用户名: 密码: 验证码:
大型光学镜面相位恢复在位检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在详查卫星、天文望远镜和激光核聚变等光学领域快速发展的带动下,现代光学系统对大型光学镜面的需求与日俱增。大型光学镜面对于实现光学系统的高精度、高分辨率以及高功率有至关重要的作用。而大型光学镜面因其口径大、精度要求高且需求量逐步增加对现代光学制造和检测技术提出了较大的挑战。
     现代光学制造的精度和效率很大程度上取决于检测技术。大型镜面光学加工需要高精度、高分辨率以及定量化可在位的检测技术支持。而现有的传统测量方法在很多方面还不能满足大型镜面加工的需求,成为制约光学生产能力进一步提高的瓶颈。
     为寻求新的技术解决途径,本论文研究了基于相位恢复技术的光学镜面检测方法,为大型光学镜面的加工提供新的定量化在位检测支持,以达到提高光学镜面的加工效率的目的。相位恢复技术是一种根据光场强度来反推相位分布的方法。相位恢复技术作为一种测量技术应用于镜面测量具有结构简单,对在位环境适应能力强,适于定量计算分析等特点。因而有着良好的应用前景,可以成为非常有效的大型镜面在位检测方法。
     论文的研究工作包括以下几个部分:
     1.在现有典型相位恢复原理基础上,构建基于离焦光场的相位恢复镜面测量系统。结合研究了离焦光场相位恢复测量的原理,给出适用于离焦光场检测系统的精确快速波面衍射计算方法。结合约束集投影理论,在GS迭代算法的基础上设计了多离焦图像的相位恢复迭代算法,并从几何意义上分析了算法的收敛性。
     2.对相位恢复测量系统的灵敏度做了分析,建立多平面灵敏度分析方法。得到了相位恢复测量灵敏度的一些基本性质,如距离焦点较近的图像的灵敏度较高以及收敛误差随灵敏度的提高而下降等,为测量参数的设计提供了理论依据。另外,根据实际测量系统性能,进行了误差分析以及可靠性和量程范围分析。分析表明现有测量系统的测量精度和量程范围能够满足加工对在位测量的精度要求。分析表明,相位恢复测量系统的精度较高,能够满足在位测量的需要。衍射图像的明暗分布与面形误差的高低分布之间有明显的对应关系。利用此性质可以直接判断误差的方向和位置,估计误差的幅度。
     3.针对大型镜面对高分辨率测量的需求,提出了亚像素相位恢复方法。构建了亚像素相位恢复的算法原理,并进行了仿真和测量实验。根据实际测量条件分析了图像噪声和图像离轴对亚像素相位恢复的影响。研究结果表明亚像素相位恢复算法能够有效地提高测量分辨率,具有很强的可实现性,给镜面的高分辨率测量提供了新的方法。同时也给其它领域的高分辨率相位恢复测量提供了新的思路。
     4.提出了实现非球面镜无补偿镜测量的相位恢复测量方法,使用球面波光源对非球面镜进行相位恢复测量。分析了非球面镜在球面波测试光照射下的光场衍射汇聚特性。研究了由非球面度造成的光场“自干涉”的性质和变化规律以及对测量造成的影响。提出了采用遮光和调节光源位置方法来实行非球面相位恢复测量规划以降低测量的非球面度。在非球面测量规划和常规相位恢复算法的基础上,构建了专门的并行非球面相位恢复测量算法。为了提高方法的实用性,还研究了提高计算效率的等效波长近似算法。从实验角度出发对光源和衍射图像的定位问题进行了研究。并分析了定位误差对测量结果的影响,讨论了镜面遮光误差对测量的影响和控制方法。
     5.为验证方法的有效性,进行了大量的实验研究。包括200mm和500mm口径的球面镜检测实验、250mm口径的球面镜亚像素测量实验以及对175mm口径的抛物面镜检测实验。实验全部在模拟在位条件下进行。分别对各个实验的测量现象和结果进行了分析。总体上,相位恢复测量结果与干涉测量一致,测量误差的大小与误差分析相吻合,测量精度能够满足数控加工的要求。实验表明环境对测量无明显影响,说明相位恢复测量能够适应在位测量环境条件。
The requirement for large optical mirrors has grown rapidly under the background of many applications such as space detailed survey cameras, laser fusion systems and astronomical telescopes. Large optical mirrors are of special importance to the performance of high accuracy, high resolution and high power in modern optical system. Modern technology meets serious challenge in the manufacture and measurement of these large optical mirrors for their ever-increasing aperture, accuracy and amount.
     The accuracy and efficiency of optics manufacture depends heavily on the optical measurement technology. The process of large optics manufacturing needs the supporting of on-sit quantitative testing with high accuracy and high resolution. But traditional testing methods cannot meet the requirement of large optics manufacture in many aspects, that has turn out to be a bottleneck to further improving the ability of modern optics manufacture.
     For exploring a new way of optical measurement, this thesis studies an optical testing method based on phase retrieval, which can serve as a new quantitative on-site testing method to enhance the efficiency of optics manufacture. Phase retrieval is a wavefront sensing method that utilizes intensities to reconstruct the phase of optical field. As an optics testing method, phase retrieval has the advantages of simplicity, adapting to the on-site environments and suiting for quantitative calculation. So phase retrieval has a good application foreground and will be a very effective testing method.
     The content of this thesis is organized as follows:
     1. The phase retrieval testing system based on the defocus wave field has been designed according to the theory of classical phase retrieval. The fast computation method for wavefront diffraction is presented which is necessary in phase retrieval algorithm. The multi-images phase retrieval algorithm is established based on GS algorithm under the theory of projections to constrain sets. The geographic analysis is performed about the converging of this algorithm.
     2. The sensitivity of the phase retrieval system is studied, and the model that calculates the sensitivity of the multi-planes phase retrieval system is established. Some basic properties of phase retrieval sensitivity are derived. It can be proved that the images close to the focus have higher sensitivity and the phase retrieval error can be reduced with the sensitivity enhanced. The error analysis and reliability analysis with measurement range evaluation are also preformed in details. The error analysis indicates that the accuracy of phase retrieval system can meet the requirement of on-sit testing. The reliability analysis reveals that the bright and dim distribution of images has direct relationship with the high and low distribution of mirror surface shape, which can be utilized as a visualized method to estimate the mirror surface shape.
     3. The sub-pixel phase retrieval algorithm has been invented to meet the demand of high resolution testing for large mirrors. The principle of sub-pixel phase retrieval has been established, and some numerical experiments are carried out. The influence of noise and off-axis of images to sub-pixel phase retrieval has been studied. The results of sub-pixel study show that this method can significantly improve the testing resolution and brings a new way to high resolution testing. The sub-pixel method as a general idea can also give contribution to other application of phase retrieval where the high resolution testing is needed.
     4. The phase retrieval method that tests aspheric mirror without auxiliary optics has been invented, which tests aspheric mirror using spherical testing beam. The focusing characters of aspheric mirror under the illumination of spherical testing beam have been studied. The phenomena of“self-interference”together with its influence to the phase retrieval testing have been analyzed. To reduce the“self-interference”due to the aspheric surface, the optimization method has been presented by adjusting the position of point source and shading a part of mirror aperture. A special parallel aspheric phase retrieval algorithm has been designed for aspheric testing and is suit for multi-processors computation. To enhance the compution efficiency of aspheric phase retrieval algorithm, the approximate algorithm using equivalent wavelength has been designed. The location problem of point source and images are studied.The influence of the location error to the measurement accuracy has been estimated for experimental consideration. The mirror shading, which is used to reduce the“self-interference”, has been discussed including the mirror shading error and error controlling method.
     5. To validate the effectiveness of phase retrieval method, many experiments have been conducted including 200mm and 500mm spherical mirrors testing, 250mm spherical mirror testing with sub-pixel method and 175mm parabolic mirror testing. These experiments are performed under the on-sit surroundings. The experimental phenomenon and results are analyzed. The results of phase retrieval kept high compatibility with interference testing. The accuracy of phase retrieval can meet the requirement of computer controlling manufacture. The testing error agrees with the estimation of error analysis.The experiments also show that the influence of surroundings is insignificant and the phase retrieval has good adaptability for on-sit testing.
引文
[1] J.M.Hill, P.Salinari.The Large Binocular Telescope[C].Proc.SPIE,2000, 6267: 36~46
    [2] Torben Andersen,Arne Ardeberg,Jaques Beckers, et al. The Euro50 extremely large telescope[C].Proc.SPIE,2003,4840:214~225
    [3] D. Lester, D. Benford, H. Yorke, et al. Science promise and conceptual mission design for SAFIR-the Single Aperture Far Infrared Observatory[C]. Proc. SPIE, 2006, 6265:1~15
    [4] N. Mark Milton, Michael Lloyd-Hart, Andrew Cheng, Design and expected performance of an MCAO system for the Giant Magellan Telescope[C]. Proc. SPIE, 2003, 5169:238~248
    [5] H. P. Stahl. Optic needs for future space telescopes[C]. Proc. SPIE, 2003, 5180:1~5
    [6] P. A. Sabelhaus, D. Campbell, M. Clampin, et al. An overview of the James Webb Space Telescope (JWST) project[C]. Proc. SPIE, 2005, 5899:1~14
    [7]苏毅,万敏.高能激光系统.北京:国防工业出版社,2004
    [8] Lawson J. K, Auerbach J. M, English R. E. et al. NIF optical specications– the importance of the RMS gradient. LLNL Report UCRL-JC-130032, 1998:7~12
    [9]王欣,潘君骅. 2.4m天文望远镜光学系统的设计及副镜检验的几种可能方案.云南天文台台刊,2002,2:41-48
    [10]褚耀泉. LAMOST科学观测计划[J].中国科学技术大学学报,2007,37(6):591-595
    [11]杨力.先进光学制造技术[M].北京:科学出版社,2001
    [12]陆永贵,杨建东.光学非球面先进制造关键技术的探讨[J].长春理工大学学报,2006,29(2):31~33
    [13]周旭升.大中型非球面计算机控制研抛工艺方法研究[D].博士学位论文.长沙:国防科技大学,2007
    [14] Jones R A, Rupp W J. Rapid optical fabrication with CCOS[C]. Proc.SPIE, 1990, 1333:34
    [15] Jones R A. Computer simulation of smoothing during computer-controlled optical polishing[J]. Applied Optics, 1995, 34(7): 1162~1169
    [16]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报, 2004(4)
    [17]张国雄.三坐标测量机[M].天津大学出版社,1999
    [18] J.F.Song,Theodore V.Vorburger.Stylus profiling at high resolution and low force[J].Applied Optics,1991,30(1):42~50
    [19] R.Thalmann , D.M.Brouwer , H.Haitjema , et al.Novel design of a one- dimensional measurement probe[C] .Proc.SPIE,2001,4401:168~174
    [20] William J.Wills-Moren,Peter B.Leadbeater.Stylus profilometry of large optics[C]. Proc.SPIE,1990,1333:183~194
    [21] Weckenmann,T.Estler,G.Peggs,et al.Probing system in dimensional metrology. CIRP,2003:1~28
    [22]欧捷达-卡斯坦达J.光学车间检验[M].北京:机械工业出版社,1983.205~223
    [23]潘君骅.谈谈光学检测的指导思想[J].光学与光电技术, 2004,2(6):1-3
    [24] Wenhan Jiang,Xuejun Rao,Zeping Yang,et al .Applications of Hartmann-Shack wavefront sensors[C].Proc.SPIE,2005,6018:1~9
    [25] John E.Greivenkamp,Daniel G.Smith,Robert O.Gappinger,et al.Aspheric metrology with a Shack-Hartmann wavefront sensor[C].Proc.SPIE,2001,4419:1~4
    [26] Millerd J E. Methed and apparatus for splitting ,imaging ,and measuring wavefronts in interferometry[ P] . 2001. U S : 6304330B1.
    [27] Hayes J . Dynamic interferometry handles vibration[J] . Laser Focus World. March ,2002 :1~6.
    [28] Charles E. Synborski , Mary J . Hanes. 10. 6 micron wavelength interferomet ry and t he measurement of inf rared t ransmitting materials index of ref raction homogeneity[C]. Proc.S PI E , 1980, 255 :32~39
    [29] B. Dichler , P. Koidl . Scanning CO2 laser interferometer for the inspection of inf rared transmit ting plane parallel plate[C]. Proc.SPIE, 1988 , 966 :177~182
    [30] Chen Jinbang , Chen Lei , Wang Qing, et al. A large aperture phase shifting CO2 laser interferometer [J] . Chinese J . Lasers , 1998 , A25 (1) :31~36
    [31]潘君骅.光学非球面检测技术[M].国防工业出版社,2000
    [32]伍凡.非球面零检验的Offner补偿器设计[J].应用光学, 1993,14 (3) : 8
    [33]伍凡.非球面零检验的镜式补偿器设计[J].应用光学, 1994, 15 (4) : 11
    [34] Paul L. Ruben .Refractive null correctors for aspheric surfaces[J]. Applied Optics,1976, 15(12):3080~3083
    [35] Asfour JM, Poleshchuk, Asphere testing with a Fizeau interferometer based on a combined computer-generated hologram[J],Opt.Soc.Am.A. 23 (1): 172(2006).
    [36] Ying Moh Liu, George N. Lawrence, Dual-wave-front computer-generated holograms for quasi-absolute testing of aspherics[J], Applied Optics, 1988, 27(21):4504~4513
    [37] Hou X, Wu F, Yang L, Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and amatrix method for testing large aspheric surfaces[J], Applied Optics,2006,45(15): 3442 ~3518.
    [38] Chen Shanyong, Li Shengyi, Dai, Yifan, Iterative algorithm for subaperture stitching interferometry for general surfaces[J], Opt.Soc.Am.A, 2005, 22( 9): 1929~1936.
    [39] Harvey J. E, Lewotsky K. L and Kotha A. Effects of surface scatter on the optical performance of x-ray synchrotron beam-line mirrors[J]. Applied Optics, 1995,34(16): 3024~3032
    [40] Gerchberg R W, Saxton W O. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures[J]. Optik , 1972 ,35(2) :237-246
    [41] R. W. Gerchberg, W. O. Saxton. Phase determination from image and diffraction plane pictures in the electron microscope[J].Optik,1971,34 (3):275~284
    [42] Liu Juan, Dong Bizhen, Gu Benyuan, et al.Generation of polarized paterns with the use of polarizations elective diffractive phase elements[J]. Optik,1999,110(7): 337~339
    [43] Liu Juan, Dong Bizhen, Gu Benyuan. Polarization-selective difractive phase element for implementing polarization modes electing, color demultiplexing, and spatial focusing simultaneously[J].Optik,2000,111(2):49~ 52
    [44] Liu Rong, Dong Bizhen, Zhang Yan, et al .Expriments of diffractive phase Elements capble of realizing desired functions in rotationally symmetric optical system[J], Optik ,1999,110(3):118~122
    [45] M.P. Chang, O .K .Ersoy, B.Dong, et al .Iterative optimization of diffractive Phase elements simultaneously implementing several optical functions[J]. Applied Optics,1995, 34 (17): 3069~3076
    [46] James R. Fienup. Reconstruction and synthesis applications of an iterative algorithm[C]. Proc.SPIE,1984,373:147~160
    [47] James R .Fienup. Phase retrieval algorithms: a comparison[J].Applied Optics, 1982 ,21(15): 2758~ 2760
    [48] Laurent Biguéand Pierre Ambs. Optimal multicriteria approach to the iterative Fourier transform algorithm[J].Applied Optics,2001,40 (32):5886~5893
    [49] R. P. Millane and W. J. Stroud, Reconstructing symmetric images from their undersampled Fouier intensities[J]. Opt. Soc. Am. A.1997(14):568~579
    [50] Rick P. Millane ,et al, Phase retrieval from undersampled intensity data[C], Proc.SPIE,1997,3170: 116~127
    [51] J.L. van der Plas, Rick P. Millane, Ab-initio phasing in protein crystallography[C], Proc.SPIE,2000,4123: 249~260
    [52] G. Pedrini, W. Osten, and Y. Zhang, "Wave-front reconstruction from a sequence of interferograms recorded at different planes[J], Opt. Lett,2005,30: 833-835
    [53] Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, Whole optical wave fieldreconstruction from double or multi inline holograms by phase retrieval algorithm[J], Opt. Express. 2003,l(11): 3234-3241
    [54] Juan Liu and Ben-yuan Gu.L aserb eam shaping with polarization-selective difractive phase elements[J]. Applied Optics,2000,39 (18):3089~3092
    [55] Myung Soo Kim, Clark C .Guest. Simulated annealing algorithm for binary phase Only filters in patern classification[J].Applied Optics,1990,28(8):1203~1208
    [56] ShizhuoYin, Mingzhe Lu, Chu lung Chen, et al. Design of a bipolar composite filter by a simulated annealing algorithm[J]. Optics Letters,1995, 20(12):1409 ~1411
    [57] Gabriel Cormier, Roger Boudreau, Sylvain Theriault. Real-coded genetica lgorithm for Bragg grating parameter synthesis[J]. Opt.Soc.Am.B ,2001,18(12): 1771~ 1776
    [58] Gia-Wei Chem,Lon A.Wang. Design of binary long-period fiber grating filters by the inverse scatering method with genetic algorithm optimization[J]. Opt.Soc.Am .A , 2002 ,19(4):772~780
    [59] Guangya Zhou,Yixin Chen, Zong guang Wang, et al .Genetic local search a lgorithm for optimization design of diffractive optical elements[J]. Applied O ptics,1999,38 (20): 4281~ 4290
    [60] Guoguan gang. The performance analysis of the genetic algorithm for the optimum design of diffractive optical elements and its comparison to the simulated annealing[J ].Optik,2000,111(3):133~137
    [61] Jean-Numa Gillet and Yuniong Sheng. Iterative simulated quenching for designing irregular spot-array generators[J]. Applied Optics,2000,39(20): 3456~3465
    [62] Jinhui Zhai,YingbaiYan,Guofan Jin,et al .Global/local united search algorithm for global optimization[J].Optik,1998,108(4):161~164
    [63] Guo-zhenYang,Bi-zhen Dong,Ben-yuan Gu,et al.Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in an nonunitary transform system: a comparison[J].Applied Optics,1994,33 (2):209~218
    [64] A.J.Devaney and R.Chidlaw, On the uniqueness question in the problem of phase retrieval from intensity measurements[J]. Opt.Soc.Am, 1978,68(10):1352~ 1354
    [65] J. H. Seldin and J. R. Fienup, Numerical investigation of the uniqueness of phase retrieval[J]. Opt.Soc.Am.A, 1990,7(3):412~ 427
    [66] J.N.Cederquist and S.R.Robinson,et al,Cramer-Rao lower bound on wavefront sensor error[J].Opt.Eng,1986,25:586~592
    [67] J.N.Cederquist and C.C.Wackerman, Phase-retrieval error : a lower bound[J]. Opt.Soc.Am.A,1987,4:1788~1792
    [68] D.J.Lee,N.C.Roggemann,and B.M.Welsh, Cramer-Rao analysis of phase-diverse wave-front sensing[J],Opt.Soc.A,1999,16:1005~1015
    [69] Jean.J.Dolne and Harold B.Schall, Fundamental Performance Bounds of Phase Diversity Blind Deconvolution Algorithm for Various Diversity Polynomials, Noise Statistics, and Scene Size[C],Proc.SPIE,2005,5793:118~128
    [70] B.H.Dean, Phase-retrieval performance as a function of defocus and aberration frequency, presented for NASA Next Generation Space Telescope Technical Memoranda, NASA/Goddard Space Center, Greenbelt,2000,August 20
    [71] Dean B H and Charles W. Bowers, Diversity Selection For Phase Diverse Phase Retrieval[J]. Opt.Soc.Am.A, 2003, 20(8), 1490-1504 .
    [72] R.A.Gonsalves and R.Chidlaw,Wavefront sensing by phase retrieval[C], Proc.SPIE, 1979,207:32~39
    [73] R.A.Gonsalves, Phase retrieval and diversity in adaptive optics[J], Opt.Eng, 1982, 21:829~832
    [74] R.G.Paxman, J.H.Seldin, et al, Post-detection correction of compensated imagery using phase diverse speckle[J], Opt.Soc.Am,1995,23:471~476.
    [75] Richard G.Paxman, Timothy I.Schulz and James R.Fienup,Joint estimation of object and aberrations by using phase diversity[J], Opt.Soc.Am.A, 1992,9(7): 1072~1085
    [76] Brian J.Thelen, Richard G.Paxman, et al.Maximun a posteriori estimation of fixed aberrations, dynamic aberrations, and the object from phase–diverse speckle data[J], Opt.Soc.Am.A, 1999,16(5): 1016~1025
    [77] R. G. Paxman and J. R. Fienup,Optical misalignment sensing and images reconstruction using phase diversity[J], Opt.Soc.Am.A, 1988,5(6): 914~923
    [78] J. R. Fienup, J. C. Marron, T. J. Schulz and J. H. Seldin, Hubble Space telescope characterized by using phase-retrieval algorithms[J], Applied Optics, 1993, 32(10):1747~1767
    [79] J. R. Fienup, Phase-retrieval algorithms for a complicated optical system[J], Applied Optics, 1993, 32(10):1737~1746
    [80] David Redding, Phil Dumont, and Jeff Yu, Hubble Space Telescope prescription retrieval[J], Applied Optics, 1993, 32(10):1728~1736
    [81] Bruce H. Dean, David L Aronstein, et al, Phase Retrieval Algorithm for JWST Flight and Testbed Telescope[C], Proc.SPIE, 2006,6265:11-1~11-17
    [82] Andrew E. Lowman, David C.Redding, et al, Phase Retrieval Camera for Testing NGST Optics[C], Proc.SPIE, 2003,4850:329~335
    [83] Jessica A.Faust, Andrew E.Lowman, NGST phase retrieval camera design and calibration details[C], Proc.SPIE, 2003, 4850:398~406
    [84] Bruce H. Dean, Jeff S. Smith, Wavefront Sensing and Control Architecture for the Spherical Primary Optical Telescope [C], Proc.SPIE, 2006, 6265:4F-1~9
    [85] Scott A.Basinger, Laura A.Burns, et al, Wavefront sensing and control software for a segmented space telescope[C], Proc.SPIE, 2003, 4850:362~369
    [86] Jeffrey S. Smith, Bruce H. Dean and Shadan Haghani, Distributed computing architecture for image-based Wavefront sensing and 2D FFTs[C], Proc.SPIE, 2006, 6274:21-1~9
    [87] Wilkins S W, Gureyev T E, Gao D, et al. Phase-contrast imaging using polychromatic hard X-rays[J]. Nature,1996, 384: 335~338
    [88] Pogany A, Gao D, Wilkins S W. Contrast and resolution in imaging with a microfocus X-ray source[J]. Rev Sci Insirum, 1997, 68(7): 2774~2782
    [89] Nugent K A, Gureyev T E, Cookson D F, et al. Quantitative phase imaging using hard X-rays[J]. Phys Rev Lett, 1996, 77(14): 2961~2964
    [90] Gureyev T E, Wilkins S W. On X-ray phase imaging with a point source[J]. Opt. Soc.Am A, 1998, 15(3):579~585
    [91] Y. M. Bruck and L.G.Sodin,On the ambiguity of the image formation, Opt. Commun. 1979,30:304~308
    [92] J.R.Fienup, Reconstruction of an object from the modulus of its Fourier transform, Opt.Lett, 1978,3:27~29
    [93] R.H.T.Bates, Fourier phase problems are uniquely solvable in more than one dimension. I: Underlying theory, Optik,1982,61:247~262
    [94] R.Barakat and G.Newsam, Necessary conditions for a unique solution to two-dimension phase recovery[J], Math.Phys.1984,25:3190~3193
    [95] D. C. Youla and H. Webb, Image restoration by the method of convex projections[J]: Part I-theroy, IEEE Trans. Med.Imaging, 1982,MI-1:81~94
    [96] L.M. Brégman, The method of successive projection for finding a common point of convex sets, Sov.math.Dokl.1965,6:688~692
    [97] Levi and H.Stark, Image restoration by the method of generalized projections with application to restoration from magnitude[J], Opt.Soc.Am.A,1984,1:932~943
    [98] H. H. Bauschke, P. L. Combettes and D. R. Luke, Phase retrieval, error reduction algorithm and Fienup variants: a view from convex optimization[J], Opt. Soc. Am. A, 2002,19(7):1334~1345
    [99] R. P. Millane and W. J. Stroud, Reconstructing symmetric images fom their undersampled Fouier intensities[J], Opt. Soc. Am. A,1997,14: 568–579
    [100] J. R. Fienup, Phase retrieval for undersampled broadband images[J], Opt. Soc. Am. A,1999,16(7):1831~1837
    [101] R. P. Millane, Recent Advances in Phase Retrieval[C], Proc.SPIE, 2006, 6316: E1~11
    [102] P. Almoro, G. Pedrini, and W. Osten, Complete wavefront reconstruction using sequential intensity measurement of a volume speckle field[J], Appl.Optics, 2006,45(34)8596~8605
    [103] Fleig J., Dumas P., Murphy P. E., and Forbes G. W. An automated subaperturestitching interferometer workstation for spherical and aspherical surfaces. In: Ad- vanced Characterization Techniques for Optics, Semiconductors, and Nanote- chnolo gies, Proc. SPIE, 2003,5188:296~307
    [104] Heather I. Campbell, Sijiong Zhang and Alan H. Greenaway. Generalized phase diversity for wave-front sensing, Opt.lett,2004,29(23):2707~2709
    [105] J. W. Goodman,傅里叶光学导论[M],北京:科学出版社,1979
    [106]李俊昌,激光的衍射和热作用[M],北京:科学出版社, 2002
    [107] Edward A.Sziklas, A.E. SIEGMAN. Diffraction Calculations Using Fast Fourier Transform Methods[J]. Proceedings of the IEEE, 1974 MARCH:410-412
    [108] H. Stark and Y. Yang, Vector space projections: A numerical approach to signal and image processing, neural nets, and optics[M], John Wiley & Sons, New York, 1998
    [109] Judge T R, Bryanston, Cross P J. A review of phase unw rapp ing techniques in fringe analysis[J]. Opt & Lasers in Eng , 1994, 21∶199~ 239
    [110] BORN M, WOLF E. Principles of Optics [M].New York: Pergamon Press, 1980:464- 466
    [111]徐荣伟,刘立人,刘宏展,张德江.大型干涉仪镜子的支承设计与温度变形分析[J].光学学报, 2005, 25(6):809~815
    [112]陈小莲,陶春,张涛.主反射镜的一种轻量化设计和加工[J],机械设计与制造, 2007, 2:121~123
    [113] D. M. Aikens, C. R. Wolfe and J.K Lawson, The use of power Spectual Density(PSD) functions in specifying optics for the National Ignition Facility[C], Proc.SPIE,2576:218~292
    [114] James T. Mooney and H. Philip Stahl, Sub-pixel spatial resolution interferometry with interlaced stitching[C], SPIE, 2005,5869:0Z1~ 0Z7
    [115] P. Almoro, G. Pedrini and W. Osten, Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field, Appl.Opt, 2006, 45: 8596-8605
    [116]潘君骅,光学非球面的设计、加工和检测[M],苏州大学出版社, 2004
    [117] Yingjie Yu, Guopei Li, Power spectral density (PSD) in stitching interferometer [C], Proc.SPIE,2002,4780: 126~137
    [118] Lawson J.K, Specification of optical components using the power spectral density function[C], Proc.SPIE, 1995,2536:38~50
    [119] J.M.Elson, J.M. Bennett, Calculation of the power spectral density from surface profile data[J], Applied Optics, 1995,34(1):201~208
    [120] H. T?bben, G.Ringel, The use of PSD to specify optical surfaces[C],Proc.SPIE, 1996,2775:240~250
    [121] Paxman, R.G. and J.R. Fienup, Sensing wave-front amplitude and phase with phase diversity[J]. Opt.Soc.Am.A,1984,1:914~923
    [122] Jefferies, S.M., et al., Sensing wave-front amplitude and phase with phase diversity[J]. Applied Optics, 2002. 41(11): 2095~2102
    [123] Dolne, J.J, et al., Practical issues in wave-front sensing by use of phase diversity[J]. Applied Optics, 2003. 42(26): 5284~5288
    [124] Woods, S.C. and A.H. Greenaway, Wave-front sensing by use of a Green's function solution to the intensity transport equation[J]. Opt.Soc.Am.A, 2003, 20(3): 508-512
    [125] Campbell, H.I., et al., Generalised Phase Diversity for Wavefront Sensing [J]. Optics Letters, 2004. 29(23): 2707-2709.
    [126] Bridget M. Hanser, Mats G.L.Gustafsson,et al., Phase Retrieval of Widefield Microscopy Point Spread Functions[C], Proc.SPIE,2001,4261:60~68
    [127] R.G.Lyon, J.E.Dorband and J.M.Hollis, Hubble Space Telescope Faint Object Camera calculated point-spread functions[J], Appl.Opt, 1997,36:1752~1765
    [128] Joachim esner, Joachim Heil and Thomas Sure, Reconstructing the pupil function of microscope objectives from the intensity PSF[C], Proc.SPIE,2002,4767:32~43
    [129] B. Moeller, H. Grossb, Characterization of complex optical systems based on wavefront retrieval from point spread function[C],2005,5965:15-1~11
    [130] Russell B. Makidon, et al., The Temporal Optical Behavior of the Hubble Space Telescope: The Impact on Science Observations[C],Proc.SPIE, 2006, 6270: 1L- 1~12
    [131] L.Furey, T.Dubos,et al., HST primary mirror characterization[J]. Opt.Soc.Am.A, 1991, 19: 14~15
    [132] J.Fienup, HST aberrations and alignment determined by phase retrieval algorithms [J]. Opt.Soc.Am.A, 1991, 19: 19~21
    [133] Allen L N, Keim R E. An ion figuring system for large optic fabrication[C]. SPIE, 1989, 1168: 33~50
    [134]王庆有, CCD应用技术[M],天津大学出版社, 2000
    [135]吕海宝,激光光电检测[M],国防科技大学出版社, 2000
    [136] www.zemax.com
    [137] Shpak, D.J , A. Antoniou,“A generalized Remez method for the design of FIR digital filters,”IEEE Trans. Circuits and Systems, Feb(1990),161-174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700