 186~190
    [46] S.H. Zhang, S.B. Lyon. Anodic processes on iron covered by thin, dilute electrolyte layers (I)—anodic polarisation. Corrosion Science, 1994, 36 (8): 1289~1307
    [47] S.H. Zhang, S.B. Lyon. Anodic processes on iron covered by thin, dilute electrolyte layers (II)—a.c. impedance measurements. Corrosion Science, 1994, 36 (8): 1309~1321
    [48] K.W. Chung, K.B. Kim. A study of the effect of concentration build-up of electrolyte on the atmospheric corrosion of carbon steel during drying. Corrosion Science, 2000, 42 (3): 517~531
    [49] A. Nishikata, Y. Yamashita, H. Isatayama, et al. An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition. Corrosion Science, 1995, 37 (12): 2059~2069
    [50] R.P. Vera Cruz, A. Nishikata, T. Tsuru. AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment. Corros. Sci. 1996, 38 (8): 1397~1406
    [51] R.P. Vera Cruz, A. Nishikata, T. Tsuru. Pitting corrosion mechanism of stainless steels under wet-dry exposure in chloride-containing environments. Corros. Sci. 1998, 40 (1): 125~139
    [52] P.Q. Zhang, J.X. Wu, W.Q. Zhang, et al. A pitting mechanism for passive 304 stainless steel in sulphuric acid media containing chloride ions. Corrosion Science, 1993, 34 (8): 1343~1349, 1351~1354
    [53] B.S. Skerry, J.B. Johnson, G.C. Wood. Corrosion in smoke, hydrocarbon and SO2 polluted atmospheres—Ⅰ. General behavior of iron. Corros. Sci., 1988, 28 (7): 657~695
    [54] S. Zakipour, C. Leygraf. Quartz crystal microbalance applied to studies of atmospheric corrosion of metals. British Corrosion Journal, 1992, 27 (4): 295~298
    [55] A.K. Neufeld, I.S. Cole, A.M. Bond. The initiation mechanism of corrosion of zinc by sodium chloride particle deposition. Corros. Sci., 2002, 44 (3): 555~572
    [56]王佳.无机盐微粒沉积和大气腐蚀的发生与发展.中国腐蚀与防护学报, 2004, 24 (3): 155~158
    [57] E. Dubuisson, P. Lavie, F. Dalard, et al. Corrosion of galvanised steel under an electrolytic drop. Corrosion Science, 2007, 49 (2): 910~919
    [58] E. Dubuisson, P. Lavie, F. Dalard, et al. Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet. Electrochemistry Communication, 2006, 8 (6): 911~915
    [59] Rongguang Wang, M. Kido. Corrosion behavior of pure iron by different droplet volume of sulfuric acid solution. Materials Transactions, 2007, 48 (6): 1451~1457
    [60] S.B. Lyon, C.W. Wong, P. Ajiboye. An approach to the modeling of atmospheric corrosion, atmospheric corrosion, atmospheric corrosion. In: Kirk WW, Lawson HH, editors. Computer Modeling in Corrosion [STP 1239]. Philadelphia, PA: American Society for Testing and Materials, 1995:26~37
    [61] Y. Tsutsumi, A. Nishikata, T. Tsuru. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions. Corrosion Science, 2007, 49 (3): 1394~1407
    [62] Qing Dai, Jun Hu, Andrew Freedman, et al. Nanoscale Imaging of a Corrosion Reaction: Sulfuric Acid Droplets on Aluminum Surfaces. J. Phys. Chem. 1996, 100 (1): 9~11
    [63] Rongguang Wang. An AFM and XPS study of corrosion caused by micro-liquid of dilute sulfuric acid on stainless steel. Applied Surface and Science, 2004, 227 (1-4): 399~409
    [64] Rongguang Wang, Mitsuo Kido. Corrosion behavior of pure iron beneath a micro-droplet of sulfuric acid solution investigated by atomic force microscopy. Scripta Materialia, 2006, 55 (7): 633~636
    [65] Rongguang Wang, Mitsuo Kido, Koji Mukai. Producing micro-droplet of dilute sulphuric acid on pure iron surface and observing its corrosion behaviour by atomic force microscopy. Trans. Nonferrous Met. Soc. China, 2006, 16 (4): s749~s752
    [66] Jia. Wang, T. Tsuru. Potential distribution and micro-droplets formation on the metal with salt particle deposition, The 204th Meeting of The Electrochemical Society, Orlando: The Electrochemical Society, Inc., (2003) D2: 472
    [67] T. Tsuru, K.I. Tamiya, A. Nishikata. Formation and growth of micro-droplets during the initial stage of atmospheric corrosion. Electrochimica Acta, 2004, 49 (17-18): 2709~2715
    [68] Li Bian, Yongji Weng, Xiangyi Li. Observation of micro-droplets on metal surface in early atmospheric corrosion. Electrochemistry Communications, 2005, 7 (10): 1033~1038
    [69] JiBiao Zhang, Jia. Wang, Y. Wang. Electrochemical investigations of micro-droplets formed on metals during the deliquescence of salt particles in atmosphere. Electrochemistry Communications, 2005, 7 (4): 443~448
    [70] JiBiao Zhang, J. Wang, Y. Wang. Phenomenon of micro-droplets formation on metals during the deliquescence of salt particles in atmosphere. J. Phys. Chem., 2005, 21 (9): 993~996
    [71]张际标,王佳,王燕华.大气腐蚀起始过程中的微液滴现象研究.装备环境工程, 2005, 2 (5): 14~17
    [72]张际标.大气腐蚀起始过程中的微液滴现象研究:[博士学位论文].青岛:中国海洋大学化学化工学院, 2005
    [73]张际标,王燕华,姜应律,等.微液滴现象与大气腐蚀——Ⅰ.微液滴的形成与扩展.中国腐蚀与防护学报, 2006, 26 (4): 207~210
    [74]梁利花,姜应律,王佳.溶液性质对微液滴现象的影响.高等学校化学学报, 2006, 27 (11): 2148~2151
    [75] Jia Wang, Lihua Liang, Jing Jiang. The role of electrochemical polarization in micro-droplets formation. Electrochemistry Communications, 2008, 10 (11): 1788~1791
    [76]张际标,王燕华,姜应律,等.微液滴现象与大气腐蚀——Ⅱ.微液滴现象的电化学表征.中国腐蚀与防护学报, 2006, 26 (5): 282~285
    [77] Jian Chen, Jianqiu Wang, Enhou Han, et al. In situ observation of formation and spreading of micro-droplets on magnesium and its alloy under cyclic wet-dry conditions. CorrosionScience, 2007, 49 (3): 1625~1634
    [78]张际标,王燕华,姜应律,等.微液滴现象与大气腐蚀——Ⅲ.干湿交替下微液滴的扩展行为.中国腐蚀与防护学报, 2008, 28 (3): 151~154
    [79] L. Nú?ez, E. Reguera, F. Corvo, et al. Corrosion of copper in seawater and its aerosols in a tropical island. Corros. Sci. 2005, 47 (2): 461~484
    [80] S.K. Gupta, B.K.Gupta. Critical soil moisture content in the underground corrosion of mild steel. Corros. Sci. 1979, 19 (3): 171~178
    [81] J.N. Murray, P.J. Moran. Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy. Corrosion, 1989, 45 (1): 34~37
    [82]唐红雁,宋光铃,曹楚南,等.用极化曲线评价钢铁材料土壤腐蚀行为的研究.腐蚀科学与防护技术, 1995, 7 (4): 285~292
    [83] Jia Wang. Effects of water content and pore size on the corrosion process of steels in sand. Chinese J.Oceanology and Limnology, 1997,15 (4): 43~46
    [84]李谋成,林海潮,曹楚南.湿度对钢铁材料在中性土壤中腐蚀行为的影响.腐蚀科学与防护技术, 2000, 12 (4): 220~225
    [85] N.N. Glazov, S.M. Ukhlovtsev, I.I. Reformatskaya, et al. Corrosion of carbon steel in soils of varying moisture content. Protec. Met. 2006, 42 (6): 601~608
    [86]伍远辉,孙成,张淑泉,等.湿度对X70管线钢在青海盐湖盐渍土壤中腐蚀行为的影响.腐蚀科学与防护技术, 2005, 17 (2): 87~90
    [87]王荣,介燕妮.陕京管线典型土壤环境的腐蚀性研究.中国腐蚀与防护学报, 2006, 26 (4): 211~215
    [88]费小丹,李明齐,许红梅,等.湿度对X70钢在卵石黄泥土中腐蚀行为影响的电化学研究.腐蚀科学与防护技术, 2007, 27 (1): 35~37
    [89]陈旭,杜翠薇,李晓刚,等.含水率对X70钢在鹰潭酸性土壤中腐蚀行为的影响.石油化工高等学校学报, 2007, 20 (4): 55~58
    [90]张付宝,余晓鹏,蔡铎昌,等.土壤湿度对钢在污染土中腐蚀行为的影响.石油化工腐蚀与防护, 2007, 24 (3): 7~10
    [91]陈旭,杜翠薇,李晓刚,等.含水量对X70钢在大港滨海盐渍土壤中腐蚀行为的影响.北京科技大学学报, 2008, 30 (7): 137~142
    [92]伍远辉,刘天模,罗宿星,等.湿度对Q235钢在污染土壤中腐蚀行为的影响.腐蚀与防护, 2008, 29 (4): 871~876
    [93] S. Yee, R.A. Oriam, M. Stratmann. Application of a Kelvin microprobe to the corrosion of metals in humid atmospheres. J. Electrochem. Soc, 1991, 138 (1): 55~60
    [94] Jia Wang, Yanhua Wang. Scanning Kelvin probe measurements near salt particles on zinc and iron in humidity. Corrosion, 2005, 61 (3): 264~272
    [95] G.S. Frankel, M. Stratmann, M. Rohwerder, et al. Potential control under thin aqueous layers using a Kelvin Probe. Corros. Sci. 2007, 49 (4): 2021~2036
    [96] A.P. Yadav, H. Katayama, K. Noda, et al. Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte. Electrochimica Acta, 2007, 52 (9): 3121~3129
    [97] J. Mizusaki, H. Tagawa, K. Tsuneyoshi, et al. J. Electrochem. Soc. 1991, 138: 1867
    [98] H. Fukunaga, M. Ihara, K. Sakaki, et al. The relationship between overpotential and the three phase boundary length. Solid State Ionics, 1996, 86-88 (2): 1179~1185
    [99]黄喜强,刘巍,刘志国,等.一种增加SOFC阳极三相反应区的方法.高等学校化学学报,2000, 21 (6): 947~948
    [100] X.J. Chen, S.H. Chan, K.A. Khor. Simulation of a composite cathode in solid oxide fuel cells. Electrochim. Acta, 2004, 49 (11): 1851~1861
    [101] J. Fleig, J. Maier. The polarization of mixed conducting SOFC cathodes: Effects of surface reaction coefficient, ionic conductivity and geometry. J. European Ceramic Soc. 2004, 24 (6): 1343~1347
    [102]王金霞,纪媛,许大鹏,等. NiO晶粒尺寸对SOFC阳极电化学性能的影响.高等学校化学学报, 2004, 25 (3): 501~503
    [103]徐献芝,朱梅,苏润,等.多孔电极三相界面形态的研究.化学通报, 2004, 67 (10): 867~873
    [104]徐献芝,朱梅,杨基明.气体多孔电极反应微观机理及宏观现象的研究.中国工程科学, 2005, 7 (5): 79~84
    [105] Mei. Zhu, X. Xu, R. Su, et al. Current and overpotential distribution mathematical model of the porous electrode based on the three-phase boundary length. J. Electrochem. Soc. 2005, 152 (3): A511~A515
    [106]朱梅,徐献芝,杨基明.考虑多孔电极内气液分布的数学模型.中国工程科学, 2005, 7 (8): 36~42
    [107]魏子栋,唐致远. PAFC空气电极催化层相界面结构分析.物理化学学报, 2001, 17 (10): 892~897
    [108] Xiahua. Deng, A. Petric. Geometrical modeling of the triple-phase-boundary in solid oxide fuel cells. J. Power Sources, 2005, 140 (2): 297~303
    [109] J.H. Nam, D.H. Jeon. A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochim. Acta, 2006, 51 (17): 3446~3460
    [110] Y. Shi, N. Cai. A General Mechanistic Model of Solid Oxide Fuel Cells. Tsinghua Sci. Technol. 2006, 11 (6): 701~711
    [111]史翊翔,蔡宁生.固体氧化物燃料电池阴极数学模型与性能分析.中国电机工程学报, 2006, 26 (4): 82~87
    [112] M. Ni, M.K.H. Leung, Dennis Y.C. Leung. Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. J. Power Sources, 2007, 168 (2): 369~378
    [113] J. Nielsen, T. Jacobsen. Three-phase-boundary dynamics at Pt/YSZ microelectrodes. Solid State Ionics, 2007, 178 (13-14): 1001~1009
    [114] V. M. Janardhanan, V. Heuveline, O. Deutschmann. Three-phase boundary length in solid-oxide fuel cells: A mathematical model. Journal of Power Sources, 2008, 178 (1): 368~372
    [115] J. Nielsen, T. Jacobsen. SOFC cathode/YSZ—Non-stationary TPB effects. Solid State Ionics, 2008, 179 (27-32): 1314~1319
    [116] A. Ali, X. Wen, K. Nandakumar, et al. Geometrical modeling of microstructure of solid oxide fuel cell composite electrodes. J. Power Sources, 2008, 185 (2): 961~966
    [117] W.Y. Lee, D. Wee, A.F. Ghoniem. An improved one-dimensional membrane-electrode assembly model to predict the performance of solid oxide fuel cell including the limiting current density. J. Power Sources, 2009, 186 (2): 417~427
    [118] B. Kenney, M. Valdmanis, C. Baker, et al. Computation of TPB length, surface area and pore size from numerical reconstruction of composite SOFC electrodes. doi:10.1016/j.jpowsour.2008.12.145
    [119] J. Chen, M. Sato. Steady-state current at oil/water/electrode interfaces using ion-insoluble polydimethylsiloxane droplets. Journal of Electroanalytical Chemistry, 2004, 572 (1): 153~159
    [120] K. Aoki, P. Tasakorn, J. Chen. Electrode reactions at sub-micron oil/water/electrode interfaces. J. Electroanal. Chem. 2003, 542: 51~60
    [121] R.óHayre, D.M. Barnett, F.B. Prinz. The triple phase boundary: A mathematical model and experimental investigations for fuel cells. J. Electrochem. Soc. 2005, 152 (2): A439~A444
    [122] J. Fleig. On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes. Journal of Power Sources, 2002, 105 (2): 228~238
    [123] J. Fleig. A Way for determining the effective three phase boundary width of solid state electrochemical reactions from the primary and secondary current distribution at microelectrodes. Zeitschrift fur Physikalische Chemie, 2007, 221 (9-10): 1149~1159
    [124] F.H. Van Heuveln, H.J.M. Bouwmeester, F.P.F. Van Berkel. Electrode properties of Sr-doped LaMnO3 on yttria-stabilized zirconia. I. Three-phase boundary area. Journal of Electrochemical Society, 1997, 144 (1): 126~133
    [125] Zhigang Zhan, Jinsheng Xiao, Dayong Li, et al. Effects of porosity distribution variation on the liquid water flux through gas diffusion layers of PEM fuel cells. Journal of Power Sources, 2006, 160 (2): 1041~1048
    [126] Jer-Huan Jang, Wei-Mon Yan, Chinh-Chang Shih. Effects of the gas diffusion-layer parameters on cell performance of PEM fuel cells. Journal of Power Sources, 2006, 161 (1): 323~332
    [127] Shih-Ming Chang, Hsin-Sen Chu. Transient behavior of a PEMFC. Journal of Power Sources, 2006, 161 (2): 1161~1168
    [128] C.J Newton, J.M Sykes. A galvanostatic pulse technique for investigation of steel corrosion in concrete. Corrosion Science ,1988, 28 (11): 1051~1074
    [129] Elsener B, H. Wojtas H, Bohni H. Galvanostatic Pulse Measurements-Rapid on Site Corrosion Monitoring. In Proceedings of International Conference "Corrosion and Corrosion Protection of Steel in Concrete" 1994 (1) : 236-246, Sheffield
    [130] S.G. Millard, K.R. Gowers, J.H. Bungey. Galvanostatic Pulse Techniques: A Rapid Method of Assessing Corrosion Rates of Steel in Concrete Structures. Paper No. 525. Presented at CORROSION/95 (March 26-31, 1995, Orlando, Florida), Sponsored by NACE
    [131]阎培渝,崔路.腐蚀研究中电流阶跃法的频域分析.清华大学学报(自然科学版), 1999, 39 (6): 124~127
    [132]阎培渝,崔路,游轶.用电流阶跃法测定钢筋混凝土中钢筋的锈蚀速率.工业建筑, 1999, 9 (5): 50~53
    [133]阎培渝,崔路.用电流阶跃法在时域与频域中研究钢筋锈蚀.建筑材料学报,1999, 2 (3): 199~205
    [134]曹楚南,林海潮,杜天保.溶液电阻对稳态极化曲线测量的影响及一种消除此影响的数据处理方法.腐蚀科学与防护技术, 1995, 7 (4): 279~284
    [135]朱敏,何积铨等. IR降对混凝土中钢筋腐蚀电化学测量结果的影响.北京科技大学学报, 2002, 24 (2): 111~114
    [136]宋诗哲.腐蚀电化学研究方法.北京:化学工业出版社, 1988. 12
    [137]曹楚南,张鉴清著.电化学阻抗谱导论.北京:科学出版社, 2002, D1: 2
    [138]张鉴清,张昭,王建明等.电化学噪声的分析与应用—Ⅰ.电化学噪声的分析原理,中国腐蚀与防护学报, 2001, 21 (5): 310~320
    [139]张鉴清,张昭,王建明等.电化学噪声的分析与应用—Ⅱ.电化学噪声的应用.中国腐蚀与防护学报, 2002, 22 (4): 241~248
    [140] A. Benzaid, C. Gabrielli, F. Huet, et al. Investigation of the electrochemical noise generated during the stress corrosion cracking of a 42CD4 steel electrode. Materials Science Forum, 1992, 111/ 112 :167~176
    [141] G. Blanc, C. Gabrielli, M. Ksouri, et al. Experimental study of the relationships between the electrochemical noise and the structure of the electrodeposits of metals. Electrochimica Acta, 1978, 23 (4): 337~340
    [142] B. Lengyel, L. Meszaros, G. Meszaros, et al. Electrochemical methods to determine the corrosion rate of a metal protected by a paint film. Progress in Organic Coating, 1999, 36 (1-2): 11~14
    [143] C. Gabrielli, M. Ksouri, R. Wiart. Electrocrystallization noise: a phenomenological model. Journal of the Electroanalytical Chemistry, 1978, 86 (1): 233~239
    [144] Alexander G Volkov. Green plants: electrochemical interfaces. Journal of the Electroanalytical Chemistry, 2000, 483 (1-2): 150~156
    [145] Oliveira Brett A M, Macedo T R A , R aimundo D, et al. Electrochemical oxidation of mitoxantrone at a glassy carbon electrode . Analytical Chimica Acta, 1999, 385 (1-3): 401~408
    [146] J. Mwesigwa, D.J. Collins, A.G. Volkov. Electrochemical signaling in green plants: effects of 2,4-dinitrophenol on variation and action potentials in soybean. Bioelectrochemistry, 2000, 51 (2): 201~205
    [147] S. Martinet, R. Durand, P. Ozil, et al. Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection. Journal of Power Sources, 1999, 83 (1/ 2): 93~99
    [148]曹楚南编著.腐蚀电化学原理, 2004. 4,化学工业出版社,北京
    [149]李谋成,林海潮,曹楚南.碳钢在中性土壤中的腐蚀行为研究.材料科学与工程, 2000, 18 (4): 57~60
    [150]李谋成,林海潮,曹楚南.碳钢在土壤中腐蚀的电化学阻抗谱特征.中国腐蚀与防护学报, 2000, 20 (2): 111~117
    [151] J.H. Chen, S.H. Si, L.H. Nie, et al. A novel method for rapid determination of PZC for solid metal/solution interface. Electrochim. Acta, 1997, 42 (4): 689~695
    [152] P. Van Der Voort, E.F. Vansant. Silylation of the silica surface: a review. J. Liq. Chromatogr. Rel. Technol. 1996, 19 (17-18): 2723~2752
    [153] N. Sghaier, M. Prat, S. Ben Nasrallah. On the influence of sodium chloride concentration on equilibrium contact angle. Chemical Engineering Journal, 2006, 122 (1-2): 47~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700