用户名: 密码: 验证码:
天然彩色棉品种生长生理特征及其调节研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以天然绿色棉品种皖棉39号、棕色棉品种湘彩棉2号为材料,并以普通白色陆地棉品种苏棉9号作为对照,探讨了2个不同色彩棉品种的棉株生长发育特点、碳氮代谢的生理特征;并从棉铃、纤维品质性状与色素形成入手,研究了天然彩色棉的棉铃、纤维品质性状、纤维色素的形成特征及其密度、氮肥、生长物质和源库等调节。主要研究结果如下:
     1、生长发育特征与普通白色棉不同。2个不同色彩棉品种在营养生长方面表现为株高均高于普通白棉。整个生育期的平均株高日增量较大(绿色棉为1.5 cm/d、棕色棉1.38 cm/d、普通白棉1.06 cm/d),LAI增长量、最大LAI也较高,如盛铃期(8月15日)棕色棉为5.14,绿色棉为4.3,普通白棉仅为4.12;营养器官干重高,且占有的比例大。
     在生殖发育方面则表现为,总果节量虽较大(绿色棉为326.00万个/公顷、棕色棉331.25万个/公顷、普通白棉仅为323.20万个/公顷),但脱落率较高,棕色棉比普通白棉高21.7%,绿色棉比普通白棉高17.1%;成铃强度低,如在优质桃形成期(7/20—8/30),棕色棉品种、绿色棉品种成铃强度分别为0.37个·株~(-1)·d~(-1)和0.49个·株~(-1)·d~(-1),均低于普通白棉的0.94个·株~(-1)·d~(-1);生殖器官干重、生殖器官与营养器官干重比例较低。在棉铃发育上,天然彩色棉棉铃铃长、最大直径、铃体积、铃壳重均表现为低于普通白棉,且铃重增长持续期也短于苏棉9号。如绿色棉、棕色棉棉铃体积分别仅为对照苏棉9号的75.4%和85.3%;铃重分别比对照低0.72g和0.58g。
     2、碳代谢能力弱,中后期氮代谢旺盛。在氮代谢方面,2个不同色彩棉品种的叶片硝酸还原酶(NR)活性、丙酮酸转氨酶(GPT)活性、游离氨基酸、全氮含量、可溶性蛋白含量表现为在生育前期(7/20)低于苏棉9号,而中后期(8/15)高于苏棉9号。如:吐絮期(8/30),绿色棉和棕色棉功能叶中全氮含量分别比普通白色陆地棉高7.2、10.3个百分点。在碳代谢方面,天然彩色棉整个生育期功能叶中叶绿素含量、可溶性糖含量、蔗糖转化酶活性、净光合速率均低于对照白棉品种苏棉9号。如:吐絮期(8/30),绿色棉和棕色棉功能叶中可溶性糖含量分别比普通白棉低9.9、26.4个百分点。此外,2个不同色彩的天然彩色棉品种在整个生育期功能叶碳氮比均低于普通白棉品种,如盛花期(7/20),绿色棉和棕色棉分别比对照苏棉9号降低了48.2%、19.9%。
     3、棉纤维品质性状形成速度慢、纤维细胞相关生理活性低。棕色棉纤维长度、比强度、马克隆值、成熟度系数分别只有苏棉9号的95.5%、88.4%、89.2%、95.9%;绿色棉仅为苏棉9号的92.4%、77.4%、87.5%、92.5%。由纤维品质性状形成动态进一步表明,湘彩棉2号和皖棉39号花后10-30 d纤维长度增长速率分别为0.89 mm/d、0.85 mm/d,低于对照苏棉9号的0.98 mm/d;马克隆值、成熟度系数一直低于白棉,且差异主要在花后30 d内。由Richard方程模拟参数揭示:天然绿棉色、棕色棉纤维长度、马克隆值、成熟度系数形成的初值参数(b)、累积速率参数(K)均明显低于普通白棉,而且差异主要发生于纤维发育的前中期。纤维细胞发育过程中相关生理活性表明,与普通白色棉苏棉9号相比,2个不同色彩的天然彩色棉品种棉铃对位叶叶绿素含量(SPAD值)低,且花后30-40天叶绿素下降速率快;棉铃对位叶中蔗糖转化酶活性、铃壳和纤维中ATP酶活性、纤维中SS活性、UDPG焦磷酸化酶活性均较低,如花后20天,绿色棉叶片蔗糖转化酶活性、纤维中ATP酶分别仅为普通白棉的89.2%、42.2%。
     4、与棕色棉湘彩棉2号相比,绿色棉皖棉39号营养生长和生殖发育更不平衡,碳氮生理代谢协调程度更低。在氮代谢方面,绿色棉皖棉39号开花后功能叶中GPT活性、全氮含量、可溶性蛋白含量一直低于棕色棉。如:盛花期(7/20),绿色棉全氮含量比棕色棉低4.1个百分点。在碳代谢方面,绿色棉开花后功能叶中叶绿素含量、可溶性糖含量、叶片净光合速率均低于棕色棉。如:盛花期(7/20)绿色棉可溶性糖含量比棕色棉低14.1%。由碳氮比进一步表明,绿色棉皖棉39号在初花期(7/5)、盛花期(7/20)、始絮期(8/30)功能叶中C/N低于棕色棉湘彩棉2号,绿色棉分别为8.03、13.45、15.30;棕色棉分别为12.42、15.02、18.21。
     5、绿色棉色素含量低于棕色棉,并与内源激素ABA、GA_3诱导、色素合成相关物质及酶活性密切相关。测定表明,吐絮时,棕色棉湘彩棉2号每0.1g纤维中提取液吸光度为0.418,绿色棉皖棉39号仅为0.385。在整株纤维的色素分布上,也是绿色素的色素形成慢,含量低,如棕色棉中部内、外围纤维中色素含量分别比绿色棉高4.60、4.56个百分点。且绿色棉色素不稳定,容易分解,如绿色棉色素提取液在阳光暴晒5h后,色素吸光度下降了0.221,而棕色棉仅下降0.113。天然棕色棉花后40天纤维中ABA、GA_3含量明显高于绿色棉,如棕色棉纤维中ABA含量比绿色棉高46.77 ng·g~(-1)·fw~(-1),GA_3含量比绿色棉高137.2 ng·g~(-1)·fw~(-1),与色素含量表现一致。相关分析表明,花后40天纤维中ABA、GA_3含量分别与成熟期纤维中色素含量呈显著和极显著线性正相关(r=0.6668*、r=0.7993**),对纤维中单宁、PAL活性测定表明,天然绿色棉一直低于棕色棉,如花后10天,皖棉39号纤维中PAL活性比湘彩棉2号低30.8单位·g~(-1)·fw~(-1)·h~(-1)。这与纤维中色素含量表现一致。
     6、密度37500株/ hm~2、施氮量为225 kg/hm~2条件,有利于天然棕色棉合理群体的形成,提高产量和纤维品质。如该密肥条件,能有效地调节棕色棉株高和LAI增长,最终株高控制在100cm左右,最大LAI(盛铃期8/15)分别为4.17;在生殖生长方面有利于天然彩色棉棉株个体生殖器官干重的积累,促进铃数的形成,提高成铃强度、成铃率、铃重及衣分并可降低脱落率,如湘彩棉2号在此密肥水平下,脱落率为48.2%,分别比密度37500株/ hm~2、施氮量0 kg/hm~2,密度37500株/ hm~2、施氮量375 kg/hm~2水平低29.8%、23.0%;产量分别增加了24.6%、1.8%。此外,该密肥水平最有利于棕色棉湘彩棉2号纤维品质的形成及整株纤维品质的提高。如该密肥水平棉株中部纤维长度、比强度、马克隆值、成熟度系数分别比密度37500株/ hm~2、施氮量为0 kg/hm~2条件下提高了3.8%、15.8%、16.9%、15.7%;比强度、马克隆值、成熟度系数比密度37500株/ hm~2、施氮量为375 kg/hm~2条件下提高了6.4%、5.4%、1.3%。
     7、生长物质DPC、DTA-6、GA_3能有效协调碳氮代谢,促进棉铃发育,提高彩色棉生理活性,改善纤维品质。GA_3处理、DTA-6处理均显著的提高了天然绿色棉皖棉39号和棕色棉湘彩棉2号的棉铃体积、单铃重。如GA_3使得绿色棉体积增加4.9 cm3、棕色棉体积增加3.5 cm3;GA_3使得绿色棉单铃重增加0.78 g、DTA-6使得棕色棉单铃重增加0.58 g。DPC、DTA-6、GA_3处理均明显提高了绿色棉和棕色棉纤维长度、比强度、马克隆值、成熟度系数并且可以缩小整株纤维品质性状的差异。如皖棉39号在施用GA_3后纤维长度、比强度、马克隆值、成熟度系数分别比对照增加了2.2、26.7、5.0、8.1个百分点;棕色棉分别比对照增加了6.0、5.5、13.9、9.4个百分点。研究结果进一步表明,3种生长物质处理后棉铃对位叶叶绿素含量、蔗糖转化酶活性、纤维腺苷三磷酸(ATP)酶活性、SS酶活性、UDPG焦磷酸化酶活性及相关激素含量明显提高。如:花后20天,绿色棉DPC、DTA-6、GA_3处理后纤维中ATP酶活性,分别比对照提高了3.10 umol·gfw~(-1)·h~(-1)、3.96 umol·gfw~(-1)·h~(-1)、6.34 umol·gfw~(-1)·h~(-1)。
     DPC、DTA-6、GA_3能有效的调节2个不色彩棉品种的碳氮代谢强度,并协调碳氮代谢平衡。在氮代谢方面,DPC、DTA-6、GA_3处理提高了天然彩色棉前期N代谢水平,DPC能降低了后期N代谢能力。在碳代谢方面,DPC、DTA-6、GA_3处理可以有效调节绿色棉、棕色棉在盛铃期、始絮期功能叶中碳代谢强度,提高其碳代谢能力,如:绿色棉DPC、DTA-6、GA_3处理后功能叶可溶性糖含量分别比对照提高了6.0%、20.5%和14.0%;棕色棉分别提高了12.5%、8.0%、28.5%。在碳氮代谢平衡方面,DPC、DTA-6、GA_3处理可以有效的调节天然绿色棉、棕色棉在盛铃期、始絮期功能叶中碳氮比,促进天然彩色棉生育后期生殖器官的发育。如:始絮期(8/30),绿色棉3种生长物质处理后可溶性糖与全氮比值分别提高了53.3、46.0、49.5个百分点;棕色棉分别提高了9.8、5.3、7.2个百分点。3个生长物质中以DPC、GA_3效果最为明显。
     8、适当去蕾有利于天然彩色棉棉铃发育、纤维品质性状改善及生理活性提高。如:绿色皖棉39号棉去除整株1/2、1/4蕾量处理单铃重分别比对照增加了1.346g、1.051g;棕色棉湘彩棉2号比对照增加了0.622g、0.313g。去蕾使得纤维品质性状改善,纤维长度、比强度、马克隆值、成熟度系数都明显增加,且以绿色棉增加幅度较大。如吐絮时,绿色棉去除整株1/2蕾量处理纤维长度、比强度、马克隆值、成熟度系数分别比对照增加了14.9、11.0、18.7、16.2个百分点;棕色棉则分别比对照增加了8.6、6.5、11.4、11.8个百分点。且去蕾后,棉铃对位叶叶绿素含量、蔗糖转化酶活性、纤维腺苷三磷酸(ATP)酶活性、SS酶活性、UDPG焦磷酸化酶活性及相关激素含量明显提高。如:花后10天,皖棉39号去除整株1/2和1/4蕾量后棉铃对位叶中蔗糖转化酶活性分别比对照提高了36.6%、15.1%,湘彩棉2号分别比对照提高了76.1%、56.7%。
     9、DPC、GA_3和DTA-6、去蕾及轻度遮光均可提高天然彩色棉纤维中色素、单宁含量及PAL活性。如与各自对照相比,绿色棉、棕色棉喷施GA_3处理后成熟时纤维中色素含量分别提高了23.9和6.5个百分点;去除整株蕾数的1/2处理分别提高了54.3%和9.8%;轻度遮光处理分别提高了9.5和4.3个百分点。
     10、施用FeCl3可以有效增强2个不同颜色天然彩色棉品种纤维中色素的光稳定性。盛花期喷施FeCl3,可促进天然彩色棉色素含量的增加。如吐絮时,绿色棉皖棉39号、棕色棉湘彩棉2号处理分别比各自对照提高了4.4%、3.6%;此外FeCl3处理后,天然彩色棉纤维中色素稳定性有了较大幅度的提高,下降速度减慢。如在太阳光照射5h后,绿色棉皖棉39号、棕色棉湘彩棉2号纤维中色素吸光度分别下降0.061和0.062,2品种各自对照分别下降0.221和0.113。
The study was undertaken on nature-colored cotton cultivars, which were Wuan mian No.39 (green cotton cultivar) and Xiang cai No.2 (brown cotton cultivar) during 2006 and 2007 growing seasons at the Jiangsu Provincial Key Laboratory of Crops Genetic and physiology, Yangzhou University, Yangzhou, China. In the study, Wuan mian No.39, Xiang cai No.2 and Su mian No.9 were grown to investigate the characteristics of development, the carbon and nitrogen metabolism, and to research the adjustable approach and physiological mechanism of improving fiber quality and pigment in colored cotton fiber. The main results were as follows:
     1. The characteristics of development changed. In the aspect of vegetative growth, the colored cotton had bigger growth rate for plant height and LAI than Su mian No.9. For example, the speed of plant height growth for green cotton, brown cotton cultivar and the control were 1.50 cm/d, 1.38 cm/d and 1.06 cm/d respectively. At the peak boll period, LAI were 5.14, 4.3 and 4.12 for Xiang cai No.2, Wuan mian No.39 and Su mian No.9 respectively. In the aspect of reproductive growth, the colored cotton had more fruit-nodes (3.26, 3.31 millions·hm-2 for green and grown cotton) than the control (3.23 millions·hm-2). However, the green and grown cotton had higher shedding rate of buds and bolls, and fewer bolls per plant, and lower intensity of boll setting, and lower vegetative dry matter weight, the ratio of reproductive organs and vegetative organs dry matter weight. The boll development characteristics were different between colored cotton and white cotton. In comparison with the control (Su mina No.9), the boll length, the boll diameter, the boll volume, the boll husk weight and the boll weight were lower for colored cotton. For example, the boll volume of green and brown cotton was only 75.4%, 85.3% of the white cotton’s.
     2. Colored cotton had weak carbon physiological metabolism, but strong nitrogen physiological metabolism at later growing stage. The colored cotton had weaker NR activity, GPT activity, and the content of amino acid, total nitrogen and the soluble protein in functional leaf before peak flower period. However, they had stronger nitrogen physiological metabolism than the white cotton at later growing stage. For example, the content of total nitrogen in functional leaf enhanced by 7.2%, 10.3% for green and brown cotton respectively in comparison with Su mina No.9 at boll open stage. In whole growing stage, the colored cotton had lower content of chlorophyll, soluble sugar, weaker net photosynthetic intensity, and lower activity of invertase in functional leaf. Compared with the control, the C/N (the content of soluble sugar/ the content of total nitrogen) in functional leaf was lower for the colored cotton.
     3. The speed of fiber quality development and physiological activities of fiber cell for the colored cotton were lower than those of the white cotton. The fiber length, the fiber strength, the fiber micronair, and the fiber maturity of Xiang cai No.2 were 95.5%、88.4%、89.2%、95.9%of Su mian No.9’s. Dynamic formation of the fiber quality indicated that the development speed of the fiber length for Xiang cai No.2 and Wuan mian No.39 were 0.89 mm/d and 0.85 mm/d which were lower than 0.98 mm/d of Su mian No.9. The lower fiber micronair and the fiber maturity for the colored cotton were due to the slower accession during 0 to 30 days post anthesis (DPA). The parameters of the Richards equation indicated that the beginning parameter (b) and accumulative rate parameter (K) of the fiber length, the fiber micronair, and the fiber maturity for the colored cotton were lower than those of the white cotton. The results of the physiological activities of fiber cell were as followed: The leaf chlorophyll content, the fiber and boll husk ATPase activities, the fiber Sucroase Synthase (SS) activities, the fiber UDPG-Pyrophosphorylase (UDPP) activities for colored cotton were lower than those of the white cotton. For example, the fiber ATPase activity for Wuan mian No. 39 was 42.2% of that of Su mian No.9.
     4. In comparison to Xiang cai No.2, equilibrium between vegetative and reproductive growth for Wuan mian No.39 was worse, neither the coordination carbon and nitrogen metabolism. After flower period, the content of total nitrogen, soluble protein and the GPT activity for Wuan mian No.39 were lower than those for Xiang cai No.2. For example, the content of total nitrogen reduced by 4.1 percentage for Wuan mian No.39 in comparison to Xiang cai No.2 at peak flower period. The contents of chlorophyll, soluble sugar, and net photosynthetic intensity for Wuan mian No.39 were lower than those for Xiang cai No.2. Compared with Xiang cai No.2, the content of soluble sugar reduced by 14.1% for Wuan mian No.39. The C/N for Wuan mian No.39 at the early flowering period (8.03), the peak flower period (13.45), the boll opening period (15.30) were lower than those for Xiang cai No.2, which were 12.42, 15.02, 18.21.
     5. The pigment in the fiber of Xiang cai No.2 was higher than that of Wuan mian No.39. It had great concern with the ABA, GA_3 content and other relevant enzymes activities. The results showed that the pigment content (estimated by absorbance reading at 412 nm for distillation solution in 0.1g fiber) for Xiang cai No.2 was 0.418, for Wuan mian No.39 was 0.385. And the pigment of green cotton was unstable and of photo-degradation. For example, the absorbance reading of pigment in green and grown cotton fiber reduced by 0.221, 0.113 after 5 hours under the sunlight. The brown cotton had more content of fiber ABA and GA_3 at 40 DPA than green cotton. And there were significant positive correlation between the pigment content and the content of ABA, GA_3 (r=0.6668*, r=0.7993**). The content of fiber tannin and the Phenylalanine Ammonia-lyase (PAL) activity for green cotton were lower than those for brown cotton. For example, the PAL activity for green cotton reduced by 30.8 Unit·g~(-1)·fw~(-1)·h~(-1) in comparison with brown cotton. And the PAL activity was uniformity to the pigment content.
     6. With the density of 37500 plants/hm~2 and the fertilizer of N of 225 kg/hm~2, the brown cotton maintained the population at reasonable range and the yield, the fiber quality enhanced. That density and fertilizer level adjusted the development of plant height and LAI. The final plant height was 100.3 cm. The maximum LAI was 4.17. In the aspect of reproductive growth, dry matter accumulation of individual plants, the number of bolls, the intensity of boll setting, the boll weight and the pint enhanced under that density and the fertilizer. The shedding rate of buds and bolls reduced. For example, the shedding rate of buds and bolls reduced by 29.8%, 23.0% respectively in comparison to the density of 37500 plants/hm~2, the fertilizer of N of 225 kg/hm~2 and the density of 37500 plants/hm~2, the fertilizer of N of 0 kg/hm~2; the yield increased by 24.6%, 1.8% respectively.
     7. Three kinds of growth regulators (DPC, DTA-6, GA_3) could adjust the carbon and nitrogen physiological metabolism, improve the development of bolls, enhance the physiological activities, improve the fiber quality. The DTA-6, GA_3 enhanced the boll volume and weight. For example, the treatment of GA_3 sprayed increased the boll volume by 4.9 cm3 and 3.5 cm3 respectively for green and grown cotton. The treatment of GA_3 sprayed enhanced the boll weight by 0.78g for green cotton. The treatment of DTA-6 sprayed increased the boll weight by 0.58g for brown cotton. DPC, DTA-6, GA_3 enhanced the fiber length, the fiber strength, the fiber micronair, and the fiber maturity of colored cotton and decreased the difference at different positions. The treatment of GA_3 sprayed enhanced the fiber length, the fiber strength, the fiber micronair, and the fiber maturity by 2.2, 26.7, 5.0, 8.1 percentage points respectively for green cotton, and 6.0, 5.5, 13.9, 9.4 percentage points respectively for grown cotton. Treatments of three kinds of growth regulators sprayed enhanced the leaf chlorophyll content, the fiber invertase activities, the fiber ATPase activities, the fiber Sucroase Synthase (SS) activities, the fiber UDPG-Pyrophosphorylase (UDPP) activities and the endogenous hormones content. Take the ATPase activities for example, the treatment of DPC, DTA-6, GA_3 sprayed enhanced by 3.10 umol·gfw~(-1)·h~(-1)、3.96 umol·gfw~(-1)·h~(-1)、6.34 umol·gfw~(-1)·h~(-1) respectively for green cotton in comparison with the control.
     DPC, DTA-6, GA_3 could adjust the intensity of the carbon and nitrogen physiological metabolism and the coordination between them. Firstly, DPC, DTA-6, GA_3 enhanced the nitrogen physiological metabolism at early growing stage, but DPC decreased it at late growing stage. Secondly, DPC, DTA-6, GA_3 enhanced the carbon physiological metabolism at peak bolling and the boll opening stage. Treatments of DPC, DTA-6, GA_3 sprayed enhanced the soluble sugar content by 6.0%, 20.5%, 14.0% respectively for green cotton and by 12.5%, 8.0%, 28.5% respectively for brown cotton at peak bolling stage. Thirdly, DPC, DTA-6, GA_3 adjusted the C/N at peak bolling and the boll opening stage, improved the development of reproductive organs at late growing stage. At the boll opening stage, the treatments of DPC, DTA-6, GA_3 sprayed improved the C/N by 53.3, 46.0, 49.5 percentage points respectively for green cotton and by 9.8, 5.3, 7.2 percentage points respectively for brown cotton, especially DPC, GA_3 got the better effect.
     8. Cutting off appropriate buds treatment improved the boll development, enhanced the fiber quality and the physiological activities for colored cotton. The treatments of cutting of the half and quarter of whole buds in plant enhanced the boll weight by 1.346g and 1.051g respectively for green cotton, by 0.622g, 0.313g respectively for brown cotton. The treatment of cutting off buds improved the fiber length, the fiber strength, the fiber micronair, and the fiber maturity, especially for green cotton. The treatment of cutting off half of whole buds in plant enhance the fiber length, the fiber strength, the fiber micronair, and the fiber maturity by 14.9, 11.0, 18.7, and 16.2 percentage points respectively for green cotton, by 8.6, 6.5, 11.4, 11.8 percentage points respectively for brown cotton. The treatment of cutting off buds increased the leaf chlorophyll content, the fiber invertase activities, the fiber ATPase activities, the fiber Sucroase Synthase (SS) activities, the fiber UDPG-Pyrophosphorylase (UDPP) activities and the endogenous hormones content. For example, the treatments of cutting of half and quarter of whole buds in plant increased the fiber SS activities by 36.6% and 15.1% respectively for green cotton, by 76.1% and 56.7% respectively for brown cotton.
     9. DPC, DTA-6, GA_3, cutting off buds and the slight shading treatment increased the content of pigment and tannin, the PAL activities in fiber. The treatment of GA_3 sprayed enhance the pigment content in fiber by 23.9 and 6.5 percentage points for green and brown cotton respectively. The cutting off the half of whole buds in plant treatment increased the pigment content by 54.3 and 9.8 percentage points for green and brown cotton respectively. The slight shading treatment enhanced the pigment content by 9.5 and 3.6 percentage points for green and brown cotton respectively.
     10. The treatment of Fecl3 sprayed improved the stability of the pigment in two colored cotton varieties fiber. Firstly, Fecl3 sprayed treatment enhanced the pigment content in fiber by 4.4% and 3.6% respectively for green and brown cotton. Secondly, the treatment of Fecl3 sprayed reduced the decomposing of the pigment in colored cotton fiber. After 5 hours under the sunlight, the absorbance reading of pigment in fiber decreased only 0.061 and 0.062 respectively for green and brown cotton.
引文
1、王耀辉,方雪柬.天然彩色棉花浅谈[J].陕西纺织.2001,4:25-26.
    2、杜雄明,石玉真.天然彩色棉纤维特性及开发利用[J].针织工业,2002(1):29-33.
    3、张兴中,周雁声,蓝家样.天然彩色棉研究现状及部分性状的遗传表现[J].中国农学通报,2002,(02):92-93.
    4、唐海明,余筱南.我国彩色棉研究的现状及应用前景[J].江西棉花,2005,27(2):3-8.
    5、杜雄明.有色棉的研究利用现状及进展通报[J].1997,13(3):30-32.
    6、王国祥.彩色棉的色彩及其遗传分析[J].甘肃农业科技,1998,11:7-9.
    7、邓福军,陈谦,汤振江,等.彩色棉的科研现状与发展前景(上)[J].世界农业,2005,(1):48-50
    8、方卫东,钟官品,周庆.天然彩色(棕絮)棉新品种-川彩棉1号[J].中国棉花, 2005, 32(9):4.
    9、敖光明,于静娟,赵倩.天然彩色棉的研究进展及其有待解决的问题[J].中国农业科技导报,2001,(1):64-67.
    10、董合忠,李维江.2个彩色棉材料的农艺性状和纤维发育特点研究[J].山东农业科学,2002,(4):6-9.
    11、邱新棉,俞碧霞,包立生等.天然彩色棉浙彩棉2号的选育、特征特性及栽培技术[J].浙江农业科学,2006(5):549-551.
    12、郑顺林.彩色棉和高强力优质棉产量与品质形成特性的初步研究[M].四川农业大学硕士论文,2001:4-5.
    13、耿军义,王国印,翟学军,等.陆地棉有色纤维基因遗传及其对产量和品质的影响[J].棉花学报,1998,10(6):307-311.
    14、陈旭升,刘剑光,狄佳春,等.棕色棉纤维色度与产量性状相关分析[J].中国棉花.2001, 28 (10)∶
    12-13.
    15、沈端庄,程德荣.有色棉资源研究简报[J].作物品种资源,1997,(4):26.
    16、杨伯祥.彩色棉主要经济性状研究[J].中国棉花,1999,26(1):9-10.
    17、杨龙.杂交彩色棉经济性状[J].安徽农业,2004,(4):25-26.
    18、纪从亮,沈建辉.棉花高产群体质量栽培技术[J].江西棉花,1997,6:10-13.
    19、纪从亮.棉花高产群体质量栽培技术[J].棉花学报,1998,10(5):225-231.
    20、李大跃,江先炎.杂种棉养分吸收、光合物质生产特性的研究[J].作物学报,1992,18(3):196-204.
    21、郑德明,聂林学.南疆棉花高产栽培干物质积累和生长发育动态研究[J].中国棉花,1999,26(7):17-18.
    22、张旺锋,李蒙春.北疆高产棉花养分吸收特性的研究[J].棉花学报,1998,10(2):88-95
    23、王延琴,强爱娣,潘士梅.天然彩色棉密度试验研究中国棉花[J].2002,29(3)∶20~21.
    24、候必新,张美桃,李子辉,等.棕色彩棉叶片光合特性与氮肥调节效应[J].棉花学报: 2006, 18(3):184-185.
    25、杜雄明.彩色棉品质改良和有色纤维研究进展[A].中国棉花学会2002年年会论文汇编:1110-1131.
    26、张超,毛正轩,牟方生,等.彩色棉纤维品质的杂种优势分析[J].西南农业学报, 2007, 20(4): 602-605.
    27、L.Y.Yatsu.Ultrastructural and chemical evidence that the cell wall of green fiber is suberrized [J].Plant Physiology, 1983,73: 521-524.
    28、杜雄明.棉花纤维相关性状的主基因-多基因混合遗传分析[J],棉花学报,1999,11(2): 73-78.
    29、单世华,孙学振,周治国,等.温度对棉纤维品质性状的影响[J].华北农学报, 2000. 15(4): 120-125.
    30、单世华,孙学振,周治国、等.温度对棉纤维干物质积累动态变化的影响[J].山东农业大学学报(自然科学版),2001.32(1):6-10.
    31、杨伯祥,李迎春.不同收获期棉纤维品质的变化[J].中国棉花:1994,21(1):20.
    32、杨伯祥.不同栽培环境棉纤维品质的变化[J].中国棉花.1995,22(7):17-18.
    33、刘新,徐忠民.棉纤维几个品质性状的生产规律和分布规律[J].棉花学报,2000,12(3):144-146.
    34、王学德.影响棉花纤维品质的土壤养分[J].棉花学报,1993,5(2):45-48.
    35、姜益鹃.土壤含盐量对棉花产量和品质的影响[J],新疆农业科学,1994,4:116-118.
    36、唐胜,李文才.棉花不同施氮量对纤维品质的影响[J].安徽农业科学,1991,47(1):33-36.
    37、潘泽义.氮、磷、钾对杂交棉产量和纤维品质的影响[J].乡镇经济研究,1998,4:45-46.
    38、李迎春.氮、磷、钾对低酚棉产量与纤维品质的影响[J].中国棉花,1997,24(5):11-12.
    39、张志刚.栽培因子对棉株不同座果点纤维品质影响的研究[D].湖南农业大学, 2002.
    40、纪从亮.棉花高产优质高效栽培实用技术[M]. 2002,北京:中国农业出版社.
    41、徐楚年,余炳生,张仪,等.棉花四个栽培种纤维发育的比较研究[J].北京农业大学学报,1988.14(2):113-119.
    42、刘继华,杨洪博,曹鸿鸣.棉花纤维的伸长发育[J].中国棉花,1995.22(4):38-39.
    43、刘继华,尹承佾,于凤英,等.棉花纤维强度的形成机理与改良途径[J].中国农业科学,1994.27(5):10-16.
    44、刘继华,尹承佾,于凤英,等.棉花成熟纤维强度差异机制的研究[J].棉花学报, 1994,6(4):201-205.
    45、刘继华,尹承佾,孙清荣,等.棉花纤维发育过程中细胞壁超分子结构的变化及与纤维强度的关系[J].作物学报,1996.22(3):325-329.
    46、刘新,徐忠民,陶灵虎,等.棉纤维几个品质性状的生长规律和分布规律[J].棉花学报2000.12(3):144-146.
    47、秦治翔、张春华,棉纤维次生壁增厚相关基因的cDNA克隆与分析[J].作物学报, 2003,29(3):860-866.
    48、许玉璋.温度对棉纤维发育的影响[J].西北农业学报, 1993, 2(4):19-23.
    49、田淑兰,王喜.IAA与亚种间杂交稻子粒发育的关系及烯效其唑的调节作用[J].中国水稻科学, 1998,12(2):99-104.
    50、王喜.赤霉素和多效唑对水稻“株间顶端优势”的调节及对产量的影响[J].中国水稻科学,1999,12(4):217-222.
    51、Calvear JA,et.al. Crop Science, 1983, (23):50-54.
    52、Duncan WG.,et al, Crop Sci.,1968,8:670-674.
    53、张蜀秋,戴玉玲.外源激素对大豆种子内源ABA水平的影响及其和同化物积累的关系[J],植物学报,1998,40(7):642-646.
    54、Harms K.et al,Plant Mol.BIOL.,1994,26(3):979-988.
    55、Patrick JW., J.Exp.Bot. 1979,30:1-13.
    56、何钟佩.DPC效应的定向、定量诱导及其在棉花丰产栽培中的作用[J].北京农业大学报,1984,10(1):17-27.
    57、何钟佩主编,棉铃发育过程中内源激素变化及化学调空效应研究[M].中国农业大学出版社,1997:43-50.
    58、于伯龄.天然绿色棉的金属盐固色实验[J].纺织导报,2001(3):80-82.
    59、Dubravka.R., S. Ankica, S. Nives. Color fastness of naturally dyed cotton under perpiration conditions, Chemical Abstract. 1998.12.8.
    60、杜雄明,张天真,袁有禄.有色棉的研究利用现状及展望[J].中国农学通报,1997,13(3):30-32.
    61、孙学振,刘霞,王立国,等.彩色棉研究进展与展望[J].山东农业大学学报(自然科学版),2002,33(4):509-514.
    62、RYSERU.Cottonfiberinitiationanhistodifferentiation.Cotton fiber development abiology, quality improvement,and textile processin[M].Amarjit S Basra Edit. Food Products Press USA.
    63、A. Schmutz, etal. Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-Associated fatty acid elongases[J]. Plant Physiology, 1996,110:403-411.
    64、董合忠,李维江,唐薇,等.2个彩色棉材料的农艺性状和纤维发育特点研究[J].山东农业科学,2002(4):6-9.
    65、邱新棉,周文龙,李茂松,等.天然彩色棉纤维素的遗传基础形成及湿处理色素变化规律的研究[J].中国农业科学,2002,35(6):610-615.
    66、WAGHMAREVN,KoranneKD.Colored cotton: present status, problems and potentials [J]. Indian Genetics & plant breeding, 1998, 58(1):1-15.
    67、王学德,李悦有.彩色棉纤维发育的特点研究[J].浙江大学学报(农业与生命科学版),2002,28(3):237-242.
    68、董合忠,李维江,唐薇,张冬梅.彩色棉纤维发育与色素形成[J].中国棉花,2004, 31(2)∶2-4.
    69、Yatsu L Y, Espelie Karl E, Kolattukudy P E. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized[J], Plant Physio1, 1983, 73: 521-524.
    70、李悦有.有色棉的纤维特性研究与杂种优势利用[D].杭州:浙江大学,2001:36.
    71、赵向前.彩色棉的纤维色素和品质形成机理[D].杭州:浙江大学,2003.
    72、陈芸,洪晨要,王佩正.Oko-Tex(生态-纺织品)的检测[J].印染,1998.12:37-39.
    73、The Society of Dyers and Colour Index ,3rd Ed.1971(4).
    74、于伯龄.绿色染整,天然有色棉,天然染料,数字印花[J].纺织信息周刊,2001(2):10.
    75、于伯龄.绿色染整,天然有色棉,天然染料,数字印花[J].纺织信息周刊,2001(3):12.
    76、宋廷耀.配位化学[M].成都:成都科技大学出版社,1990. 4.
    77、胡伯陶.浅议天然彩色棉的色彩及其产品加工中的几个问题[J].棉纺织技术,2002, (5): 9-12.
    78、吴赞敏,吕彤.新型阳离子固色刊GY之研究[J].针织工业,2001,3:82-84.
    79、郑光红.植物染料在天然纤维织物中的媒染染色研究[J].成都纺织高等专科学校学报2001,10:8-10.
    80、郑春晓.彩棉纤维生态处理(有害金属)及固色方法的研究[D].青岛大学, 2003.
    81、于伯龄.绿色天然彩色棉金属盐固色试脸[J].针织工业,2002,(1):35-37.
    82、王留明.三个陆地棉有色纤维种质的色素性状遗传[J].山东棉业,1999,1:12–131.
    83、耿军义.陆地棉有色纤维基因遗传及其对产量和品质的影响[J]棉花学报,1998,10(6):307 -331.
    84、董合忠,李维江,唐薇,等.2个彩色棉材料的农艺性状和纤维发育特点研究[J].山东农业科学,2002,4:6-9.
    85、潘兆娥,杜雄明,孙君灵,等.遮光对彩色棉的色泽及纤维品质的影响[J],棉花学报,2006,18(5):264-268.
    86、詹少华,林毅,吕凯.天然彩色棉过氧化物酶·丙二醛及硝酸还原酶的测定[J],安徽农业科学,2005,33(1):17-19.
    87、詹少华,林毅,蔡永萍.彩色棉棉铃生长发育动态研究简报[J],棉花学报. 2005, 17(2): 127-129.
    88、马兆仁,邓明辉,叶生文,等.天然彩色棉品质分析[J].中国纤检.2005,(8):17-18.
    89、宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节[J].植物生理学通讯,1998,(3):230-237.
    90、刘家尧,王学臣,梁峥.植物基因表达的代谢调控.植物通报[J].,1999,16(1):1-10.
    91、宋松泉,王永锐,傅家瑞.高等植物中硝酸还原酶的研究进展[J].作物杂志, 1993, (4): 32-35.
    92、李潮海,刘奎,连艳.鲜玉米碳氮代谢研究进展[J].河南农业大学学报,2000,34(4):318-323.
    93、李永庚,蒋高明,杨景成.温度对小麦碳氮代谢、产量及品质影响[J].植物生态学报,2003,27(2):164-169.
    94、李存东,董海荣,李金才.不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响[J].棉花学报,2003,15(2):87-90.
    95、董海荣,李存东,李金才.不同形态氮比例对棉花苗期生长及物质积累的影响[J].河北农业大学学报,2003,26(1):9-13.
    96、郭培国,李明启.杂交水稻及其亲本光合特性的研究Ⅲ.功能叶处碳代谢中一些酶活性[J].热带亚热带植物学报,1997,5(2):68-73.
    97、董志强,林永增.叶柄碳氮比作为施用氮肥生理指标的研究[J].中国棉花,(6):18-19.
    98、刘继华,杨洪博,曹鸿鸣.棉花纤维的伸长发育[J].中国棉花, 1995. 22(4): 38- 39.
    99、刘继华,尹承佾,于凤英,等.棉花纤维强度的形成机理与改良途径[J].中国农业科学, 1994.
    27(5):10-16.
    100、刘继华,尹承佾,于凤英,等.棉花成熟纤维强度差异机制的研究[J],棉花学报, 1994. 6(4): 201-205.
    101、刘继华,尹承佾,孙清荣,等.棉花纤维发育过程中细胞壁超分子结构的变化及与纤维强度的关系[J].作物学报, 1996. 22(3):325-329.
    102、刘新,徐忠民,陶灵虎,等.棉纤维几个品质性状的生长规律和分布规律[J].棉花学报, 2000,12(3):144-146.
    103、W., C.T., The present state of art and science of cotton breeding for fiber quality[J].. Proceedings Beltwide Cotton Prod Res Conf., 1982: 99-111.
    104、单世华,孙学振,周治国,等.温度对棉纤维强度及超分子结构的影响[J].作物学报, 2000,26(6): 666-672.
    105、刘继华、尹承佾、于凤英,等.开花期对棉花纤维超分子结构与纤维强度动态变化的影响[J].中国农业科学,1996.29(1):59-65.
    106、刘稳生,陶灵虎,阮锡根.棉纤维的结晶度及其与花后天数的关系[J].棉花学报,1994.6(4):221-222.
    107、王小龙.影响棉花纤维强度因素分析及解决途径[J].河南职技师院学报,1999.27(2): 9-11.
    108、杨文钰,屠乃美.作物栽培学各论[M].中国农业出版社,2003年.
    109、汤庆峰,文启凯,田长彦,等.棉花纤维品质的形成机理及影响因子研究进展[J].新疆农业科学,2003.40(4):206-210.
    110、李伟明,刘素恩,王志忠,等.棉花纤维品质年际间变化及气象因素影响分析[J].棉花学报, 2005.17(2):103-106.
    111、马富裕,曹卫星,周治国,等.田间条件下遮光对棉花棉铃发育及纤维品质的影响[J].棉花学报,2004. 16(5):270-274.
    112、张旺锋,勾玲,王振林,等.不同生态棉区棉花单铃重的变化及与气象因子关系的研究[J].中国农业科学,2002. 35(7):872-877.
    113、张志刚.棉株不同痤果点纤维品质的时空分布[J].湖南农业大学学报,2002(5): 383-386.
    114、张志刚,杨晓萍,肖才升,等.不同生态点对棉株纤维品质综合评价的研究[J].分子植物育种,2004. 2(2):253-257.
    115、周治国,孟亚利,施培,等.棉麦两熟棉纤维强度与铃期气象因子关系研究[J].棉花学报, 1999.11(3):134-140.
    116、单世华,孙学振,周治国,等.温度对棉纤维品质性状的影响[J].华北农学报,2000. 15(4):120-125.
    117、陈德华,王兆龙,吴云康,等.转Bt基因抗虫棉杂交种光合生产及干物质分配特点研究[J].棉花学报,1998,10(1):33-37.
    118、庄军年.棉花源库调节对体内光合产物运输分配及其产量的影响[D]. 1992,江苏农学院:江苏扬州.
    119、耿军义.陆地棉有色纤维基因遗传及其对产量和品质的影响[J].棉花学报,1998, 10(6): 307–331.
    120、董合忠,李维江,唐薇,等.2个彩色棉材料的农艺性状和纤维发育特点研究[J],山东农业科学,2002,4:6-9.
    121、潘兆娥,杜雄明,孙君灵,等.遮光对彩色棉的色泽及纤维品质的影响[J],棉花学报,2006,18(5):264-268.
    122、王留明.三个陆地棉有色纤维种质的色素性状遗传[J].山东棉业,1999,1:12–131.
    123、董合忠.棉花纤维的发育及其与纤维品质的关系[J].莱阳农学院学报,1996,13(3):197-201.
    124、WilkinsTA,Jernstedt J A,1999.Molecular genetics of developing cotton fibers.In:Basra A Sed.Cotton fibers:developmental biology,quality improvement,and textile processing[J].New York:Food Products Press, 231-270.
    125、朱绍琳,陈旭升.棉铃生物学[M].1994,北京:中国农业科技出版社.
    126、刘继华,杨洪博,曹鸿鸣.棉花纤维的伸长发育[J].中国棉花, 1995. 22(4): 38-39.
    127、赵瑞海,韩春丽,张旺锋.棉纤维超分子结构及与纤维品质的关系[J].棉花学报,2005,17(2):112-116.
    128、Thaker, S.J.G.a.V.S., Physiological and biochemical changes associated with cotton fiber development: IX. Role of IAA and PAA Field Crops Research, 2002. 77(2-3): 127-136.
    129、王水平,沈曾佑,张志良,等.棉纤维细胞伸长生长与过氧化物酶和IAA氧化酶的关系[J].植物生理学报,1985,11(4):409—417.
    130、沈新莲,周宝良,顾立美,等.棉纤维发育过程中内源激素动态变化的研究[J].江苏农业学报,1998,14(4):204-206.
    131、何仲佩主编.作物激素生理及化学控制[M].北京:中国农业大学出版社,1997.62-67.
    132、刘继华,杨洪博,曹鸿鸣.棉花纤维的伸长发育[J].中国棉花, 1995. 22(4): 38-39.
    133、胡宏标,张文静,王友华,等.棉纤维加厚发育相关物质对纤维比强度的影响[J].西北植物学报,2007,27(4):0726—0733.
    134、WANJURA D.Yield accumulation rates and properties development of cotton fiber[J].Fiber Crop Research,1985,10(3):205—218.
    135、COYLY G G,SMITH C W.Combining ability for within—boll yield components in cotton(Gossypium hirsutum)[J].Crop Science,1997,37(4):118—122.
    136、张文静,胡宏标,陈兵林,等.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J].作物学报,2007,33(4): 531-538.
    137、Amor Y, Haigler C H, Johnson S, Wainscott M, Delmer D P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA, 1995, (92): 9353-9357.
    138、徐楚年,董合忠.棉纤维发育与棉胚珠培养纤[M].北京:中国农业大学出版社,2006:162-166.
    139、周治国.苗期遮荫对棉花功能叶光合特性和光合产物代谢的影响[J].作物学报,2001. 27(6):967-973.
    140、徐立华,李大庆,刘兴民,等.陆地棉棉铃发育机理及影响因素的研究[J].棉花学报,1994,6(4): 253~255.
    141、卞海云,陈兵林,周治国,等.低温条件下外源生理活性物质对棉铃发育的影响[J].西北植物学报,2005,25(9):1785-1790.
    142、孙红春,李存东,王文新,等.初花期源库比变化对棉花下部“铃-叶系统”生理特征的影响[J].棉花学报,2004 16(5):286~290.
    143、陈德华.高产棉花叶片内源激素与氮、磷、钾吸收积累关系及棉铃增重机理研究.作物学报, 2000(6):659-665.
    144、中国棉花研究所.中国棉花栽培学[M],1983,上海:上海科学技术出版社.
    145、韩焕勇,罗宏海,勾玲,等.棉纤维发育过程中内源激素含量和过氧化物酶活性的变化及其与纤维素累积和纤维比强度关系的研究[J].石河子大学学报(自然科学版).2006, 24(5):529-33.
    146、Yang Y M,Xu C N,Jia J z.A system of ovule subculture for cotton(Gxsypium hirsutum L.)fiber development[J].Acta Agronomica Sinica,2001,27(6):694-703.
    147、李悦有、王学德.彩色棉纤维的超微结构观察[J],浙江大学学报,2002,28(4):379-382
    148、Wang K R, Gong H Q. Compared study on the cadmium absorption and distribution of two genotypes rice [J].Agro-environ Prot, 1996, 15: 145-149.
    149、顾世梁,朱庆森,杨建昌,等.不同水稻材料子粒灌浆特性分析[J].作物学报, 2001,27(1):6-14.
    150、詹少华,林毅,蔡永萍等.缩合单宁与天然棕色棉纤维色素合成的关系.棉花学报.2007,19(3):183-188.
    151、唐传核编著.植物生物活性物质[M].化学工业出版社.2005:172.
    152、Cook N C D etal. Flavonoids: old and new aspects of a class of natural therapeutic drugs [J]. Life Sci. 1999, 65(4):337-353.
    153、Harborne J B,Williams C A. Advances in flavonoid research since 1992. Phytochemistry [J]. 2000, 55: 481-504.
    154、陈布圣.棉花群体光能利用问题探讨[J],江西棉花,1990(1-2):8-10.
    155、谈春松.高产棉花生长发育模式[J],南京农学院,1983(4):21-27.
    156、朱绍琳.棉花株型育种[J],棉花学报,1980,(3):11-15.
    157、SCHUBERT A M, et al, Cotton fiber development -kinetics of cell elongation and secondarywall thicking[J]. Crop Sci, 1973. 13: 704 - 709.
    158、陶灵虎,刘新,刘稳生,等.棉纤维超微结构的研究[J].生物物理学报,2001.17(2): 245-252.
    159、郑丕尧,杨孔平,王经武,等.水、陆稻在水田、旱地栽培的生态适应性研究II稻株碳、氮代谢的生态适应性观察[J].中国水稻科学,1990,4(2):69-74.
    160、李乐农,麻浩,李继军,等.淹水处理对不同水稻品种碳氮代谢的影响[J].湖南农学院学报,1995,21(3):235-238.
    161、夏明忠.蚕豆碳氮含量变化与幼蕾、花荚脱落的关系[J].植物生理学通讯,1992,28(2):116-118.
    162、米国华,张福锁,王震宇.小麦超高产生理基础探讨—小麦后期碳氮代谢互作与粒重形成[J].中国农业大学学报,1997,2(5):73-78.
    163、杨长琴,徐立华,张培通等.氮肥对抗虫棉生长发育和碳代谢的调节[J].江苏农业科学,2006,(6):62-64.
    164、MOLL R H,JACK SON WA,MIK KELSEN R L.Recurrents election formaize grain yield:dry matter and nitrogen accumulation and partitioning changes[J]. CropScience, 1994, 34: 874-881.
    165、PAN W L,Camberato J J,Moll R H,etal.Altering source-sink relationships in prolificmaizehy brids: Consequences for nitrogen uptake an dremobilization [J]. Crop Science, 1995, 35:836-845.
    166、UHART S A,Andrade F H. Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios[J]. Crop Science,1995, 35:183-190.
    167、范术丽,许玉璋,张朝军.氮磷钾对棉花伏桃发育的影响[J].棉花学报,1999.11(1): 24-30.
    168、海江波,王方成,范术丽,等.氮磷钾对棉铃干物质累积及纤维品质的影响[J].西北农业学报,1998.7(4): 49-52.
    169、浙江农科院原子能所棉花生理研究组等,用同位素示踪研究DPC对棉花生理作用的影响[J].北京农业大学学报, 1984. 10(3):245-253.
    170、王惠英,用32P研究调节剂对棉株养分的调配作用[J].中国棉花, 1984(4): 29~30.
    171、何钟佩.黄淮海棉区短季棉应用DPC诱导最佳成铃部位与优质栽培的研究[J].北京农业大学学报,1991.17(增): 38~46.
    172、何仲佩,闵祥佳,李丕明,等.植物生长延缓剂DPC对棉铃内源激素水平和棉铃发育影响的研究[J].作物学报,1990.16(3):252-258.
    173、闵祥佳.缩节安(DPC)对棉花纤维和种子品质的影响[J].北京农业大学学报, 1991.17(增刊):27-30.
    174、杨龙,吕咏梅,万昭进.植物生长调节剂对棉花产量因素的影响[J].安徽农业科学,2000. 28(2): 225-234.
    175、沈仍愚.关于提高棉花铃重问题的探讨[J].棉花学报, 1978(1): p. 6-12.
    176、纪从亮、俞敬忠.棉花高产品种的源库流特点研究[J].棉花学报, 2000. 12(6): 298-301.
    177、周桂生,陈德华,吴云康.施肥和化控对高产棉田叶源活性和棉铃发育的调节[J].棉花学报,2001.13(6):356-360.
    178、王秀玲、杨付新.2001-2002年黄河流域麦套棉品种区域试验简述[J].中国棉花,2004. 12: 19-20.
    179、许乃银,邹奎. 2003年长江流域棉花品种区域试验结果简述[J].中国棉花, 2004. 8: 16-17.
    180、陈仲华,邬飞波,王学德,等.农艺因素对杂交棉浙杂166纤维产量和品质的影响及若干生理性状的杂种优势[J].棉花学报,2004.16(3):175-182.
    181、Hezhong Dong, W.L., Wei Tang, Zhenhuai Li, Dongmei Zhang and Yuehua Niu, Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China[J]. Field Crops Research, 2006. 98(2-3): 106-115.
    182、Yucel, O.G.a.C., Different planting date and potassium fertility effects on cotton yield and fiber properties in the ?ukurova region, Turkey [J]. Field Crops Research, 2002. 78(2-3): 141-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700