用户名: 密码: 验证码:
陆地棉RIL群体遗传图谱构建及产量与纤维品质QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是我国重要的经济作物之一,其生产不仅关系农业生产的经济效益,同时还极大地影响着纺织和服装工业发展。随着纺织业技术改进和人民生活水平提高,棉花的市场需求有了较大增长,尤其是对棉花纤维品质提出了更高要求。然而棉花产量和纤维品质都属典型的复杂数量性状,传统育种方法很难实现棉花产量和纤维品质同步改良。现代遗传学和分子生物学的发展可将控制复杂性状的多个遗传因子分解成类似于单个孟德尔因子进行研究,将遗传标记与复杂的数量性状QTL位点相关联,通过检测和追踪某个或某几个分子标记,实现对复杂数量性状的遗传操控,从而实现对棉花产量和纤维品质性状的分子标记辅助选择和改良。
     本研究在目前开发的大量棉花SSR分子标记的基础上,采用以PCR为基础的分子标记(SSR、SRAP和RAPD)技术,以陆地棉重组自交系(RIL)群体为研究对象,构建了具有高密度的陆地棉分子标记遗传图谱,对棉花产量与纤维品质相关性状进行了QTL定位,并对其效应进行了研究。同时基于该RIL群体创建了的棉花永久F_2群体(IF_2群体),并对其纤维品质分布特点及其在棉花纤维品质性状QT1定位中的应用进行了探索。主要研究结果如下:
     (1)以两个亲缘关系较远、棉花产量及纤维品质性状均存在较大差异的陆地棉品种HS46和MARCABUCAG8US-1-88为亲本,通过改良行混合法培育而成的RIL群体为材料。通过3年3点4个环境下的棉花产量及纤维品质性状调查,结果显示该RIL群体的两个亲本品种在棉花产量以及纤维品质性状上均存在显著差异。同时该RIL群体在籽棉产量、皮棉产量、衣分、铃重、衣指和籽指上均具有较大变异,纤维品质性状也存着较大的变异,且群体中以上各性状均符合正态分布。这表明该RIL群体是一个优良的遗传研究群体,可用于棉花遗传图谱构建及其棉花产量和纤维品质性状QTL定位研究。
     (2)以SSR标记为主,结合SRAP和RAPD标记技术,建立了包含388个分子标记、共30个连锁群、覆盖1946.22cM遗传距离的陆地棉种内遗传图谱。该图谱是目前以陆地棉种内重组近交系群体为对象所建立的具有较高密度的棉花分子标记遗传图谱,其覆盖了棉花基因组41.55%,标记间平均遗传距离为5.03cM,最小标记间距为0,最大标记间距为37.53cM。根据已定位于特定染色体上的SSR标记,将所构建的30个连锁群中的15个定位于14条染色体上,其中A亚组的7条染色体包含133个标记,覆盖683.44cM;D亚组的7条染色体中拥有70个分子标记,跨度为373.00cM。这表明A基因亚组比D基因亚组大或者A基因亚组较D亚组具有更多交换、重组机会。通过与前人的研究比较,研究所构建的遗传图谱中有11条染色体或连锁群在棉花基因组中存在不同程度的同源性,证明了棉花的基因组内不同染色体间存在一定同源性。
     (3)四个环境下的棉花产量性状的联合方差分析表明,环境对棉花产量具有较大影响。因此,采用四个环境下的棉花产量调查数据开展多环境联合QTLs定位将更有意义。在联合QTL定位中。共检测到与籽棉产量相关QTLs共33个,与皮棉产量相关QTLs共23个,与衣分有关QTLs共6个,与单铃重有关QTLs共14个,与籽指有关QTLs共20个,与衣指有关的QTLs共13个。其中共有21对QTLs是通过上位性效应来影响棉花产量及其相关性状,且加加上位性QTLs的总贡献率较加性QTLs总贡献率大。这表明上位性效应是影响棉花产量及其相关性状的重要因素。在QTLs与环境互作以及上位性与环境互作检测中,共检测到9个加性QTLs与环境的互作效应达到了显著或极显著水平,另有17对加加上位性QTLs与环境的互作效应也达到了显著或极显著水平,且互作效应的表型贡献率较大。这表明环境与OTL互作对棉花产量及其相关性状具有重要影响,因此要培育具有广泛适应性的棉花品种,必须聚合更多QTLs才可能实现。同时所检测到的与棉花籽棉产量相关的单个QTL的效应都较小,且试点环境差异程度和采用的环境数量也会对其遗传效应产生影响。可见,仅通过对个别QTLs的选择,对于棉花产量性状的改良效果不明显,只有实现大量优势QTLs的聚合才能获得较大产量性状的遗传增益。
     (4)共检测到与棉花纤维品质性状相关的QTLs 25个,其中有10对QTLs位点的上位性效应达到了显著或极显著水平。这些上位性位点涉及到分布于13条染色体或连锁群中的19个QTLs,其QTLs数目与染色体或连锁群数目均明显大于具显著效应的加性QTLs数目与所涉及的染色体或连锁群的数。同时,所检测到的上位性QTLs的累加表型贡献率也较加性效应的累积贡献率大,而且这些加加上位性所涉及到的QTL多属于本身加性效应未达到显著水平的位点。可见上位性效应在棉花纤维品质性状的遗传中具有重要作用,是纤维品质性状QTLs定位中不可或缺的重要组成部分。同时研究中所检测到的与棉花纤维品质性状相关的单个QTL的效应也都较小。可见,通过仅对个别QTLs的选择,对于棉花纤维品质性状改良的效果不明显,而只有实现大量优势QTLs的聚合才能获得较大的棉花纤维品质性状的遗传增益。与棉花产量性状相比,与纤维品质性状相关的QTLs数目(包括与环境互作效应达到显著水平的QTLs以及上位性效应达到显著水平QTLs)要少得多,这反映出棉花纤维品质性状较产量性状遗传机理可能要简单些,这也预示着棉花纤维品质性状的遗传改良较产量性状要容易一些。
     (5)研究建立了基于RIL群体的陆地棉永久IF_2群体,并对该IF_2群体中各项纤维品质性状在两个环境下进行了调查,结果表明该IF_2群体各项纤维品质性状的平均值均界于双亲之间或与两亲本品种相应性状的差异不显著,且各纤维品质指标的群体平均值与两亲本间杂交所形成的F_1对应值相似或更高,同时该IF_2群体中各项纤维品质指标均呈现良好的正态分布。且该IF_2群体与原RIL群体的各项纤维品质性状均值间均无明显差异,或部分指标的标准差也都非常接近,甚至IF_2群体中的个别指标标准差还高于RIL群体。
     以该IF_2群体为对象,共检测到与棉花纤维品质性状相关的QTLs共30个,分布于16条染色体或连锁群。其中与显性效应有关的QTLs共17个,涉及15条染色体或连锁群,其显性效应及其所能解释的表型变异百分率均较大,也检测到了具有显著效应的加显上位性、显加上位性及显显上位性,且部分上位性效应与环境互作也达到了显著水平。可见,显性效应是纤维品质性状遗传中不可缺少的重要部分。
Cotton is an important cash crop in the world,which not only contributes the natural fiber for texture industry,but also is an important resource for edible oil and potential protein.So cotton production plays a very important strategic status in our national economy.Cotton yield and fiber qualities have been improved more through the hard working of cotton breeders over the past years with convetional breeding methords.However,with the development of technology in textile industry and improvement of people life level,a higher demand for fiber production and fiber quality is put forward.The complicated genetic mechanism for the cotton yield and fiber quality,as well as the negative relationship between them lead it too difficult to improve at the same time based on the conventional breeding methods.The development of molecular biology and molecular genetics makes it possible to dissect the composite genetic factors controlled the quantitative traits in cotton into the single genetic factor,so it is possible to manipulate quantitative traits by tracing the related molecular markers and QTLs,which may realize improving cotton yield and fiber quality through molecular marker assisted selection(MAS) in cotton breeding.The present research focused on construction of a molecular genetic linkage map based on intra-specific RIL population of upland cotton with SSR,RAPD and SRAP. Based on this map,the QTLs related with cotton yield and fiber quality under multi-environment investigation were mapped.In addition,an IF_2 population was established based on the RIL population and its characteristics and utilization in fiber quality QTL mapping were explored as well.The main results of present work were as follow:
     (1) An intra-specific RIL population was construed through the way of modified single-hill(bulked progeny row),using two upland cotton parents., MARCABUCAG8US-1-88 and HS46(female),the former is a cotton germplasm with good resistance and the latter is a commercial cultivar with higher yield and good fiber quality.The two parents were different greatly in genetic relationship based on pedigree analysis.The cotton yield and fiber quality,as well as their related traits,had a wider variation ranges among the RIL population,and almost all the traits investigated were normal distribution,which showed that the cotton intra-espcific RIL population is an excellent population for genetic research and QTL mapping.
     (2) A relatively higher density genetic linkage map was constructed based on the RIL population,using three kinds of molecular markers,SSRs,SRAPs and RAPDs.The map contained 388 markers,covered 30 linkage groups.The linkage map was 1946.22 cM with an average distance of 5.03 cM between the adjacent loci,and spanned 42.1%of cotton genome.So this map is a higher density one for more markers and wide coverage in cotton intra-specific RIL population up to now.According to the anchored SSR markers,15 linkage groups among 30 were assigned to 14 specific chromosomes,and seven A sub-genome chromosomes of them contained 133 markers and covered 683.44 cM,and seven D sub-genome ones included 70 markers and spanned 363.00 cM.These results showed that A sub-genome was larger or had more chance to exchange and combine than D sub -genome in cotton.Compared with previous study,11 chromosomes in this linkage map were found to have some homologous in cotton genome.
     (3) There were great effects of environment on cotton yield and fiber quality through the combined ANOVA analysis of four environments.So QTL mapping of cotton yields and their related traits were done by the composite interval mapping methods based on linear mixed model.33 QTLs were found for seed cotton yields using the results of cotton yields under four environments,23 QTLs for lint yield,6 QTLs for lint percent,14 QTLs for boll weight,20 QTLs for seed index,and 13 QTLs for lint index.Among the 33 QTLs related with seed cotton yield,21 epistasis QTLs were found,and the total epistasis QTLs contributed more than the additive QTLs.9 QTLs were found to have a significant interactive effect with environments,and 21 epistasis QTLs had a significant effect on the yield,and the interaction effect had greater contribution to cotton yield.These results indicated that the environment had an important influence on cotton yield,and it is hard to develop a wide adaptability upland cotton germplasm with collection of excellent QTLs that adapt to different environments.However,single QTL found to relat with cotton yield has very small effect,and the difference of environments and numbers of environments in experiment maybe affect the genetic effects of QTLs related with cotton yield. Therefore,the genetic obtain for cotton yield may be achieved if more excellent QTLs were collected.
     (4) 25 QTLs were found to relate with cotton fiber quality in present experiment.Among them,10 pairs of QTLs of them were found to have a significant or very significant epistasis effect,which related to 19 loci located in 13 chromosomes or genetic linkage groups.And these total epistasis effects were found to be higher than that of additive ones.So the epistasis effects played a very important role on the genetic of cotton fiber quality and its related traits. Compared with the yield and its related traits,the number of additive QTLs or epistasis QTLs related with fiber quality were much less than that related with yield and its related trait,which may suggest that the genetic mechanism controlled cotton fiber quality was simpler than that of cotton yield,and the improvement for fiber quality may be easier than that of cotton yield as well. However,the genetic effect of single QTL was very small,it is very difficult to improve cotton fiber quality through the selection of a single QTL.
     (5) The IF_2 population in cotton was constructed based on the RIL population in present research.The average values of five fiber quality traits investigated were the medial one between the two parents,which did differ insignificantly from the parents and similar or a litter higher than that of F_1 between two parents.The distribution of fiber quality traits in the IF_2 population was all normal distribution.Compared with origin RIL population,the fiber quality traits in the IF_2 population were different insignificantly,and their SD were also very similar except for a few which was higher than that in RIL population.30 QTLs with significant effect or significant interactive effect with environment were mapped in 16 linkage groups based on the IF_2 population and fiber quality traits surveyed in the two environments.17 QTLs of them were related with the effects of dominance,which were located into 15 chromosomes or genetic linkage groups,and the contribution to fiber quality trait variation were more than the other kind of QTLs.Except the single dominant effect locus,the additive-dominant,dominant-additive,and dominant-dominant epistasis effects were found as well,and some of interactive effect of epistasis with environment were significantly.The results indicated that the dominant effect played an important role in the genetic of fiber quality.
引文
1.别墅,王坤波,孔繁玲,周有耀,邹美娟,王春英.棉花基因组重复序列研究进展.分子植物育种,2003,1(3):373-379.
    2.曹承忠,李洪连,简桂良.棉花抗黄萎病分子标记研究进展.中国棉花,2005,32(6):7-10.
    3.范术丽,喻树迅,张朝军,原日红,宋美珍.短季棉常用亲本早熟性状的遗传及配合力研究.棉花学报,2004,16(4):211-215.
    4.范术丽,喻树迅,宋美珍,原日红.短季棉早熟性的分子标记及QTL定位.棉花学报,2006,18(3):135-139.
    5.方宣均,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001.
    6.高用明,朱军,宋佑胜,何慈信,石春海,邢永忠.水稻永久F_2群体抽穗期QTL的上位性及其与环境互作效应的分析.作物学报,2004,30(9):849-854.
    7.郭旺珍,张天真,丁业掌,朱一超,沈新莲,朱协飞.分子标记辅助聚合两个棉纤维高强主效QTLs的选择效果.遗传学报,2005,32(12):1275-1285.
    8.胡文静,张晓阳,张天真,郭旺珍.陆地棉优质纤维QTL的分子标记筛选及优质来源分析.作物学报,2008,34(4):578-586.
    9.黄滋康.中国棉花品种及其系谱.中国农业出版社:北京,1996.
    10.姜保功,孔繁玲,张群远,姜茹琴,何鉴星,张欣雪.棉花产量组分的改良对产量的影响.棉花学报,2000,12(5):258-260.
    11.李成奇,郭旺珍,马晓玲,张天真.陆地棉衣分差异群体产量及产量构成因素的QTL标记和定位.棉花学报,2008,20(3):163-169.
    12.林毅,赵伦一.陆地棉主要纤维品质性状的基因效应估测.遗传学报,1988,15(6):401-408.
    13.林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建.科学通报,2003,48(15):1676-1679.
    14.刘红彦,何文兰,杨共强,宋玉立.小麦抗白粉病基因的分子标记及标记辅助育种研究进展.河南农业大学学报,2001,35(1):26-31.
    15.刘芦苇,祝水金.转基因抗虫棉产量性状的遗传效应及其杂种优势分析.棉花学报,2007,19(1):33-37
    16.刘士平,李信,汪朝阳,李香花,何予卿.基因聚合对水稻稻瘟病的抗性影响.分子植物育种,2003,1(1):22-26.
    17.柳李旺,朱协飞,郭旺珍,张天真.分子标记辅助选择聚合棉花Rf_1育性恢复基因和抗虫Bt 基因.分子植物育种,2003,1(1):48-52.
    18.栾启福,祝水金.陆地棉重组近交系HM188及其性状表现.棉花学报,2003,15(4):252-253.
    19.倪大虎,易成新,李莉,汪秀峰,王文相,杨剑波.利用分子标记辅助选择聚合水稻基因Xa21和Pi9(t).分子植物育种,2005,3(3):329-334.
    20.倪西源.棉花DNA分子标记图谱的构建及重要性状基因的定位.浙江大学硕士论文,2004.
    21.彭应财,李文宏,樊叶扬,郑昀晔.利用分子标记辅助选择技术育成抗白叶枯病杂交稻协优218.杂交水稻,2003,18(5):5-7.
    22.齐莉莉,刘大钧.小麦基因组研究进展.麦类作物,1999,19(1):1-5.
    23.秦鸿德,张天真.利用四交群体构建陆地棉栽培品种间的SSR标记遗传图谱.南京农业大学学报,2008,31(4):13-19.
    24.沈新莲,袁有禄,郭旺珍,朱协飞,张天真.棉花高强纤维主效QTL的遗传稳定性及它的分子标记辅助选择效果.高技术通讯,2001,11(10):13-16.
    25.汤继华,马西青,滕文涛,严建兵,吴为人,戴景瑞,李建生.利用“永久F_2”群体定位玉米株高的QTL与杂种优势位点.科学通报,2006,51(24):2864-2869.
    26.汤继华,严建兵,马西青,滕文涛,孟义江,戴景瑞,李建生.利用“永久F_2”群体剖析玉米产量及其相关性状的遗传机制.作物学报,2007,33(8):1299-1303.
    27.田大刚,林峰,张彩琴,张政值,薛树林,曹勇,李春军,马正强.利用“永久F_2”群体定位抗赤霉病QTL.作物学报,2008,34(4):539-544.
    28.汪保华,武耀廷,黄乃泰,朱协飞,郭旺珍,张天真.利用重组自交系和SSR标记进行陆地棉株型QTL的鉴定和定位(英文).遗传学报.2006,33(2):161-170.
    29.王娟,郭旺珍,张天真.渝棉1号优质纤维QTL的标记与定位QTL作物学报,2007,33(12):1915-1921.
    30.王沛政.新疆陆地棉抗病、高产等育种目标性状QTL标记及定位,南京农业大学博士论文,2007
    31.王省芬,马峙英,张桂寅,温小杰,李喜焕.SSR和AFLP技术鉴定棉花遗传资源的比较研究.棉花学报,2006,18(6):391-393.
    32.吴茂清,张献龙,聂以春,贺道华.四倍体栽培棉种产量和纤维品质性状的QTL定位(英文).遗传学报.2003,30(5):443-452.
    33.吴振衡,刘定俊,莫惠栋.陆地棉数量性状的遗传分析I.17个农艺性状的基因效应估计. 遗传学报,1985,12,344-349.
    34.夏军红,郑用琏.玉米Rf_3近等基因系的分子标记辅助回交选育与效益分析.作物学报,2002,28(3):339-344.
    35.项时康,余楠,胡育昌,唐淑荣,熊宗伟,杨伟华.论我国棉花质量现状.棉花学报,1999,11(1):1-10.
    36.徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994.
    37.易成新,张天真,郭旺珍.陆地棉衣分QTL的形态和RAPD分子标记筛选.作物学报,2001,27(6):781-786.
    38.殷剑美,武耀廷.陆地棉产量性状QTLs的分子标记及定位.生物工程学报,2002,18(2):162-166.
    39.喻树迅.中国短季棉育种学.北京:科学出版社,2007.
    40.袁有禄.棉花优质纤维特性的遗传及分子标记研究.南京农业大学博士将论文,2000.
    41.袁有禄,张天真,郭旺珍,John Y,Russel J.K.棉花高品质纤维性状的主基因与多基因遗传分析.遗传学报,2002,29(9):827-834.
    42.袁有禄,张天真,郭旺珍,沈新莲,Yu J,Kohel R.棉花高品质纤维性状QTLs的分子标记筛选及其定位.遗传学报,2001,28(12):1151-1161,2001.
    43.张德贵,孔繁玲,张群远,刘文欣,杨付新,许乃银,廖琴,邹奎.建国以来我国长江流域棉区棉花品种的遗传改Ⅰ:棉花产量组分的改良对产量的影响.作物学报,2003,29(2)208-215.
    44.张天真.作物育种学总论.北京:中国农业出版社,2003.
    45.张天真,袁有禄,郭旺珍,Yu J,Kohel R.J.棉花高强纤维QTLs的微卫星标记筛选.中国农业科学,2001,34(4):363-366.
    46.张先亮,王坤波,宋国立,刘方,黎绍惠,王春英,张香娣,王玉红.陆地棉重组近交系“中G6”QTL的初步定位.棉花学报,2008,20(3):192-197.
    47.张增艳,陈孝,张超,辛志勇,陈新民.分子标记选择小麦抗白粉病基因Pm4b、Pm13和Pm21聚合体.中国农业科学,2002,28(7):789-793.
    48.周延清.DNA分子标记技术在植物研究中的应用.北京:化学工业出版社和现代生物技术与医药科技出版社,2005.
    49.周仲华,陈金湘.棉花数量性状遗传与QTL定位研究进展.中国农学通报,2005,21(10):36-40.
    50.朱军.复杂数量性状基因定位的混合线性模型方法.王连铮,戴景瑞主编,全国作物育种学术讨论会论文集,北京:中国农业科技出版社,1998,11-20.
    51.祝水金,童旭宏,洪彩霞,季道藩,吴伟,王仁杯.三系杂交棉新组合—浙杂2号.中国棉花,2006,33(5):12-13.
    52.左开井,孙济中.世界棉花分子生物学研究进展.棉花学报,1998,10(1):1-5.
    53.左开井,孙济中,张献龙,聂以春,刘金兰,冯纯大.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图(英文),华中农业大学学报,2000,19(3):190-193.
    54.Abdalla A.M,Reddy O.U.K,El-Zik K.M,Pepper A.E.Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP.Theoretical and Applied Genetics,2001,102(2-3):222-229.
    55.Abdurakhmonov I.Y,Abdullaev A.A,Saha S,Buriev Z.T,Arslanov D,Kuryazov Z,Mavlonov G.T,Rizaeva S.M,Reddy U.K,Jenkins J.N,Abdullaev A,Abdukarimov A.Simple sequence repeat marker associated with a natural leaf defoliation trait in tetraploid cotton.Journal of Heredity,2005,96(6):644-653.
    56.Ahmad S,Mang T,Noor-Ul-Islam Shaheen T,Mehboob-Ur-Rahman.Identifying genetic variation in Gossypium based on single nucleotide polymorphism.Pakistan Journal of Botany,2007,39(4):245-1250.
    57.Allard R,Bradshaw A.Implications of genotype-environmental interactions in applied plant breeding.Crop Science,1964,4(5):503-508.
    58.Altaf M,Stewart J,Wajahatullah M,Zhang J,Cantrell R.Molecular and morphological genetics of a trispecies F_2 population of cotton.Proceedings Beltwide Cotton Conferences (USA),1997,448-452.
    59.An C.F,Saha S,Jenkins J.N,Scheffler B.E,Wilkins T.A,Stelly D.M.Transcriptome profiling,sequence characterization,and SNP-based chromosomal assignment of the EXPANSIN genes in cotton.Molecular Genetics and Genomics,2007,278(5):539-553.
    60.Arumuganathan K,Earle E.D.Nuclear DNA content of some important plant species.Plant Molecular Biology Report,1991,9(3):208-218.
    61.Baker R.J,Longmire J.L,Van den Bussche R.A.Organization of repetitive elements in the upland cotton genome(Gossypium hirsutum L.).Journal of Heredity,1995,86(3):178-185.
    62.Basal H,Turgut I.Genetic Analysis of Yield components and fiber strength in upland cotton(Gossypium hirsutum L.).Asian Journal of Plant Sciences,2005,4(3):293-298.
    63.Bolek Y,El-Zik K.M,Pepper A.E,Bell A.A,Magill C.W,Thaxton P.M,Reddy O.U.K.Mapping of verticillium wilt resistance genes in cotton.Plant Science,2005,168(6):1581-1590.
    64.Botstein D,White R,Skolnick M,Davis R.Construction of a genetic linkage map in man using restriction fragment length polymorphisms.American Journal of Human Genetics, 1980,32(3): 314-331.
    
    65. Brubaker C, Cantrell R, Gib M, Lyon B, Wilkins T. Letter to journal of cotton science community. Journal of Cotton Science, 2000,4(2): 149-151.
    
    66. Brubaker C.L, Brown A.H.D. The use of multiple alien chromosome addition aneuploids facilitates genetic linkage mapping of the Gossypium G genome. Genome,2003,46(5):774-791.
    
    67. Brubaker C.L, Paterson A.H, Wendel J.F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome, 1999,42(2): 184-203.
    
    68. Burr B, Burr F.A. Recombinant inbreds for molecular mapping in maize: Theoretical and practical considerations. Trends in Genetics, 1991,7(2): 55-60.
    
    69. Burr B, Burr F.A, Thompson K.H, Albertson M.C, Stuber C.W. Gene mapping with recombinant inbreds in maize. Genetics, 1988,118(3): 519-526.
    
    70. Campbell B.T, Jones M.A. Assessment of genotype X environment interactions for yield and fiber quality in cotton performance trials. Euphytica,2005,144(1-2): 69-78.
    
    71. Cao G.J, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL x environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.).Theoretical and Applied Genetics,2001,103(1):153-160.
    
    72. Cardie L, Ramsay L, Milboume D, Macaulay M, Marshall D, Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants.Genetics,2000,156(2): 847-854.
    
    73. Causse M.A, Fulton T.M, Yong G.C, Sang NagA, Chunwongse J, Wu K, Xiao J, Yu Z,Ronald P.C, Harrington S.E, Second G, McCouch S.R, Tanksley S.D. Saturated molecular map of the rice genome based on an interspecific backcross population.Genetics,1994,138(4): 1251-1274.
    
    74. Ceballos H, Pandey S, Narro L, Perez-Velazquez J. Additive, dominant, and epistatic effects for maize grain yield in acid and non-acid soils. Theoretical and Applied Genetics,1998,96(5): 662-668.
    
    75. Cheatham C, Jenkins J, McCarty Jr J, Watson C, Wu JX. Genetic variances and combining ability of crosses of American cultivars, Australian cultivars, and wild cottons. Journal of Cotton Science,2003,7(2): 16-22.
    
    76. Chee P.W, Draye X, Jiang C.X, Decanini L, DelMonte T.A, Bredhauer R, Smith C.W,Paterson A.H. Molecular dissection of interspecific variation between Gossypium hirutum L.and Gossypium barbaense (cotton) by a backcross-self approach: I.Fibre elongation. Theoretical and Applied Genetics,2005a,l 11(4): 757-763.
    
    77. Chee P.W, Rong J, Williams-Coplin D, Schulze S.R, Paterson A.H. EST derived PCR-based markers for functional gene homologues in cotton. Genome,2004,47(3):449-462.
    
    78. Chee P.W, Draye X, Jiang C.X, Decanini L, Delmonte T.A, Bredhauer R, Smith C.W,Paterson A.H. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length.Theoretical and Applied Genetics, 2005b, 111(4): 772-781.
    
    79. Chen L, Zhang ZS, Hu MC, Wang W, Zhang J, Liu DJ, Zhang J, Zheng FM, Ma J. Genetic linkage map construction and QTL mapping for yield and fiber quality in upland cotton (Gossypium hirsutum L.). Acta Agronomica Sinica, 2008,34(7): 1199-1205.
    
    80. Connel J.P, Pammi S, Iqbal M.J, Huizinga T, Reddy A.S. A high throughout procedure for capturing microsatellites from complex plant genomes. Plant Molecular Biology Report,1998,16(4): 341-349.
    
    81. De Menezes I.P.P, Hoffmann L.V, Alves M.F, Morello C.D.L, Barroso P.A.V. Gene(?)ic distance among advanced lineages of cotton germplasm using RAPD and microsatellite markers. Pesquisa Agropecuaria Brasileira, 2008,43(10): 1339-1347.
    
    82. Doebley J, Stec A, Gustus C. Eosinte branchedl and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995,141(1): 333-346.
    
    83. Edward, 1991
    
    84. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in :he cultivated tomato enables the identification and fine mapping of yield associated QTL.Genetics, 1995, 141(3): 1147-1162.
    
    85. Eujayl I, Baum M, Powell W, Erskone W, Pehu E. A genetic linkage map of lentil (Lens spp) based on RAPD and AFLP markers using recombinant inbred lines. Theoretical and Applied Genetics, 1998, 97, 83-89.
    
    86. Fasoulas A.C, Allard R.W. Nonallelic gene interaction in the inheritance of quantitative characters in barely. Genetics, 1962,47, 899-907.
    
    87. Faure S, Noyer J.L, Horry J.P, Bakry F, Lanaud C, D GdL. A molecular marker-based linkake map of diploid bananas (Musa acuminata). Theoretical and Applied Genetics, 1993,87(4): 517-526.
    
    88. Frelichowski Jr J.E, Palmer M.B, Main D, Tomkins J.P, Cantrell R.G, Stelly D.M, Yu J,Kohel R.J, Ulloa M. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends. Molecular Genetics and Genomics, 2006, 275(5): 479-491.
    
    89. Guo W.Z, Wang W, Zhou B, Zhang TZ. Cross-species transferability of G. arborecum-derived EST-SSRs in thr diploid species of Gossypium. Theoretical and Applied Genetics, 2006, 112(8): 1573-1581.
    
    90. Guo W.Z, Zhang T.Z, Shen XX, Yu J.Z, Kohel R.J. Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland Cotton. Crop Science, 2003,43(6): 2252-2256.
    
    91. Guo W.Z, Cai C.P, Wang C.B, Zhao L, Wang L, Zhang T.Z. A preliminary analysis of genome structure and composition in Gossypium hirsutum. Bmc Genomics, 2008, 9. doi:310.1186/1471-2164-1189-1314.
    
    92. Guo W.Z, Cai C.P, Wang C.B, Han Z.G, Song X.L, Wang K, Niu X.W, Lu K.L, Shi B,Zhang T.Z. A microsatellite-based, gene-rich linkage map reveals genome structure,function and evolution in Gossypium. Genetics, 2007, 176(1): 527-541.
    
    93. Guo W.Z, Zhang T.Z, Zhu X.F, Pan J.J. Modified backcross pyramiding breeding with molecular marker-assited selection and its applications in cotton. Acta Agronomica Sinica,2005,31(8): 963-970.
    
    94. Han Z.G, Wang C.B, Song X.L, Guo W.Z, Gou J.Y, Li C.H, Chen X.Y, Zhang T.Z.Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theoretical and Applied Genetics, 2006, 112(3): 430-439.
    
    95. Han Z.G, Guo W.Z, Song X.L, Zhang T.Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Molecular Genetics and Genomics, 2004, 272(3): 308-327.
    
    96. Hassan G, Mahmood G, Razaq A. Combining ability in inter-varietal crosses of upland cotton. Sarhad Journal of Agriculture (Pakistan), 2000, 16(4): 407-410.
    
    97. He D.H, Lin Z.X, Zhang X.L, Nie Y.C, Guo X.P, Feng C.D, Stewart J.M. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica,2005,144(1-2): 141-149.
    
    98. He D.H, Lin Z.X, Zhang X.L, Nie Y.C, Guo X.P, Zhang Y.X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum X Gossypium barbadense. Euphytica, 2007,153(1-2): 181-197.
    
    99. He L.M, Du C.G. Cloning, Characterization and evolution of the NBS-encoding resistance gene analogue family in polyploid cotton {Gossypium hirsutm L.). Molecular Plant-Microbe Interaction, 2004,17(11): 1234-1241.
    
    100.Hospital F, Charcosset A. Marker-assisted introgression of quantitative trait loci. Genetics,1997, 147(3): 1469-1485.
    101.Hsu C.Y, An C, Saha S, Ma D.P, Jenkins J.N, Scheffler B, Stelly D.M. Molecular and SNP characterization of two genome specific transcription factor genes GhMyb8 and GhMyb 10 in cotton species. Euphytica, 2008, 159(1-2): 259-273.
    102.Hu J, Vick BA. Target region amplification polymorphism, a novel marker technique for plant genotying. Plant Molecular Biology Report, 2003,21, 289-294
    103.Hua J.P, Xing Y.Z, Wu W.R, Xu C.G, Sun X.L, Yu S.B, Zhang QF. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(5): 2574-2579.
    104.Hua J.P, Xing Y.Z, Xu C.G, Sun X.L, Yu S.B, Zhang Q.F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance.Genetics, 2002,162(4): 885-1895.
    105.Iqbal M.J, Aziz N, Saeed N.A, Zafar Y, Malik K.A. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theoretical and Applied Genetics, 1997, 94(1):139-144.
    106.Iqbal M, Reddy O.U.K, El-Zik K, Pepper A. A genetic bottleneck in the 'evolution under domestication' of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theoretical and Applied Genetics, 2001,103(4): 547-554.
    107.Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity Arrays: a soild state technology for sequence information independent genotying. Nucleic Acids Research, 2001, 29(4): e25.
    108.Jansen R. Interval mapping of multiple quantitative trait loci. Genetics,1993,135(1):205-211.
    109.Jansen R, Ooijen J, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theoretical and Applied Genetics, 1995,91(1): 33-37.
    110.Jiang C.X, Wright R.J, El-Zik K.M, Paterson A.H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(8): 4419-4424.
    111.Jiang C.X, Wright R.J, Woo S.S, DelMonte T.A, Paterson A.H. QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theoretical and Applied Genetics,2000,100(3-4): 409-418.
    112.Kao C, Zeng Z.B, Teasdale R. Multiple interval mapping for quantitativetrait loci. Gentics,1999, 152(3): 1203-1216.
    113.Katengan S, Saha S, Jenkins JN, Zipf A, Kohel RJ, Stelly D. Simple sequence repeat (SSR) markers linked to the Ligon Lintless(Li) mutant in cotton. Journal of Heredity, 2002, 53(3):221-224.
    114.Khan M, Cheema K, Masood A, Sadaqat H. Combining ability studies in cotton (Gossypium hirsutum L.). Journal of Agricultural Research (Pakistan), 1991,29(3): 311-318.
    115.Khan M, Stewart J, Wajahatullah M, Zang J. Molecular and morphological genetics of a trispecies F_2 population of cotton, Proceedings of Beltwide Cotton Conference (USA), 1997,6-10.
    116.Khan M, Zhang J, Stewart J, Cantrell R. Integrated molecular map based on a trispecific F_2 population of cotton. Proceedings of Beltwide Cotton Conference (USA), 1998,491-492.
    117.Khan M.A, Myers G.O, Stewart J.M, Zhang J, Cantrell R.G. Addition of new markers to the trispecific cotton map. Proceedings of Beltwide Cotton Conference (USA), 1999,439
    118.Kianian S.F, Quiros C.F. Geneation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theoretical and Applied Genetics, 1992, 84(5-6): 544-554.
    119.Kohel R, Yu J, Park YH, Lazo G. Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica, 2001, 121(2): 163-172.
    120.Lacape J.M, Nguyen T.B. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. Journal of Heredity, 2005, 96(4): 441-444.
    121.Lacape J.M, Dessauw D, Rajab M, Noyer J.L, Hau B. Microsatellite diversity in tetraploid Gossypium germplasm: Assembling a highly informative genotyping set of cotton SSRs.Molecular Breeding, 2007,19(1): 45-58.
    122.Lacape J.M, Nguyen T.B, Thibivilliers S, Bojinov B, Courtois B, Cantrell R.G, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome, 2003,46(4): 612-626.
    123.Lacape J.M, Nguyen T.B, Courtois B, Belot J.L, Giband M, Gourlot J.P, Gawryziak G,Roques S, Hau B. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum X Gossypium barbadense backcross generations. Crop Science, 2005, 45(1): 123-140.
    124.Lander E, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121(1): 185-199.
    125.Lander E, Green P, Abrahamson J, Barlow A, Daly M.J, Lincoln S.E, Newburg L.MAPMAKER: an interactive compute package for constructing primary genetic linkage maps of experimental and natrual populations. Genomics, 1987, 1(2): 174-181.
    126.Lefebvre V. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. genome, 1995, 38(1): 112-121.
    127.Li G, Quiros C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001,103(2-3): 455-461.
    128.Li Z.K. Molecular analysis of epistasis affecting complex traits. In Paterson AH(Eds):Molecular dissection of complex traits, 1998, Boca Raton, FL: CRC Press, 119-130.
    129.Li Z.K, Yu S.B, Lafitte H.R, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu G.F, Wang G.C, Shashidhar H.E, Zhuang J.Y, Zheng K.L, Singh V.P, Sidhu J.S,Srivantaneeyakul S, Khush G.S. QTL × environment interactions in rice. I. Heading date and plant height. Theoretical and Applied Genetics, 2003,108(1): 141-153.
    130.Lin H.X, Yamamoto T, Sasaki T. Characterization and detection of epistatic interaction of three QTLs, Hd1, Hd2, Hd3, controlling seed dormancy and heading date in rice, Ory.za sativa L, using backcross inbred lines. Theoretical and Applied Genetics, 2000, 96,997-1003.
    131.Lin Z.X, Zhang Y.X, Zhang X.L, Guo X.P. A high-density integrative linkage map for Gossypium hirsutum. Euphytica, 2009,166(1): 35-45.
    132.Lin Z.X, Zhang X.L, Nie Y.C, He D.H, Wu M.Q. Construction of a genetic linkage map for cotton based on SRAP. Chinese Science Bulltin, 2003, 48(19): 2063-2067.
    133.Lin Z.X, He D.H, Zhang X.L, Nie Y.C, Guo X.P, Feng C.D, Stewart J.M. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breeding, 2005, 124(2): 180-187.
    134.Lin Z.X, Zhang X.L, Nie Y.C. Evaluation of application of a new molecular marker SRAP on analysis of F_2 segregation population and genetic diversity in cotton. Acta Genetica Sinica,2004, 31(6): 622-626.
    135.Liu D.Q, Guo X.P, Lin Z.X, Nie Y.C, Zhang X.L. Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatrllite analysis. Genetic Resources and Crop Evolution, 2006, 53, 1145-1152.
    136.Liu L, Guo W, Zhu X, Zhang T.Z. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theoretical and Applied Genetics,2003, 106(3): 461-469.
    137.Liu S, Saha S, Stelly D, Burr B, Cantrell RG. Chromosomal assignment of microsatellite loci in cotton. Journal of Heredity, 2000, 91(4): 326-332.
    138.Lu Y.Z, Curtiss J, Zhang J.F, Percy R, Cantrell R.G. Discovery of single nucleotide polymorphisms in selected fiber genes in cultivated tetraploid cotton. Proceeding of the Beltwide Cotton Conferences, 2005, 946.
    139.Lu C, Shen L, Tan Z. Comparative mapping of QTLs for agronomic traits of rice across environments by using a double-haploid population. Theoretical and Applied Genetics, 1997,94,145-150.
    140.McCarty J.C, Jenkins J.N, Wu J.X. Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement: I. Phenotypic values and variance components.Crop Science, 2004,44(4): 1226-1230.
    141.Mei M, Syed N.H, Gao W, Thaxton P. Smith C.W, Stelly D.M, Chen Z.J. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and Applied Genetics, 2004,108(2): 280-291.
    142.Meredith W.R. Use of molecular markers in cotton breeding. In Proceeding of World Cotton Res. Conf, Constable G A, Forrester NW. (eds) (Brisbane, AU), 1994, 303-308.
    143.Meredith W.R.J. Cotton breeding for fibre strength. In proceedings from cotton fibre cellulose: structure, function, and utilization conference, Memphis, TN: National Cotton Council of American, 1992,289-302.
    144.Mochida K, Yamazaki Y, OgiharaY. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Molecular Genetic and Genomics, 2004,270(5): 371-377.
    145.Morgante M, Olivieri A. PCR-amplified microsatellites as markers in plant genetics. Plant Journal, 1993,3(1): 175-182.
    146.Myers G.O, Jiang B, Akash M.W, Badigannavar A, Saha S. Chromosomal assignment of AFLP markers in upland cotton (Gossypium hirsutum L.). Euphytica,2009,165(2): 391-399.
    147.Nguyen T.B, Giband M, Brottier P, Risterucci A.M, Lacape J.M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theoretical and Applied Genetics, 2004,109(1): 167-175.
    148.Paran I, Michelmore R.W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 1993, 85, 985-993.
    149.Park Y.H, Alabady M.S, Ulloa M, Sickler B, Wilkins T.A, Yu J, Stelly D.M, Kohel R.J,El-Shihy O.M, Cantrell R.G. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Molecular Genetic and Genomics, 2005, 274 (4): 428-441.
    150.Paterson A.H. A rapid method for extraction of cotton ( Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Report, 1993, 11(2): 122-127.
    151.Paterson A.H, Lander E, Hewitt J. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988,335,721-726.
    152.Paterson A.H, Saranga Y, Menz M, Jiang C.X, Wright R.J. QTL analysis of genotype X environment interactions affecting cotton fiber quality. Theoretical and Applied Genetics, 2003,106(3): 384-396.
    153.Pooni H, Coombs D, Jinks P. Detection of epistasis and linkage of interacting genes in the presence of reciprocal differences. Heredity, 1987, 58(2): 257-266.
    154.Powell W, Machray G.C, Provan J. Polymorphism revealed by simple sequence repeats.Trends in Plant Science, 1996, 1(7): 215-222
    155.Qi X, Stam P, Lindhout P. Use of locus-specific AFLP markers to construct a high-density molecular map in barely. Theoretical and Applied Genetics, 1998,96,376-384.
    156.Qureshi S.N, Saha S, Kantety R.V, Jenkins J.N. Molecular biology and physiology:EST-SSR: A new class of genetic markers in cotton. Journal of Cotton Science, 2004, 8(2):112-123.
    157.Rana M.K, Singh S, Bhat K.V. RAPD, STMS and ISSR markers for genetic diversity and hybrid seed purity testing in cotton. Seed Science and Technology, 2007, 35(3): 709-721.
    158.Reddy O.U.K, Pepper A.E, Abdurakhmonov I, Saha S, Jenkins JN, Brooks T, Bolek Y,El-Zik KM. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. Journal of Cotton Scienceence, 2001,5(2): 103-113.
    159.Reinisch A.J, Dong J.M, Brubaker C.L, Stelly D.M, Wendel J.F, Paterson A.H. A detai(?)ed RFLP map of cotton, Gossypium hirsutum X Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994, 138(3):829-847.
    160.Ren L.H, Guo W.Z, Zhang T.Z. Identification of Quantitative Trait Loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Botar(?)ica Sinica,2002, 44(7): 815-820.
    161.Richard T.R. Procedures and methods of cotton breeding with special reference to American cultivated species. Advanced in genetics, 1951,4, 213-245.
    162.Roberts P.A. Difference in the behaviour of Eu- and Hetero-chromatin: crossing-over.Nature, 1965,205, 725-726.
    163.Rong J, Feltus FA, Waghmare V.N, Pierce G.J, Chee P.W, Draye X, Saranga Y, Wright R.J, Wilkins T.A, May O.L, Smith C.W, Gannaway J.R, Wendel J.F, Paterson A.H.Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics,2007,176(4): 2577-2588.
    164.Rong J, Abbey C, Bowers J.E, Brubaker C.L, Chang C, Chee P.W, Delmonte T.A, Ding X,Garza J.J, Marler B.S, Park C.H, Pierce G.J, Rainey K.M, Rastogi V.K, Schulze S.R,Trolinder N.L, Wendel J.F, Wilkins T.A, Williams-Coplin T.D, Wing R.A, Wright R.J, Zhao X, Zhu L, Paterson A.H. A 3347-locus genetic recombination map of Sequence-Tagged Sites reveals features of genome organization, transmission and evolution of cotton(Gossypium). Genetics, 2004, 166(1): 389-417.
    165.Routman E, Cheverud J. Gene effects on a quantitative trait: two-locus epistatic effects measured at microsatellite markers and at estimated QTL.Evolution, 1997,51(5): 1654-1662.
    166.Rungis D, Llewellyn D, Dennis E, Lyon B. Investigation of the chromosomal location of the bacterial blight resistance gene present in an Australian cotton (Gossypium hirsutum L.)cultivar. Australian Journal of Agricultural Research, 2002, 53(5): 551-560.
    167.Rungis D, Llewellyn D, Dennis E.S, Lyon B.R. Simple sequence repeat (SSR) markers reveal low levels of polymorphism between cotton (Gossypium hirsutum L.) cultivars. Australian Journal of Agricultural Research, 2005, 56(3): 301-307.
    168.Saha S, Karaca M, Jenkins J.N, Zipf A.E, Reddy O.U.K, Kantety R.V. Simple sequnece repeats as useful resources to study transcribed genes of cotton. Euphytica, 2003, 130(3):355-364.
    169.Saha S, Jenkins J.N, Wu J, McCarty J.C, Gutinrrez O.A, Percy R.G, Cantrell R.G, Stelly D.M. Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits. Genetics, 2006, 172(3): 1927-1938.
    170.Saranga Y, Menz M, Jiang C.X, Wright R.J, Yakir D, Paterson A.H. Genomic dissection of genotype × environment interactions conferring adaptation of cotton to arid conditions.Genome Research, 2001, 11, 1988-1995.
    171.Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923, 8(6): 552-560.
    172.Semagn K, Bjomstad A, Skinnes H, Maroy A.G, Tarkegne Y, William M. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome, 2006,49(5): 545-555.
    173.Shappley Z.W, Jenkins J.N, Meredith W.R, McCarty Jr J.C. An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theoretical and Applied Genetics, 1998a, 97(5-6):756-761.
    174.Shappley Z.W, Jenkins J.N, Zhu J, McCarty Jr J.C. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. Journal of Cotton Science, 1998, 2(4): 153-163.
    175.Shappley Z.W, Jenkins J.N, Watson Jr C.E, Kahler A.L, Meredith W.R. Establishment of molecular markers and linkage groups in two F_2 populations of upland cotton. Theoretical and Applied Genetics, 1996, 92(8): 915-919.
    176.Shen X.L, Zhang T.Z, Guo W.Z, Zhu X.F, Zhang X.Y. Mapping fiber and yield QTLs with main, epistatic, and QTL X environment interaction effects in recombinant inbred lines of upland cotton. Crop Science, 2006a, 46(1): 61-66.
    177.Shen X.L, Van Becelaere G, Kumar P, Davis R.F, May OL, Chee P. QTL mapping for resistance to root-knot nematodes in the M-120 RNR upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theoretical and Applied Genetics, 2006,113(8): 1539-1549.
    178.Shen X.L, Guo W.Z, Lu Q.X, Zhu X.F, Yuan Y.L, Zhang T.Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cottcn. Euphytica, 2007, 155(3): 371-380.
    179.Shen X.L, Guo W.Z, Zhu X.F, Yuan Y.L, Yu J.Z, Kohel R.J, Zhang T.Z. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Molecular Breeding, 2005b, 15(2): 169-181.
    180.Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between markers loci and quantitative loci in cross between inbred lines.Theoretical and Applied Genetics, 1976,47(1): 35-39.
    181.Song X.L, Wang K, Guo W.Z, Zhang J, Zhang T.Z. A comparison of genetic maps constructed from haploid and BC_1 mapping populations from the same crossing between Gossypium hirsutum L.× Gossypium barbadense L. Genome, 2005a, 48(3): 378-390.
    182.Song X.L, Zhang T.Z. Quantitative trait loci controlling plant architectural traits in cotton.Plant Science, 2009, 177(4): 317-323.
    183.Song XL, Guo WZ, Han ZG, Zhang TZ. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. Journal of Integrative Plant Biology, 2005b, 47(11): 1382-1390.
    184.Tadmore Y. Genetic mapping of an ancient translocation in the genus Lens. Theoretical and Applied Genetics, 1987, 73(6): 883-892.
    185.Taliercio E, Allen R.D, Essenberg M, Klueva N, Nguyen H, Patil MA, Payton P, Mil(?)ena A.C.M, Phillips A.L, Pierce M.L, Scheffler B, Turley R, Wang J, Zhang D, Schefflcr J.Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs.Genome, 2006,49(4): 306-319.
    186.Tanksley S.D, Ganal M.W, Prince J.P, De Vicente M.C, Bonierbale M.W, Brou(?) P,Fulton T.M, Giovannoni J.J, Grandillo S, Martin G.B, Messeguer R, Miller J.C, Miller L,Paterson A.H, Pineda O, Roder M.S, Wing R.A, Wu W, Young N.D. High density molecular linkage maps of the tomato and potato genomes. Genetics, 1992, 13 2(4):1141-1160.
    187.Tatineni V, Cantrell R.G, Davis DD. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Science, 1996, 36(1):186-192.
    188.Ulloa M, Meredith Jr W.R. Genetic linkage map and QTL analysis of agronomic and fiber qality traits in an intraspecific population. Journal of Cotton Science, 2000a, 4(3): 161-170.
    189.Ulloa M, Meredith Jr W.R, Shappley Z.W, Kahler A.L. RFLP genetic linkage maps from four F2.3 populations and a joinmap of Gossypium hirsutum L. Theoretical and Applied Genetics, 2002a, 104(2-3): 200-208.
    190.Ulloa M, Cantrell R.G, Percy R.G, Zeiger E, Lu Z. QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. Journal of Cotton Science, 2000b,4(1): 10-18.
    191.Ulloa M, Saha S, Jenkins J.N, Meredith Jr W.R, McCarty Jr J.C, Stelly DM. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. Journal of Heredity, 2005, 96(2): 132-144.
    192.UNCTAD. 2008. Markert Cotton production. http: //unctad.org/infocomm/anglais/cotton/market, htm.
    193.Van Ooijen J.W, Voorrips R.E. JoinMap?3.0. Software for the calculation of genetic linkage maps. 2001, Wageningen, the Netherlands: Plant Research International.
    194.Veldboom L.R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. grain yield and yield yomponents. Crop Science, 1996, 36(5):1310-1319.
    195.Voorrips R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs Journal of Heredity, 2002, 93(1): 77-78.
    196.Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Homes M, Frijters A, Pot J,Peleman J, Kuiper M, Zabeau M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23(21): 4407-4414.
    197.Vuylsteke M, Rank R, Antonose R, Bastiaans E, Senior M.L, Stuber C.W, Melchinger A.E,Lubberstedt E.L, Xia X.C, Stam P, Zabeau M, Kuiper M. Two high density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theoretical and Applied Genetics, 1999, 99(6): 921-935.
    198.Waghmare V.N. Rong J. Rogers C.J, Pierce G.J, Wendel J.F, Paterson A.H. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theoretical and Applied Genetics, 2005, 111(4): 665-676.
    199.Wang B.H, Guo W.Z, Zhu X.F, Wu Y.T, Huang N.T, Zhang T.Z. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica, 2006a,152(3): 367-378.
    200.Wang B.H, Guo W.Z, Zhu X.F. Wu Y.T. Huang N.T, Zhang T.Z. QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. Journal of Genetics and Genomics, 2007, 34(1): 35-45.
    201.Wang B.H, Wu Y.T, Huang N.T, Zhu X.F, Guo W.Z, Zhang T.Z. QTL mapping for plait architecture traits in upland cotton using RILs and SSR markers. Acta Genetica Sinica,2006b, 33(2): 161-170.
    202.Wang C, Ulloa M, Roberts P.A. Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in Aca la Nero X cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2006c, 112(4): 770-777.
    203.Wang C, Roberts PA. Development of AFLP and derived CAPS markers for root-knot nematode resistance in cotton. Euphytica, 2006,152(2): 185-196.
    204.Wang D.L, Zhu J, Li ZKL, Paterson AH. Mapping QTLs with epistatic effects and QTLx environment interactions by mixed linear model approaches. Theoretical and Applied Genetics, 1999, 99(7): 1255-1264.
    205.Wang H.M, Lin Z.X, Zhang X.L, Chen W, Guo X.P, Nie Y.C, Li Y.H. Mapping and quantitative trait loci analysis of verticillium wilt resistance genes in cotton. Journal of Integrative Plant Biology, 2008, 50(2): 174-182.
    206.Wang K. Song X.L, Han Z.G, Guo W.Z, Yu J.Z, Sun J, Pan J.J, Kohel R.J. Zhang T.Z.Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theoretical and Applied Genetics, 2006d,113(1): 73-80.
    207.Wendel J. New world tetraploid cottons contain old world cytoplasm. Proceedings of the National Academy of Sciences, 1989, 86(11): 4132-4136.
    208.Wendel J.F. Albert V. Phylogenetics of the cotton genus {Gossypium): character-slate weighted parsimony anlysis of chloroplast-DNA restriction site data and its systemic and biogeographic implication. System Botany, 1992, 17(1): 115-143.
    209.Wenzl P, Carling J, Kudrna D, Jaccoud D, HuttnerE Kleinhofs, Kilian A.A. Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences, 2004, 101(26): 9915-9920.
    210.WilliamsJ, Livak K, Rafalkski J, Kubelik A, Tingey S. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,1990,18(22)6531-6535.
    211.Wittenberg A.H.J, Van der Lee T, Cayla C, Kilian A, Visser R.G.F, Schouten H.J.Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Molecular Genetic and Genomics, 2005,274(1): 30-39.
    212.Wright R.J, Thaxton P.M, El-Zik K.M, Paterson A.H. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics, 1998, 149(4): 1987-1996.
    2 B.Wright R.J, Thaxton P.M, El-Zik K.H, Paterson A.H. Molecular mapping of genes affecting pubescence of cotton. Journal of Heredity, 1999, 90(1): 215-219.
    214.Wu J.X, Gutierrez O.A, Jenkins J.N, McCarty J.C, Zhu J. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica,2009,165(2): 231-245.
    215.Wu M.Q, Zhang X.L, Nie Y.C, He D.H. Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar. Acta Genetica Sinica, 2003, 30(5): 443-452.
    
    216.Xie Y, McNally K, Li C.Y, Leung H, Zhu Y.Y. A High-throughput Genomic Tool:Diversity Array Technology Complementary for Rice Genotyping. Journal of Integrative Plant Biology, 2006,48(9): 1069-1076.
    217.Xing Y.Z, Tan Y.F, Hua J.P, Sun X.L, Xu C.G, Zhang Q.F. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theoretical and Applied Genetics, 2002, 105(2): 248-257.
    218.Xu Y, Zhu L, Xiao J, Huang McCouch S.R. Chromosomal regions associated with segregation distortion of molecular markers in F_2, backcross doubled haploid, and recombinant inbred populations in rice {Oryza sativa L.). Molecular and General Genetics,1997,253(5): 535-545.
    219.Yamamoto T, Lin H.X, Sasaki T. Identification of heading date quantitative trait locus Hd6 and characterization of its spistatic interaction with Hd2 in rice using advanced backcross progeny. Genetics, 2000,154(2): 885-891.
    220.Yang J, Hu C.C, Hu H, Yu R.D, Xia Z, Ye X.Z, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations.Bioinformatics,2008, 24(5): 721-723.
    221.Yin J.M, Guo W.Z, Yang L.M, Liu L.W, Zhang T.Z. Physical mapping of the Rf,fertility-restoring gene to a 100kb region in cotton. Theoretical and Applied Genetics,2006,112(7): 1318-1325.
    222.Ynturi P, Jenkins J, McCarty Jr J, Gutierrez O, Saha S. Association of root-knot nematode resistance genes with simple sequence repeat markers on two chromosomes in cotton. Crop Science, 2006,46(6): 2670.
    223.Young N, Tanksley S. RFLP analysis of size of chromosome segments retained around the Tm-2 locus of tomato during backcross breeding. Theoretical and Applied Genetics, 1989, 77(3):353-359.
    224.Young W.P, Schupp J.M, Keim P. DNA methylation and AFLP marker distribution in the soybean genome. Theoretical and Applied Genetics, 1999, 99(5):785-790.
    225.Yu J, Park Y, Lazo G. Mapping cotton genome with molecular markers, Proceeding of the Beltwide Cotton Conferences. 1997a, 485.
    226.Yu J.W, Yu S.X, Lu C.R, Wang W, Fan S.L, Song M.Z, Lin Z.X, Zhang X.L, Zhang J.F.High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. Journal of Integrative Plant Biology, 2007,49(5): 716-724.
    227.Yu S.B, Li J, Xu C.G, Tan Y.F, Gao Y.J, Li X.H, Zhang Q.F, Maroof MAS. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid, Proceedings of the National Academy of Sciences, 1997b, 94 (17): 9226-9231.
    
    228.Zeng Z.B. Precision mapping of quantitative trait loci. Genetics, 1994,136, 1457-1468.
    229.Zhang H.B, Li Y.N, Wang B.H, Chee P.W. Recent advances in cotton genomics.International Journal of Plant Genomics, 2008. doi: 10. 1155/2008/742304.
    230.Zhang J.F, Stewart J.M.D. Inheritance and genetic relationships of the D_8 and D_(2-2) restorer genes for cotton cytoplasmic male sterility. Crop Science, 2001,41(2): 289-294.
    231.Zhang J, Guo W.Z, Zhang T.Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theoretical and Applied Genetics, 2002, 105(8): 1166-1174.
    232.Zhang J.F, Lu Y, Cantrell R.G, Hughs E. Molecular marker diversity and field performance in commercial cotton cultivars evaluated in the southwestern USA. Crop Science, 2005a,45(4): 1483-1490.
    233.Zhang J.F, Lu Y, Percy R.G, Ulloa M, Van Becelaere G, Peng C, Cantrell R. A molecular linkage map and quantitative trait locus analysis based on a recombinant inbred line population of cotton. Proceeding of the Beltwide Cotton Conferences, 2005b, 899.
    234.Zhang T.Z, Yuan Y.L, Yu J, Guo W.Z, Kohel RJ. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theoretical and Applied Genetics, 2003a, 106(2): 262-268.
    235.Zhang Y.M, Xu S.Z. Mapping quantitative trait loci in F_2 incorporating phenotypes of F_3 progeny. Genetics, 2004,166,1981-1993.
    236.Zhang Z.S, Xiao Y.H, Luo M, Li X.B, Luo X.Y, Hou L, Li D.M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005c, 144(1-2): 91-99.
    237.Zhang Z.S, Hu M.C, Zhang J, Liu D.J, Zheng J, Zhang K, Wang W, Wan Q. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Molecular Breeding, 2009, 1-13. doi: 10.1007/s11032-009-9271-1.
    238.Zhao X, Wing R.A, Paterson AH. Cloning and characterization of majority of repititive DNA in cotton (Gossypium). Genome, 1995, 38(6): 1177-1188.
    239.Zhao X.P, Si Y, Hanson R.E, Crane C.F, Price H.J, Stelly D.M, Wendel J.F, Paterson A.H.Dispersed repetitive DNA has spread to new genome since polyploid formation in cotton.Genome research, 1998, 8: 479-492.
    240.Zheng J, Zhang Z.S, Chen L, Wan Q, Hu M.C, Wang W, Zhang K, Liu D.J, Chen X, Wei X Q. Intron-Targeted Intron-Exon Splice Conjunction (IT-ISJ) marker and its application in construction of upland cotton linkage map. Agricultural Sciences in China, 2008,7(10):1172-1180.
    241.Zhou P.H, Tan Y.F, He Y.Q, Xu C.G, Zhang Q.F. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theoretical and Applied Genetics, 2003, 106(2): 326-331.
    242.Zhu J, Weir B. Mixed model approaches for genetic analysis of quantitative traits. In Chen Ruan L, S, Zhu J(eds), Advaned topics in biolmathematics: Proceedings of international conference on mathematical biolody. Singapore: World scientific publishing Co, 1998,321-330.
    243.Zhuang J.Y, Fan Y.Y, Rao Z.M, Wu J.L, Xia Y.W, Zheng K.L. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theoretical and Applied Genetics, 2002, 105(8): 1137-1145.
    244.Zhuang J.Y, Lin H.X, Lu J, Qian H.R, Hittalmani S, Huang N, Zheng K.L. Analysis of QTL × environment interaction for yield components and plant height in rice. Theoretical and Applied Genetics, 1997, 95(5): 799-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700