用户名: 密码: 验证码:
非常态核苷酸碱基对相关性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA是储存、复制和传递遗传信息的主要物质基础,具有自组装、严格自我复制等优良性质。这些性质保证了其作为遗传物质的稳定性,也为其作为构建纳米级分子器件的基本结构单元提供了结构基础。但是辐射以及氧化等外界环境因素会破坏DNA的稳定性,改变DNA的碱基结构,甚至会导致DNA链状结构的断裂。如果这些破坏的碱基没有修复或者被不正确的修复,那么会直接导致细胞死亡甚至癌症的发生。作为磷酸根骨架的抗衡离子,金属离子会渗透到DNA的沟状结构中影响到DNA碱基对的性质,从而发挥其生物功能。另外随着遗传的分子机理以及DNA可以作为纳米分子器件的功能材料逐渐被认识,为了获得在某特定方面优于天然DNA性质的分子,DNA分子设计和修饰合成工作也受到了广泛的关注。本文重点讨论了金属抗衡离子渗透、氧化、辐射破坏以及扩环修饰等造成的一系列非常态DNA碱基的核磁、稳定性以及电荷迁移等性质。从而进一步的探索外界环境以及人工修饰等因素对天然DNA碱基性质的影响,并取得了一些有意义的研究成果,具体如下:
     1.我们首先利用密度泛函量子化学计算和分子动力学模拟相结合的方法研究了金属抗衡离子对核苷碱基对间N-H...N氢键单元中~(2h)J_(NN)自旋偶合以及δ(~1H)/Δδ(~(15)N)化学位移的影响。结果表明结合到天然G-C或者A-T碱基对上的金属阳离子使碱基间氢键的NMR参数发生了很大的变化,从而可以利用来识别W-C碱基对是否受到金属抗衡离子的干扰。金属离子渗透所引起的最基本的变化是使~(2h)J_(NN)自旋偶合增大,Δδ(~(15)N)化学位移差减小,δ(~1H)化学位移向高场方向移动。而金属离子的作用却导致A-T碱基对间N-H...N氢键的NMR参数发生了相反的变化。并且变化量的大小与所引入金属离子的路易斯碱性密切相关。对于两类碱基系列(M~(z+)GC和M~(z+)AT),计算所得到的NMR参数之间存在着很好的线性相关性,并且NMR参数值的大小取决于定位在N原子上的电子供体轨道(LPN)和电子受体σ~*(N-H)轨道之间的能隙以及二者之间的二阶微扰能。另外,~(2h)J_(NN)自旋偶合的变化还会取决于从LP(N)自然键轨道迁移到σ~*(N-H)反键轨道上电荷量,即从嘌呤到嘧啶碱基之间的电荷迁移量。因此可以看出A-T和G-C碱基间NMR参数不同的变化趋势是由于不同的氢键类型以及金属离子的极化作用共同造成的(即:在离子化的M~(z+)AT系列中电荷迁移的方向是M~(z+)←A→T,而在离子化的M~(z+)GC系列中则是M~(z+)←G←C)。这里所预测的阳离子所引起的W-C碱基对中N-H...N氢键单元~(2h)J_(NN)自旋偶合以及δ(~1H)/Δδ(~(15)N)化学位移的变化可以为W-C碱基对中金属离子偶合情况的测定提供和一个新的可靠途径。
     2.我们还探讨了错配,氧化以及去质子等损伤碱基对间N-H...N氢键单元中NMR参数的变化。所用到的计算方法是B3LYP/6-311+G~*水平上的密度泛函方法。NMR参数计算结果表明碱基损伤会对碱基间N-H...N氢键的~(2h)J_(NN)偶合常数以及相应的化学位移(δ(~1H)和Δδ(~(15)N)产生很大的影响。在几类错配碱基中,有一部分的~(2h)J_(NN)偶合作用会偏离天然碱基1-2 Hz,还有一部分由于构型的变化会造成碱基间N-H...N氢键的断裂,因此不存在~(2h)J_(NN)偶合作用。如果一个氢原子从G-C碱基对的C碱基上或者一个氢质子从G碱基部分脱离,~(2h)J_(NN)偶合常数会降低大约0.3-4.15 Hz。而如果一个氢原子从G碱基或者一个质子从C碱基上离去,那么~(2h)J_(NN)偶合常数将会从原来的4.73 Hz增加到5.0-7.4 Hz。相类似的,GC~(·-)和GC~(·+)自由基中的~(2h)J_(NN)偶合常数,即G-C碱基对直接得到或者失去一个单电子,比天然G-C碱基中的~(2h)J_(NN)偶合常数要大3.28-6.45 Hz。结合同样受到干扰的δ(~1H)化学位移(它们的变化趋势与~(2h)J_(NN)偶合常数相似),我们得出可以利用NMR参数的变化来判断碱基是否受到损伤。另外与前边所得到的分析结果类似,核苷间~(2h)J_(NN)偶合作用与相应的轨道能隙以及。σ~*(N-H)轨道上的电子分布有着很好的相关性,这也表明了跨N-H...N氢键的偶合常数是受电荷迁移所控制的。也就是说,当损伤造成电荷从G碱基迁移到C碱基位置的时候,碱基间的~(2h)J_(NN)偶合常数将会减弱。相反的,则会增大。所得到的静电势变化示意图以及G和C碱基间的电荷迁移量同样很好的证实了这个结论。我们对损伤碱基中N-H...N氢键NMR参数的变化可以很好的将损伤与天然的碱基区别开来。
     3.考虑到苯与杂环扩环修饰是可以提高DNA物理性质以及生物功能的合理修饰方案,我们讨论了此类非常态碱基在外界损伤环境中(即H原子离去反应,质子化和H·自由基攻击反应)所表现出来的稳定性的变化。所用到的依然是密度泛函计算方法。由于C8-G氧化物是DNA破坏中最主要的产物,并且C8位距离引入环的位置也很近,因此,我们重点讨论了扩环对C8位活性的影响。计算的结果表明,芳香环的引入会降低C8位上的电子云密度分布,从而使得C8位的质子H~+或者H原子变得容易失去,而H·自由基的攻击反应则较天然碱基更难进行。而非芳香性环的引入则会造成不同的影响,即:C8位的去质子化反应以及H原子脱去反应会较难进行,而H·自由基的攻击则会较容易进行。为了更好的解释这个现象,我们对所考察碱基做了详细的NBO分析,并且利用可靠的NICS方法对其芳香性也进行分析。分析结果表明,由于芳香六元环的电子云密度分布小于五元芳香环,因此它的引入会引起五元咪唑环电子云密度的降低;而非芳香环由于带有两个未成对的单电子,因此起到的是电子供体特性,从而会造成G碱基中咪唑环芳香性的增大。并且引入环的芳香/非芳香性越大,影响就会越大,这也是C8位活性会受到引入环不同影响的根本原因。这里所讨论到的扩环碱基在不同DNA破坏环境中稳定性的研究可以鼓励其在进一步的实践应用方面的研究。
     4.最后我们描述了修饰sDNA(前缀“s”意味着扩环修饰)中空穴(正电荷)迁移的情况,即:双质子偶合空穴迁移。结合经典动力学模拟的大规模密度泛函量化计算结果表明扩环修饰DNA中最高占据轨道(HOMO)轨道的分布与天然DNA中HOMO轨道的分布一致,即,5'-sGTsGsGsG-3′序列中的HOMO最高占据轨道主要分布在sGsGsG三体的5′-sG位置,而孤立sG碱基位置则分布的很少。因此与天然DNA类似,单电子氧化和亲核攻击反应容易发生在sGsGsG三体的5′-sG位置。另外我们证实了通过孤立sG单体结构的改变可以使电荷空穴从原来的sGsGsG三体位置迁移到孤立sG单体位置(即:孤立sGC上的双质子转移现象伴随电荷沿着sDNA双螺旋结构迁移,从而导致空穴分布发生相应的变化)。这是由于双质子转移产物的电离势较原来低,使得其成为一个有效的空穴陷阱位置。这种修饰DNA中空穴迁移的现象与理论以及实验上所测得的天然DNA中双质子偶合空穴迁移的现象一致,表明了电荷也可以在修饰DNAs中的扩环鸟嘌呤之间相互跳跃。而进一步的单体计算结果表明质子转移活化能能垒以及双质子转移产物的电离势要比天然G-C碱基低。因此我们可以预测扩环修饰DNA中的双质子偶合空穴迁移要比天然DNA容易。结合扩环DNAs有着较天然DNA更强的π-π堆积力以及更低HOMO-LUMO能隙等有助于其导电的特性,扩环修饰双螺旋结构中的双质子偶合空穴迁移现象的讨论为其可以成为分子导线应用的候选材料提供了一个新的重要依据。
The functions of DNA are vital for inheritance,coding for proteins and the genetic blueprint of life.With the self-assembled structure,the DNA double helix is very stable and provides potential for nanotechnological molecular-wires. However,oxidative and radiation damage from the surrounding environment may bring about significant changes in the geometry of the base pair and overall shape of the DNA strand.Then cell death or even human lesions may happen if these damaged bases are unrepaired or incorrectly repaired.Moreover,metal counter-ions may also have an impact on DNA conformation by neutralizing the charged phosphate backbone or artificial modification for special applications. My thesis addresses the effects of the metal counter-ions,oxidation and radiation damage,size-expanded modification of DNA properties,and discusses possible practical implications of our findings.Some significant progresses have been made,which can be described as follows:
     1.The effects of metal ion binding on the ~(2h)J_(NN)-coupling andδ(~1H)/Δδ(~(15)N) chemical shifts of N-H...N H-bond units in internucleotide base pairs were explored by a combination of density functional theory calculations and molecular dynamics(MD) simulations.Results indicate that the NMR parameters vary considerably upon cation binding to the natural G-C or A-T base pairs,and thus can be used to identify the status of the base pairs,if cation-perturbed.The basic trend is that cation perturbation causes ~(2h)J_(NN) to increase,Δδ(~(15)N) to decrease,andδ(~1H) to shift upfield for G-C,and in the opposite directions for A-T.The magnitudes of variation are closely related to the Lewis acidity of the metal ions. For both base pair series(M~(z+)GC and M~(z+)AT),these NMR parameters are linearly correlated among themselves.Their values depend strongly on the energy gaps (ΔE_(LP→σ~*)) and the second-order interaction energies(E(2)) between the donor N lone-pair(LP_N) and the acceptorσ_(N-H)~* localized NBO orbitals.In addition,the ~(2h)J_(NN) changes are also sensitive to the amount of charge transfer from LP_N toσ_(N-H)~* NBOs or from the purine to the pyrimidine moieties.The different trends are a consequence of the different H-bond patterns,and thus the different charge transfer directions in the cationized M~(z+) AT series,M~(z+)←A→T,and the cationized M~(z+)GC series,M~(z+)←G←C.The predicted cation-induced systematic trends of ~(2h)J_(NN) andδ(~(15)N,~1H) in N-H...N H-bond units may provide a new approach to the determination of H-bond structure and strength in Watson-Crick base pairs,and provide an alternative probe of the heterogeneity of DNA sequences.
     2.On the basis of the ~(15)N NMR HN-COSY method,NMR parameters including intemucleotide ~(2h)J_(NN) spin-spin couplings and chemical shifts(δ(~1H) andΔδ(~(15)N)) of N-H...N H-bond units in natural and damaged base pairs(viz., mismatched pairs,GC~(·-) and GC~(·+) radicals,dehydrogenated and deprotonated G-C pairs) were predicted using the appropriated density functional theory calculations with a large basis set.For those damaged base pairs,their ~(2h)J_(NN),δ(~1H) andΔδ(~(15)N) associated the N-H...N H-bond pattern are considerably different from those of the natural canonical G-C and A-T,and may be taken as the important indexed for prejudging if G-C and A-T are damaged.Similar with the results in above work,detailed NBO analysis shows that ~(2h)J_(NN) couplings are strongly interrelated with the energy gaps(ΔE_(LP→σ~*)) between the donor N lone-pair(LP_N) and the acceptorσ_(N-H)~* localized NBO orbitals,and also are sensitive to the electron density distributions over theσ_((N-H))~* orbital,indicating that ~(2h)J_(NN) couplings across the N-H...N H-bonds are charge-transfer-controlled.This is well supported by variation of the electrostatic potential surfaces and corresponding charge transfer amount between G and C moieties.The present data indicate that measurements of NMR parameters associated with the N-H...N H-bond may be used to discriminate between natural G-C pair and the radiation-damaged G-C pairs.
     3.Considering homo/hetero ring-expanded DNA analogues are rationally-modified DNA motifs with improved physical or biological properties, the stability of these artificial DNA base pairs was examined with regard to three aspects associated with DNA damage;namely deprotonation,H-abstraction and H~·-radical addition using density functional theory.The effect of size-expansion on C8 activity was investigated because C8-oxidative guanine(G) is one of the most important products of DNA damage.Computational results indicate that the insertion of an aromatic spacer ring in G considerably decreases the electron density over the C8 site,leading to easier deprotonation or H-abstraction from the C8 site and more difficult H~·-radical attack on the C8 site.However,the opposite phenomenon is observed if the spacer ring is antiaromatic,because of the increased electron density over the C8 site.Moreover,these effects are more prominent the larger the aromaticity or antiaromaticity of the spacer ring. Further analyses,using natural bond orbitals and the nucleus-independent chemical shift index of aromaticity,indicate that the changes of the electron distribution over the C8 site arise because the aromatic spacer ring,involved in conjugation structure,increases the electron delocalization from the electron-rich imidazole ring to the diatropic six-membered rings,while the antiaromatic spacer ring acts as an electron-donating group,not only inhibiting the above electron delocalization,but also slightly increasing the electron density over the C8 site. The improved stability of these size-expanded bases pairs in different DNA-damaged environments may encourage their use in practical applications.
     4.Electron hole(radical cation) migration in rationally-designed size-expanded DNAs(named sDNA here),where the quantum transport of an injected charge is coupled with the double proton transfer in isolated sGC pair,is described here.Classical molecular dynamics simulations in conjunction with large-scale density functional theory calculations reveal that the distribution of highest occupied molecular orbital(HOMO) in size-expanded duplex sDNA is similar with that in B-form DNA,that is,the HOMO of stacked 5'-sGTsGsGsG-3' sequence is especially high in energy and largely localized on the 5'-sG of the sGsGsG triplet,with no HOMO at the single sG base.As a consequence, one-electron oxidation and electrophilic attacks are favored at the 5'-sG site of the sGsGsG triplet as that in natural DNA duplex.It is also demonstrated that a charge sink from the sGsGsG triplet can be created by modification of the isolated sG base(viz.,double proton transfer in the isolated sGC pair induces correlated changes in the special distribution of the hole,with concomitant charge transport along the sDNA double helix).The ion potential(IP) energy of the sG tautomer generated by double proton transfer is lower than that of an isolated sG,thus making the site an effective hole trap.The charge sink phenomenon in sDNA matches very well with theoretical and experimental research for the double proton coupled charge transfer in natural DNA base pairs(Gervasio et al.Angew. Chem.Int.Ed.2006,45,5606),implying that the charge can hop reversibly between all size-expanded guanines in sDNA sequences containing isolated sGC sites between the source and sink.Moreover,future detailed calculation results show that the proton transfer activity energies(Ea) as well as IPs of the sGC base pairs are lower than those of natural G-C base pair.That means the double proton coupled charge transfer in size-expanded DNAs is easier than that in natural DNA double helix.Double proton coupled proton transfer discussed here provide a new evidence that the size-expanded DNA double helix can also mediates charge transport over a distance.Associated with the fact that the size-expanded DNAs have strongerπ-πstacking interactions and lower HOMO-LUMO gaps than natural DNAs,it can be concluded that size-expanded DNAs could be a good plausible candidate for molecular-wire application,which is not directly accessible to experimental probes.
引文
[1]薛攀皋等译.生物学中的机会.上海:中国科学院上海文献情报中心,1990.
    [2]Leach,A.R.Molecular modeling:principles and applications(second edition).2001,England.Person Education Limited.
    [3]Burkard,M.;Turner,D.H.NMR Structures of r(GCACJGCGUGC)_2 and Determinants of Stability for Single Guanosine-Guanosine Base Pairs.Biochemistry 2000,39,11748-11762.
    [4]Loft,S.;Poulsen,H.E.Cancer risk and oxidative DNA damage in man.J Mol.Med.1996,74,297-312.
    [5]Bera,P.P.;Schaefer,H.F.Chemical theory and computation special feature:(G-H)-C and G-(C-H) radicals derived from the guanine'cytosine base pair cause DNA subunit lesions.Proc.Natl.Acad.Sci.U.S.A.2005,102,6698-6703.
    [6]Steenken,S.Chemical theory and computation special feature:(G-H)-C and G-(C-H) radicals derived from the guanine.cytosine base pair cause DNA subunit lesions.Chem.Rev.1989,89,503-520.
    [7]Lind,M.C.;Bera,P.P.;Richardson,N.A.;Wheeler,S.E.;Schaefer,H.F.The deprotonated guanine-cytosine base pair.Proc.Natl.Acad Sci.U.S.A.2006,103,7554-7559.
    [8]Hutter,M.;Clark,T.On the Enhanced Stability of the Guanine-Cytosine Base-Pair Radical Cation.J.Am.Chem.Soc.1996,118,7574-7577.
    [9]Peterson,R.D.;Feigon,J.Structural Change in Rev Responsive Element RNA of HIV-1 on Binding Rev Peptide.J Mol.Biol.1996,264,863-877.
    [10]Battiste,J.;Mao,L.;Rao,N.S.;Tan,R.;Muhandiram,D.R.;Kay,L.E.;Frankel,A.D.;Williamson,J.R.αHelix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex.Science 1996,273,1547-1551.
    [11]Leonard,N.J.;Sprecker,M.A.;Morrice,A.G.Defined dimensional changes in enzyme substrates and cofactors.Synthesis of lin-benzoadenosine and enzymic evaluation of derivatives of the benzopurines.J.Am.Chem.Soc. 1976,98,3987-3994.
    [12](a) Liu,H.B.;Gao,J.M.;Maynard,L.;Saito,Y.D.;Kool,E.T.Toward a new genetic system with expanded dimensions:size-expanded analogues of deoxyadenosine and thymidine.J.Am.Chem.Soc.2004,126,1102-1109.
    (b) Lynch,S.R.;Liu,H.B.;Gao,J.M.;Kool,E.T.Toward a designed,functioning genetic system with expanded-size base pairs:solution structure of the eight-base xDNA double helix.J.Am.Chem.Soc.2006,128,14704-14711.
    (c) Krueger,A.T.;Lu,H.;Lee,A.H.F.;Kool,E.T.Synthesis and properties of size-expanded DNAs:toward designed,functional genetic systems.Acc.Chem.Res.2007,40,141-150.
    [13](a) Liu,H.B.;Gao,J.M.;Kool,E.T.Helix-forming properties of size-expanded DNA,an alternative four-base genetic form.J.Am.Chem.Soc.2005,127,1396-1402.
    (b) Gao,J.M.;Liu,H.B.;Kool,E.T.Toward a new genetic system with expanded dimensions:size-expanded analogues of deoxyadenosine and thymidine.J.Am.Chem.Soc.2004,126,11826-11831.
    (c) Liu,H.B.;Gao,J.M.;Kool,E.T.Size-expanded analogues of dG and dC:synthesis and pairing properties in DNA.J.Org.Chem.2005,70,639-647.
    [14]Dingley,A.J.;Grzesiek,S.Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide ~2J_(NN) couplings,J.Am.Chem.Soc.1998,120,8293-8297.
    [15]Dingley,A.J.;Masse,J.E.;Peterson,R.D.;Barfield,M.;Feigon,J.;Grzesiek,S.Internucleotide Scalar Couplings Across Hydrogen Bonds in Watson Crick and Hoogsteen Base Pairs of a DNA Triplex.J.Am.Chem.Soc.1999,121,6019-6027.
    [16]W(o|¨)hnert,J.;Dingley,A.J.;Stoldt,M.;G(o|¨)rlach,M.;Grzesiek,S.;Brown,L.R.Direct identification of N-H…N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy.Nucleic Acids Res.1999,27,3104-3110.
    [17](a) Pervushin,K.;Ono,A.;Fema'ndez,C.;Szyperski,T.;Kainosho,M.;Wu''thrich,K.NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy.Proc.Natl.Acad Sci.U.S.A.1998,95,14147-14151.
    (b) Pervushin,K.;Rick,R.;Wider,G.;Wu"thrich,K.Attenuated T_2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution.Proc.Natl.Acad.Sci.U.S.A.1997,94,12366-12371.
    [18]Case,A.D.Interpretation of chemical shifts and coupling constants in macromolecules.Curr.Opin.Struct.Biol.2000,10,197-203.
    [19]Zidek,L.;Stefl,R.and Sklenai,V.NMR methodology for the study of nucleic acids.Curr.Opin.Struct.Biol.2001,11,275-281.
    [20]Pervushin,K.;Ono,A.;Fernandez,C.;Szyperski,T.;Kainosho,M.and W(u|¨)thrich,K.NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy.Proc.Natl.Acad.Sci.U.S.A.1998,95,14147-14151.
    [21]Dingley,A.J.and Grzesiek,S.Direct observation of hydrogen bonds in nucleic acid base pairs by intemucleotide ~2J_(NN) couplings.J.Am.Chem.Soc.1998,120,8293-8297.
    [22]Sychrovsky,V.;Sponer,J.;Hobza,P.Theoretical Calculation of the NMR Spin Spin Coupling Constants and the NMR Shifts Allow Distinguishability between the Specific Direct and the Water-Mediated Binding of a Divalent Metal Cation to Guanine.J.Am.Chem.Soc.2004,126,663-672.
    [23]Helgaker,T.;Jaszunski,M.;Ruud.K.Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants.Chem.Rev.1999,99,293-352.
    [24]Fohrer,J.;Reinscheid,U.;Henning,M.;Carlomagno,T.Calculation of the Dependence of Homo-and Heteronuclear ~3J and ~2J Scalar Couplings for the Determination of the 2'-Hydroxy Conformation in RNA.Angew.Chem.Int. Ed.2006,45,7033-7036.
    [25]Sychrovsky,V.;Sponer,J.;Trantirek,L.;Schneider,B.Indirect NMR Spin-Spin Coupling Constants ~3J(P,c) and ~2J(P,H)across the P-O…H-C Link Can Be Used for Structure Determination of Nucleic Acids.J.Am.Chem.Soc.2006,128,6823-6828.
    [26]Liu,H.B.;Gao,J.M.;Lynch,S.R.;Saito,Y.D.;Maynard,L.;Kool,E.T.A four-base paired genetic helix with expanded size.Science 2003,302,868-871.
    [27]Zhang,J.M.;Cukier,R.I.;Bu,Y.X.Rational design of hetero-ring-expanded guanine analogs with enhanced properties for modified DNA building blocks.J.Phys.Chem.B 2007,111,8335-8341.
    [28]Fuentes-Cabrera,M.;Zhao,X.C.;Kent,P.R.C.;Sumpter,B.G.Electronic structure of xDNA.J.Phys.Chem.B 2007,111,9057-9061.
    [29]Di Felice,R.;Calzolari,A.;Garbesi,A.;Alexandre,S.S.;Soler,J.M.Strain-dependence of the electronic properties in periodic quadruple helical G4-wires.J.Phys.Chem.B 2005,109,22301-22307.
    [30]Holmlin,R.E.;Dandliker,P.J.;Barton,J.K.Charge transfer through the DNA base stack.Angew.Chem.Int.Ed.Engl.1997,36,2714-2730.
    [31]Fink,H.W.;Sch(o|¨)nenberger,C.Electrical conduction through DNA molecules.Nature 1999,398,407-410.
    [32]Porath D,Bezryadin A,de Vries S,et al.Direct measurement of electrical transport through DNA molecules.Nature 2000,403,635-638
    [33]Kasumov,A.Y.;Kociak,M.;Gueron,S.;Reulet,B.;Volkov,V.T.;Klinov,D.V.;Bouchiat,H.Proximity-induced superconductivity in DNA.Science 2001,291,280-282.
    [34]Porath,D.;Bezryadin,A.;deVries,S.;Dekker,C.Direct measurement of electrical transport through DNA molecules.Nature 2000,403,635-638.
    [35]Gomez-Navarro,C.;Moreno-Herrero,F.;de Pablo,P.J.;Colchero,J.;Gomez-Herrero,J.;Baro,A.M.Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior.Proc.Natl.Acad. Sci.U.S.A.2002,99,8484-8487.
    [36]Becke,A.D.Completely numerical calculations on diatomic molecules in the local-density approximation.Phys.Rev.1986,A33,2786-2788.
    [37]Lee,C.;Yang,W.;Parr,R.G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.1988,B37,785-789.
    [38]Perdew,J.P.Electron structure of solids.Akademie Verlag,Berlin,1991.
    [39]Hagler,A.T.;wang,M.-J.H.;Sharon,R.On the reinterpretation of the experimental structure of a molecular standard:Tri-tert-butylmethane by CFF93 molecular mechanics and quantum mechanics,J.Am.Chem.Soc.1996,118,3759-3760.
    [40]Ewig,C.S.;Liang,C.;Polavarpu,P.L.;Polavarpu,T.R.;Stouch,T.R.;Hagler,A.T.unpublished results.
    [41]Sun,H.;Mumby,S.J.;Maple,J.R.;Hagler,A.T.Ab initio calculations on small molecule analogs of polycarbonates.J.Phys.Chem.1995,99,5873-5882.
    [42]Liang,C.X.;Ewig,C.S.;Maple,T.R.;Hagler,A.T.Ab initio studies of lipid model species.2.Conformational analysis of inositols.J.Am.Chem.Soc.1994,116,3904-3911.
    [43](a) O'Malley,P.J.;Collins,S.J.Density functional studies of free radicals:Accurate geometry and hyperfine coupling prediction for semiquinone anions.Chem.Phys.Lett.1996,259,296-300.
    (b) O'Malley,P.J.~1H,~(13)C and ~(17)O principal hyperfine tensor determination for the p-benzosemiquinone anion radical using hybrid density functional methods.Chem.Phys.Lett.1996,262,797-800.
    [44](a) O'Malley,P.J.Hybrid density functional study of the p-benzosemiquinone anion radical:The influence of hydrogen bonding on geometry and hyperfine couplings.J.Phys.Chem.A.1997,101,6334-6338.
    (b) O'Malley,P.J.Effect of hydrogen bonding on the spin density distribution and hyperfine couplings of the p-benzosemiquinone anion radical in alcohol solvents: A hybrid density functional study. J. Phys. Chem. A. 1997,101,9813-9817.
    
    (c) O'Malley, P. J. B3LYP, Hybrid density functional studies of the durosemiquinone radical: The effect of symmetrical and asymmetrical hydrogen bonding on spin densities and hyperfine couplings. J. Phys. Chem. A. 1998, 102, 248-253.
    [45] Adamo, C.;Barone, V. In Recent Development in Density Functional Methods; Chong, D. P., Ed.; World Scientific Publishing: Singapore, 1997; Part II.
    [46] Himo, F.; Graslund, A.; Eriksson, L. E. Density functional calculations on model tyrosyl radicals. Biophys. J. 1997, 72, 1556-1567.
    [47] Qin, Y.; Wheeler, R. A. Density-functional methods give accurate vibrational frequencies and spin densities for phenoxyl radical. J. Chem. Phys. 1995, 102, 1689-1698.
    [48] (a) Becke, A. D. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
    
    (b) Lee, C.;Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.
    [49] Han, W. G.; Suhai, S. Density functional studies on n-methylacetamide-water complexes. J. Phys. Chem. 1996, 100, 3942-3949.
    [50] (a) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.;Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197.
    
    
    (b) Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000, 21, 1049-1074.
    
    [51] Essmann,U. Perera,L. Berkowitz,M. L.Darden,T. Lee,H. Pedersen,L.G. A smooth particle mesh Ewald method.J.Chem.Phys.1995,103,8577-8593.
    [52]Ryckaert,J.P.;Ciccotti,G.;Berendsen,H.J.C.Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes.J.Comput.Phys.1977,23,327-336.
    [1]Gemmecker,G.Direct detection of hydrogen bonds in biopolymers by NMR spectroscopy.Angew.Chem.,Int.Ed.2000,39,1224-1226.
    [2]Wilkens,S.J.;Westler,W.M.;Weinhold,F.;Markley,J.L.Trans-hydrogen-bond ~(h2)J_(NN) and ~(h1)J_(NH) couplings in the DNA A-T base pair:natural bond orbital analysis J.Am.Chem.Soc.2002,124,1190-1191.
    [3]Henning,M.;Williamson,J.R.Detection of N-H…N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances Nucleic Acids Res.2000,28,1585-1593.
    [4]Dingley,A.J.;Grzesiek,S.Direct observation of hydrogen bonds in nucleic acid base pairs by intemucleotide ~2J_(NN) couplings,J.Am.Chem.Soc.1998,120,8293-8297.
    [5]Dingley,A.J.;Masse,J.E.;Peterson,R.D.;Barfield,M.;Feigon,J.;Grzesiek,S.Internucleotide Scalar Couplings Across Hydrogen Bonds in Watson Crick and Hoogsteen Base Pairs of a DNA Triplex.J.Am.Chem.Soc.1999,121,6019-6027.
    [6]Wohnert,J.;Dingley,A.J.;Stoldt,M.;Go''rlach,M.;Grzesiek,S.;Brown,L.R.Direct identification of N-H…N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy.Nucleic Acids Res.1999,27,3104-3110.
    [7](a) Pervushin,K.;Ono,A.;Ferna'ndez,C.;Szyperski,T.;Kainosho,M.;Wu"thrich,K.NMP,scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy Proc.Natl.Acad.Sci.U.S.A.1998,95,14147-14151.
    (b) Pervushin,K.;Riek,R.;Wider,G.;Wu"thrich,K.Attenuated T_2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution Proc.Natl.Acad.Sci.U.S.A.1997,94,12366-12371.
    [8]Zidek,L.;Stefl,R.;Sklenar,V.NMR methodology for the study of nucleic acids.Curr.Opin.Struct.Biol.2001,11,275-281.
    [9]Barfield,M.;Dingley,A.J.;Feigon,J.;Grzesiek,S.A DFT study of the interresidue dependencies of scalar J-Coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex.J.Am.Chem.Soc.2001,123,4014-4022.
    [10]Guerra,C.F.;Bickelhaupt,M.;Snijders,J.G.;Baerends,E.J.Hydrogen bonding in DNA base pairs:reconciliation of theory and experiment.J.Am.Chem.Soc,2000,122,4117-4128.
    [11]Denisov,V.P.;Halle,B.From the Cover:Sequence-specific binding of counterions to B-DNA.Proc.Natl.Acad Sci.U.S.A.2000,97,629.
    [12]Va'rnai,P.;Zakrzewska,K.DNA and its counterions:a molecular dynamics study.Nucleic Acids Res.2004,32,4269-4280.
    [13]Ponomarev,S.Y.;Thayer,K.M.;Beveridge,D.L.Ion motions in molecular dynamics simulations on DNA.Proc.Natl.Acad.Sci.U.S.A.2004,101,14771-14775.
    [14]Sines,C.C.;McFail-Isom,L.;Howerton,S,B.;VanDerveer,D.;Williams,L.D.Cations mediate B-DNA conformational heterogeneity.J.Am.Chem.Soc.2000,122,11048-11056.
    [15]Tereshko,V.;Minasov,G.;Egli,M.The Dickerson-Drew B-DNA dodecamer revisited at atomic resolution.J.Am.Chem.Soc.1999,121,470-471.
    [16]Hud,N.V.;Feigon,J.Localization of divalent metal ions in the minor groove of DNA A-tracts.J.Am.Chem.Soc.1997,119,5756-5757.
    [17]Moldrheim,E.;Andersen,B.;Frφystein,N.(?).;Sletten,E.Interaction of manganese(Ⅱ),cobalt(Ⅱ) and nickel(Ⅱ) with DNA oligomers studied by ~1H NMR spectroscopy,Inorg.Chim.1998,273,41-46.
    [18]Kieft,J.S.,Jr.Solution structure of a metal-binding site in the major groove of RNA complexed with cobalt(Ⅲ) hexammine.Structure 1997,5,713-721.
    [19]Okamoto,A.;Kanatani,K.;Taiji,T.;Saito,I.~(15)N NMR study on site-selective binding of metal ions to guanine runs in DNA:A good correlation with HOMO distribution.J.Am.Chem.Soc.2003,125,1172-1173.
    [20] (a) Shui, X.; McFail-Isom, L.; Hu, G. G.; Williams, L. D. The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry. 1998, 37, 8341-8355.
    
    (b) Shui, X.; Sines, C. C.;McFail-Isom, L.; VanDerveer, D.; Williams, L. D. Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry. 1998, 37, 16877-16887.
    
    [21] (a) Draper, D. E. A guide to ions and RNA structure. RNA 2004,10, 335-343.
    
    (b) Misra, V. K.; Draper,D. E. The linkage between magnesium binding and RNA folding. J. Mol. Biol. 2002, 317, 507-521.
    
    (c) Misra, V. K.; Shiman, R.; Draper,D. E. A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 2003, 69, 118-136.
    
    [22] Juneau, K.; Podell, E.; Harrington, D. J.; Cech, T. R. Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions. Structure, 2001, 9, 221-231.
    [23] Wang, G.; Gaffney, B. L.; Jones, R. A. Differential binding of Mg~(2+), Zn~(2+), and Cd~(2+) at two sites in a hammerhead ribozyme motif, determined by ~(15)N NMR. J. Am. Chem. Soc. 2004,126, 8908-8909.
    [24] Saito, I.; Nakamura, T.; Nakatani, K. Mapping of highest occupied molecular orbitals of duplex DNA by cobalt-mediated guanine oxidation. J. Am. Chem. Soc. 2000,122, 3001-3006.
    
    [25] Carte, A.; Cesare-Marincola, F.; Maarel, J. R. C. V. D.; Saba, G.;Lai., A. Binding of Mg~(2+), Cd~(2+), and Ni~(2+) to liquid crystalline NaDNA: polarized light microscopy and NMR investigations. Biomacromolecules 2004, 5, 1552-1556.
    [26] Markwick, P. R. L.; Sprangers, R.; Sattler, M. Dynamic effects on J-couplings across hydrogen bonds in proteins. J. Am. Chem. Soc. 2003, 125, 644-645.
    [27] Sass, H.-J.; Schmid, F. F.-F.; Grzesiek, S. Correlation of protein structure and dynamics to scalar couplings across hydrogen bonds. J. Am. Chem. Soc. 2007, 129, 5898-5903.
    [28] Case, D. A.; Darden, T. A.; Cheatham, T. E. III; Simmerling, C. L. etc.. AMBER 8; University of California: San Francisco, 2004.
    
    [29] (a) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.;Fox, T.; Caldwell, J. W.; Kollman, P. A. A. Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995,117, 5179-5197.
    
    (b) Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000, 21, 1049-1074.
    [30] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-936.
    [31] Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-336.
    [32] Auffinger, P.; Westhof, E. Water and ion binding around RNA and DNA (C,G) oligomers. J. Mol, Biol. 2000, 300, 1113-1131.
    [33] Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092.
    [34] Sychrovsky, V.; Sponer, J.; Hobza, P. Theoretical Calculation of the NMR Spin Spin Coupling Constants and the NMR Shifts Allow Distinguishability between the Specific Direct and the Water-Mediated Binding of a Divalent Metal Cation to Guanine. J. Am. Chem. Soc. 2004,126, 663-672.
    [35] Helgaker, T.; Jaszuhski, M.; Ruud. K. Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants. Chem. Rev. 1999, 99, 293-352.
    [36] Fohrer, J.; Reinscheid, U.; Henning, M.; Carlomagno, T. Calculation of the Dependence of Homo- and Heteronuclear ~3J and ~2J Scalar Couplings for the Determination of the 2'-Hydroxy Conformation in RNA.Angew.Chem.Int.Ed.2006,45,7033-7036.
    [37]Sychrovsky,V.;Sponer,J.;Trantirek,L.;Schneider,B.Indirect NMR Spin-Spin Coupling Constants ~3J(P,C) and ~2J(P,H) across the P-O…H-C Link Can Be Used for Structure Determination of Nucleic Acids.J.Am.Chem.Soc.2006,128,6823-6828.
    [38]Becke,A.D.Density-functional thermochemistry.Ⅲ.The role of exact exchange.J.Chem.Phys.1993,98,5648-5652.
    [39]碱基的NMR参数在实验与理论计算的结论中存在很好的一致性,这说明环境因素对~(2h)J_(NN)/~(1h)J_(NH)的影响很小。如:Sychrovsky,V.;Vacek,J.;Hobza,P.;Zidek,L.;Sklenar,V.;Cremer,D.Exploring the Structure of a DNA Hairpin with the Help of NMR Spin Spin Coupling Constants:An Experimental and Quantum Chemical Investigation.J.Phys.Chem.B 2002,106,10242-10250.
    [40](a) Ditchfield,R.Self-consistent perturbation theory of diamagnetism.Mol.Phys.1974,27,789-807.
    (b) Dodds,J.L.McWeeny,R.Sadlej,A.J.Self-consistent perturbation theory of diamagnetism.Mol.Phys.1980,41,1419-1430.
    (c) Wolinski,K.Hinton,J.F.Pulay,P.Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations.J.Am.Chem.Soc.1990,112,8251-8260.
    [41]Ramsey,N.F.Electron coupled interactions between nuclear spins in molecules.Phys.Rev.1953,91,303-307.
    [42]Reed,A.E.Curtiss,L.A.Weinhold,F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint.Chem.Rev.1988.88.899-926.
    [43]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;etc.,Gaussian 03,Gaussian,Inc.;Pittsburgh,PA,2003.
    [44]瞬间几何结构中,当Na~+…N7之间的距离在3到9(?)之间时可以认为是Na~+-结合与Na~+-未结合两种状态之间的过渡,相当于是一个弱相互作用地带。在这中结合与为结合状态之间NMR参数不容易测定因此文章中不做讨 论。
    [45]这里需要说明几个讨论到的N-H...N氢键相关的NMR参数与N...N距离(在2.7-3.2(?)之间变化)存在一定的相关性,但是参考文献9中提到的C~+GC 三聚体中与N-H...N氢键相关的J-偶合(~(2h)J_(NN),~1J_(NH),~(1h)J_(NH))以及化学位移(δ(~1H),δ(~(15)N),以及Δδ(~(15)N))与N...N距离之间关系的测定是在2.6-4.0(?)之间呈曲线变化。这两个线性并不互相矛盾,因为虽然在两种情况中的线性相关图是通过两个完全不同的计算方法得到的,但是在同一段N...N距离(2.6-3.2(?))内,两个结论吻合的很好。
    [46]在(SL5)Mg~(2+)AU中,SL5可以看做是Mg~(2+)配体,实验上只报道过AU N-H...N中H3质子的化学位移δ(~1H)为10.6 ppm(见:Campbell,D.O.;Bouchard,P;Desjardins,G.;Legault,P.NMR structure of Varkud Satellite Ribozyme Stem Loop V in the presence of magnesium ions and localization of metal-binding sites.Biochemistry 2006,45,10591-10605),与Mg~(2+)AT中(10.0ppm)非常的接近。两个都比实验上测定的AT和AU的δ(~1H)(-13 ppm)小。
    [47]其它金属离子的引入会造成化学位移变化的实例如下:(ⅰ)Cd~(2+)金属离子的结合会造成G中N7位的化学位移δ(~(15)N7)向高场移动12ppm;见:Tanaka,Y.;Kojima,C.;Morita,E.H.;Kasai,Y.;Yamasaki,K.;Ono,A.;Kainosho,M.;Taira,K.Identification of the metal ion binding site on an RNA motif from hammerhead ribozymes using ~(15)N NMR spectroscopy.J.Am.Chem.Soc.2002,124,4595-4601.
    (ⅱ)Zn~(2+)和Mg~(2+)离子可以造成DMSO中N7位化学位移向高场移动20 ppm;见:Buchanan,G.W.;Stothers,J.B.Diamagnetic metal ion-nucleoside interactions in solution as studied by ~(15)N nuclear magnetic resonance.Can.J.Chem.1982,60,787-791.
    (ⅲ)不同金属离子(Mg~(2+),Zn~(2+)和Cd~(2+))会导致N7/G化学位移向高场移动0.7到20 ppm;见:Wang,G.;Gaffney,B.L.;Jones,R.A.Differential binding of Mg~(2+),Zn~(2+),and Cd~(2+) at two sites in a hammerhead ribozyme motif,determined by ~(15)N NMR.J.Am.Chem.Soc.2004,126,8908-8909.
    (ⅳ)质子化可以造成N1/腺苷向高场移动~70 ppm;见:Markowski,V.;Sullivan,G.R.;Roberts,J.D.Nitrogen-15 nuclear magnetic resonance spectroscopy of some nucleosides and nucleotides,J.Am.Chem.Soc.1977,99,714-718.Wang,C.;Gao,H.;Gaffney,B.L.;Jones,R.A.Nitrogen-15-labeled oligodeoxynucleotides.Protonation of the adenine N1 in the A-C and A-G mispairs of the duplexes {d[CG(~(15)N1)AGAATTCCCG]} and {d[CGGGAATTC(~(15)N1)ACG]}.J.Am.Chem.Soc.1991,113,5486-5488.
    (ⅴ) Gao,X.;Jones,R.A.Nitrogen-15-labeled oligodeoxynucleotides.Characterization by nitrogen-15 NMR of d[CGTACG]containing ~(15)N6 or 15N1 labeled deoxyadenosine.J.Am.Chem.Soc.1987,109,3169-3171.Gaffney,B.L.;Goswami,B.;Jones,R.A.Nitrogen-15-labeled oligodeoxynucleotides.Use of nitrogen-15 NMR to probe hydrogen bonding in an O6MeG.cntdot.C base pair.J.Am.Chem.Soc.1993,115,12607-12608.Gaffney,B.L.;Kung,P.-P.;Wang,C.;Jones,R.A.Nitrogen-15-labeled oligodeoxynucleotides.Use of ~(15)N NMR to probe Hoogsteen hydrogen bonding at guanine and adenine N7 atoms of a DNA triplex.J.Am.Chem.Soc.1995,117,12281-12283.所有的这些实验上所观测到的变化与文章中所计算得到的金属离子结合与未结合状态的结果一致。
    [48]Saenger,W.Principles of Nucleic Acid Structure;Cantor,C.R.,series Ed.;Springer-Verlag:New York,1984.
    [49]氢键的方向参照N-H...N中供体—受体的方向。也就是说,G-C碱基中N-H...N氢键的方向是从嘌呤碱基(G作为质子供体)向嘧啶碱基(C作为受体),但是在AT中则是从嘧啶碱基(T是质子供体)向嘌呤碱基(A是受体)方向。在两种碱基对中的N-H...N单元中,由于质子受体部分的δ(~(15)N)比受体部分的要强些,我们在文中定义δ(~(15)N)差别为Δδ(~(15)N))=δ(~(15)N受体)-δ(~(15)N 供体),因此Δδ(~(15)N)总是保持正值。
    [50]Levy,G.C.Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy;John Wiley & Sons:New York,1979.
    [51]Cordier,F.;Rogowski,M.;Grzesiek,S.;Bax,A.Observation of through-hydrogen-bond ~(2h)J_(HC') in a perdeuterated protein.J.Magn.Reson.1999,140,510-512.
    [52]Benedict,H.;Shenderovich,I.G.;Malkina,O.L.;Malkin,V.G.;Denisov,G. S.; Golubev, N. S.; Limbach, H. H. Nuclear scalar spin spin couplings and geometries of hydrogen bonds. J. Am. Chem. Soc. 2000,122, 1979-1988.
    [53] Cornilescu, G.; Hu, J.-S.; Bax, A. Identification of the hydrogen bonding network in a protein by scalar couplings. J. Am. Chem. Soc. 1999, 121, 2949-2950.
    [1]Kornberg,A.;Baker,T.A.DNA Replication,2nd ed.;W.H.Freeman and Co.:New York,1992.
    [2]Gemmecker,G.Direct detection of hydrogen bonds in biopolymers by NMR spectroscopy.Angew.Chem.Int.Ed.2000,39,1224-1226.
    [3]Wilkens,S.J.;Westler,W.M.;Weinhold,F.;Markley,J.L.Trans-hydrogen-bond ~(2h)J_(NN) and ~(1h)J_(NH) couplings in the DNA AT base pair:natural bond orbital analysis.J.Am.Chem.Soc.2002,124,1190-1191.
    [4]Henning,M.;Williamson,J.R.Detection of N-H…N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances nucleic acids research.Nucleic Acids Research.2000,28,1585-1593.
    [5]Dingley,A.J.;Grzesiek,S.Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide ~(2h)J_(NN) couplings.J.Am.Chem.Soc.1998,120,8293-8297.
    [6]Dingley,A.J.;Masse,J.E.;Peterson,R.D.;Barfield,M.;Feigon,J.;Grzesiek,S.Internucleotide scalar couplings across hydrogen bonds in Watson Crick and Hoogsteen base pairs of a DNA triplex.J.Am.Chem.Soc.1999,121,6019-6027.
    [7]W(o|¨)hnert,J.;Dingley,A.J.;Stoldt,M.;G(o|¨)rlach,M.;Grzesiek,S.;Brown,L.R.Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy.Nucleic Acids Research.1999,27,3104-3110.
    [8](a)Pervushin,K.;Ono,A.;Fernandez,C.;Szyperski,T.;Kainosho,M.;W(u|¨)thrich,K.NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy.Proc.Natl.Acad.Sci.USA.1998,95,14147-14151;
    [9]Zidek,L.;Stefl,R.;Sklenar,V.NMR methodology for the study of nucleic acids.Curr.Opin.Struc.Biol.2001,11,275-281.
    [10]Cordier,F.;Barfield,M.;Grzesiek,S.Direct observation of Cα-Hα..OC hydrogen bonds in proteins by interresidue ~(3h)J_(CαC)scalar couplings.J.Am.Chem.Soc.2003,125,15750-15751.
    [11]Bour,P.;Budesinsky,M.;Spirko,V.;Kapitan,J.;Sebestik,J.;Sychrovsky,V.A complete set of NMR chemical shifts and spin-spin coupling constants for l-alanyl-l-alanine zwitterion and analysis of its conformational behavior.J.Am.Chem.Soc.2005,127,17079-17089.
    [12]Tanaka,Y.;Kojima,C.;Morita,E.H.;Kasai.Y.;Yamasaki,K.;Ono,A.;Kainosho,M.;Taira,K.Identification of the metal ion binding site on an RNA motif from hammerhead ribozymes using ~(15)N NMR spectroscopy.J.Am.Chem.Soc.2002,124,4595-4601.
    [13]Konsta,A.A.;Visvardis,E.E.;Haveles,K.S.;Georgakilas,A.G.;Sideris,E.G.Detecting radiation-induced DNA damage:from changes in dielectric properties to programmed cell death.J Non-Cryst Solids.2002.305.295-302.
    [14]Prise,K.M.;Pullar,C.H.L.;Michael,B.D.A study of endonuclease Ⅲ-sensitive sites in irradiated DNA:detection of -particle-induced oxidative damage.Carcinogenesis.Carcinogenesis.1999,20,905-909.
    [15]Collins,A.;Cadet,J.;Epe,B.;Gedik,C.Problems in the measurement of 8-oxoguanine in human DNA.Report of a workshop,DNA oxidation,held in Aberdeen,UK,19-21 January,1997.Carcinogenesis.1997,18,1833-1836.
    [16]Weinfeld,M.;Xing,J.Z.;Lee,J.;Leadon,S.A.;Le,X.C.Immunofluorescence detection of radiation-induced DNA base damage.Mil.Med.2002,167,2-4.
    [17](a) Arnold,W.D.;Mao,J.H.;Sun,H.H.;Oldfiled,E.Computation of through-space ~(19)F-~(19)F scalar couplings via density functional theory.J.Am.Chem.Soc.2000,122,12164-12168.
    (b) Case,D.A.;Scheurer,C.;Bruschweiler,R.Static and dynamic effects on vicinal scalar J couplings in proteins and peptides:A MD/DFT analysis.J.Am.Chem.Soc.2000,122,10390-10397.
    (c) Del Bene,J.E.;Bartlett,R.J.N,N spin-spin coupling constants[~(2h)J_((15N-15N))]across N-H...N hydrogen bonds in neutral complexes:To what extent does the bonding at the nitrogens influence ~(2h)J_(N-N)? J.Am.Chem.Soc.2000,122,10480-10481.
    [18](a) Helgaker,T.;Jaszunski,M.;Ruud,K.Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants.Chem.Rev.1999,99,293-352.
    (b) Fukui,H.Theory and calculation of nuclear spin-spin coupling constants.Prog.Nucl.Magn.Reson.Spectrosc.1999.35.267-294.
    [19]Rulisek,L.;Sponer,J.Outer-shell and inner-shell coordination of phosphate group to hydrated metal ions(Mg~(2+),Cu~(2+),Zn~(2+),Cd~(2+)) in the presence and absence of nucleobase,the role of nonelectrostatic effects.J.Phys.Chem.B 2003,107,1913-1923.
    [20](a) Ditchfield,R.Self-consistent perturbation theory of diamagnetism.Mol.Phys.1974,27,789-807.
    (b) Dodds,J.L.;McWeeny,R.;Sadlej,A.J.Self-consistent perturbation theory of diamagnetism.Mol.Phys.1980,41,1419-1430.
    (c) Wolinski,K.;Hinton,J.F.;Pulay,P.Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations.J.Am.Chem.Soc.1990,112,8251-8260.
    [21]Ramsey,N.F.Electron coupled interactions between nuclear spins in molecules.Phys.Rev.1953,91,303-307.
    [22]Reed,A.E.Curtiss,L.A.Weinhold,F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint.Chem.Rev.1988.88.899-926.
    [23]Case,D.A.Interpretation of chemical shifts and coupling constants in macromolecules.Curr.Opin.Struct.Biol.2000,10,197-203.
    [24]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G E.;etc.,Gaussian 03,Gaussian,Inc.;Pittsburgh,PA,2003.
    [25]Saenger,W.Principles of Nucleic Acid Structure;Cantor,C.R.,Series Ed.; Springer-Verlag: New York, 1984.
    [26] Mcarthy, J. J.; Hilfiker, R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nat. Biotechnol. 2000,18, 505-508.
    [27] Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 1999, 22, 139-144.
    [28] Bera, P. P.; Schaefer, H. F. Chemical Theory and Computation Special Feature: (G-H)-C and G-(C-H) radicals derived from the guanine·cytosine base pair cause DNA subunit lesions. Proc. Natl. Acad. Sci. U.S.A. 2005,102, 6698-6703.
    [29] Steenken, S. Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e- and OH adducts. Chem. Rev. 1989, 89, 503-520.
    [30] Lind, M. C.;Bera, P. P.;Richardson, N. A. Wheeler, S. E. Schaefer, H. F. The deprotonated guanine-cytosine base pair. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 7554-7559.
    [31] Flutter, M.; Clark, T. On the enhanced stability of the guanine cytosine base-pair radical cation. J. Am. Chem. Soc. 1996,118, 7574-7577.
    [32] Richardson, N. A.; Wesolowski, S. S.; Schaefer, H. F. Electron affinity of the guanine cytosine base pair and structural perturbations upon anion gormation. J. Am. Chem. Soc. 2002,124, 10163-10170.
    [33] Collins, G.P. Radical and anion formation among the DNA base pairs are thought to be important steps in such damage. Sci. Am. 2003, 289, 26-27.
    [34] Steenken, S.; Telo, J. P.; Novais, H. M.; Candeias, L. P. One-electron-reduction potentials of pyrimidine bases, nucleosides, and nucleotides in aqueous solution. Consequences for DNA redox chemistry. J. Am. Chem. Soc. 1992,114, 4701-4709.
    [35] Carime, A. H.; Cloutier, P.; Sanche, L. Low-Energy (5-40 eV) electron-stimulated desorption of anions from physisorbed DNA bases. Radiat. Res. 2001,155, 625-633.
    [36]Luo,Q.;Li,Q.S.;Xie,Y.M.;Schaefer,H.F.Radicals derived from guanine:structures and energetics.Collect.Czech.Chem.Commun.2005,70,826-836.
    [37]Malins,D.C.;Polissar,N.L.;Ostrander,G.K.;Vinson,M.A.Single 8-oxo-guanine and 8-oxo-adenine lesions induce marked changes in the backbone structure of a 25-base DNA strand.Proc.Natl.Acad.Sci.USA.2000,97,12442-12445.
    [38]Cordier,F.;Rogowski,M.;Grzesiek,S.;Bax,A.Observation of Through-Hydrogen-Bond ~(2h)J_(HC') in a Perdeuterated Protein.J.Magn.Reson.1999,140,510-512.
    [39]Benedict,H.;Shenderovich,I.G.;Malkina,O.L.;Malkin,V.G.;Denisov,G.S.;Golubev,N.S.;Limbach,H.H.Nuclear Scalar Spin Spin Couplings and Geometries of Hydrogen Bonds.J.Am.Chem.Soc.2000,122,1979-1988.
    [40]Wilkens,S.J.;Westler,W.M.;Weinhold,F.;Markley,J.L.Trans-Hydrogen-Bond ~(h2)J_(NN) and ~(h1)J_(NH) Couplings in the DNA A T Base Pair:Natural Bond Orbital Analysis.J.Am.Chem.Soc.2002,124,1190-1191.
    [41]Ramsey,N.F.Electron Coupled Interactions between Nuclear Spins in Molecules.Phys.Rev.1953,91,303-307.
    [42]Sychrovsky,V.;Sponer,J.;Hobza,P.Theoretical Calculation of the NMR Spin Spin Coupling Constants and the NMR Shifts Allow Distinguishability between the Specific Direct and the Water-Mediated Binding of a Divalent Metal Cation to Guanine.J.Am.Chem.Soc.2004,126,663-672.
    [43]Li,H.F.;Bu,Y.X.;Yan,S.H.;Li,P.;Cukier,R.I.Proton Character of the Peptide Unit in the Ca2+-Binding Sites of Calcium Pump.J.Phys.Chem.B.2006,110,11005-11013.
    [44]Li,H.F.;Cukier,R.I.;Bu,Y.X.Remarkable Metal Counterion Effect on the Internucleotide J-Couplings and Chemical Shifts of the N-H…N Hydrogen Bonds in the W-C Base Pairs.J.Phys.Chem.B.2008,112,9174-9181.
    [1]Barnett,R.N.Bongiomo,A.Cleveland,C.L.Joy,A.Landman,U.Schuster,G B.Oxidative damage to DNA:counterion-assisted addition of water to ionized DNA.J.Am.Chem.Soc.2006,128,10795-10800.
    [2](a) Grand,A.;Morell,C.;Labet,V.;Cadet,J.;Eriksson,L.A.~·H atom and ~·OH radical reactions with 5-methylcytosine.J.Phys.Chem.A 2007,111,8968-8972.
    (b) Malins,D.C.;Polissar,N.L,;Ostrander,G.K.;Vinson,M.A.Single 8-oxo-guanine and 8-oxo-adenine lesions induce marked changes in the backbone structure of a 25-base DNA strand.Proc.Natl.Acad Sci.USA 2000,97,12442-12445.
    (c) Humphreys,W.G.;Kadlubar,F.F.;Guengerich,F.P.Mechanism of C8alkylation of guanine residues by activated arylamines:evidence for initial adduct formation at the N7 position.Proc.Natl.Acad.Sci.USA 1992,89,8278-8282.
    (d) Gu,J.D.;Leszczynski,J.Influence of the oxygen at the C8 position on the intramolecular proton transfer in C8-oxidative guanine.J.Phys.Chem.A 1999,103,577-584.
    [3]Gervasio,F.L.;Laio,A.;Iannuzzi,M.;Parrinello,M.Influence of DNA structure on the reactivity of the guanine radical cation.Chem.Eur.J.2004,10,4846-4852.
    [4](a) Lind,M.C.;Bera,P.P.;Richardson,N.A.;Wheeler,S.E.;Schaefer,H.F.The deprotonated guanine-cytosine base pair Proc.Natl.Acad.Sci.U.S.A.2006,103,7554-7559.
    (b) Bera,P.P.;Schaefer,H.F.(G-H)·-C and G-(C-H)·radicals derived from the guanine-cytosine base pair cause DNA subunit lesions.Proc.Natl.Acad Sci.U.S.A.2005,102,6698-6703.
    [5]Steenken,S.Purine bases,nucleosides,and nucleotides:aqueous solution redox chemistry and transformation reactions of their radical cations and e- and OH adducts.Chem.Rev.1989,89,503-520.
    [6]Ptasinska,S.;Denifl,S.;Scheier,P.;Illenberger,E.;Mark,T.D.Bond-and site-selective loss of H dtoms from nucleobases by very-Low-energy electrons (<3 eV).Angew.Chem.Int.Ed.2005,44,6941-6943.
    [7]Cadet,J.Bellon,S.Berger,M.Bourdat,A.G.Douki,T.Duarte,V.Frelon,S.Gasparutto,D.Muller,E.Ravanat,J.L.and Sauvaigo,S.Recent aspects of oxidative DNA damage:guanine lesions,measurement and substrate specificity of DNA repair glycosylases.Biol.Chem.Hoppe-Seyler 2002,383,933-943.
    [8]Steenken,S.and Jovanovic,S.V.How easily oxidizable is DNA?one-electron reduction potentials of adenosine and guanosine radicals in aqueous solution,J.Am.Chem.Soc.1997,119,617-618.
    [9]Kool,E.T.Acc.Chem.Res.Replacing the nucleobases in DNA with designer molecules.2002,35,936-943.
    [10](a) Kool,E.T.;Morales,J.C.;Guckian,K.M.Mimicking the structure and function of DNA:insights into DNA stability and replication.Angew.Chem.Int.Ed.2000,39,990-1009.
    (b) Gao,J.M.;Watanabe,S.;Kool,E.T.Expanded-size bases in naturally sized DNA:evaluation of steric effects in Watson-Crick pairing,J.Am.Chem.Soc.2004,126,12748-12749.
    (c) Lee,A.H.F.;Kool,E.T.A new four-base genetic helix,yDNA,composed of widened benzopyrimidine-purine pairs.J.Am.Chem.Soc.2005,127,3332-3338.
    [11](a) Liu,H.B.;Gao,J.M.;Lynch,S.R.;Saito,Y.D.;Maynard,L.;Kool,E.T.A four-base paired genetic helix with expanded size.Science 2003,302,868-871.
    (b) Liu,H.B.;Gao,J.M.;Maynard,L.;Saito,Y.D.;Kool,E.T.Toward a new genetic system with expanded dimensions:size-expanded analogues of deoxyadenosine and thymidine.J.Am.Chem.Soc.2004,126,1102-1109.
    (c) Lynch,S.R.;Liu,H.B.;Gao,J.M.;Kool,E.T.Toward a designed, functioning genetic system with expanded-size base pairs: solution structure of the eight-base xDNA double helix. J. Am. Chem. Soc. 2006, 128, 14704-14711.
    
    (d) Krueger, A. T.; Lu, H.; Lee, A. H. F.; Kool, E. T. Synthesis and properties of size-expanded DNAs: toward designed, functional genetic systems. Acc. Chem. Res. 2007, 40, 141-150.
    
    [12] (a) Liu, H. B.; Gao, J. M.; Kool, E. T. Helix-forming properties of size-expanded DNA, an alternative four-base genetic form. J. Am. Chem. Soc. 2005,127, 1396-1402.
    
    (b) Gao, J. M.; Liu, H. B.; Kool, E. T. Toward a new genetic system with expanded dimensions: size-expanded analogues of deoxyadenosine and thymidine. J. Am. Chem. Soc. 2004,126,11826-11831.
    
    (c) Liu, H. B.; Gao, J. M.; Kool, E. T. Size-expanded analogues of dG and dC: synthesis and pairing properties in DNA. J. Org. Chem. 2005, 70, 639-647.
    
    [13] (a) Zhang, J. M.; Cukier, R. I.; Bu, Y. X. Rational Design of Hetero-ring-expanded guanine analogs with enhanced properties for modified DNA building blocks. J. Phys. Chem. B 2007, 111, 8335-8341.
    (b) Zhang, L. B.; Bu, Y. X. Photophysical characters of rationally designed hetero-ring-expanded guanine analogues and effect of cytosine pairing. J. Phys. Chem. B 2008,112, 10723-10731.
    
    [14] (a) Fuentes-Cabrera, M.; Zhao, X. C.;Kent, P. R. C.;Sumpter, B. G. Electronic structure of xDNA. J. Phys. Chem. B 2007, 111, 9057-9061.
    (b) Fuentes-Cabrera, M.; Sumpter, B. G.;Wells, J. C. Size-expanded DNA bases: an ab Initio study of their structural and electronic properties. J. Phys. Chem. B 2005,109, 21135-21139.
    
    [15] (a) C. Adamo and V. Barone, In Recent Development in Density Functional Methods (Chong, D. P., Ed.; World Scientific Publishing: Singapore, 1997; Part II)
    (b) F. Himo, A. Graslund, L. E. Eriksson density functional calculations on model tyrosyl radicals.Biophys.J.1997,72,1556-1567.
    [16](a) Parr,R.G.;Yang,W.Density Functional Theory of Atoms and Molecules;Oxford University Press:New York,1959.
    (b) March,N.H.Electron Density Theory of Atoms and Molecules;Academic Press:San Diego,CA,1992.
    [17]Becke,A.D.Density-functional thermochemistry.Ⅲ.The role of exact exchange.J.Chem.Phys.1993,98,5648-5652.
    [18]Wang,Y.;Perdew,J.P.Correlation hole of the spin-polarized electron gas,with exact small-wave-vector and high-density scaling.Phys.Rev.B 1991,44,13298-13307.
    [19](a) Case,D.A.Interpretation of chemical shifts and coupling constants in macromolecules.Curr.Opin.Struct.Biol.2000,10,197-203.
    (b) Barfield,M.;Dingley,A.J.;Feigon,J.;Grzesiek,S.A DFT study of the interresidue dependencies of scalar J-coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex.J.Am.Chem.Soc.2001,123,4014-4022.
    [20](a) Ditchfield,R.Self-consistent perturbation theory of diamagnetism I.A gauge-invariant LCAO method for N.M.R.chemical shifts.Mol.Phys.1974,27,789-807.
    (b) Wolinski,K.;Sadlej,A.Self-consistent perturbation theory Open-shell states in perturbation-dependent non-orthogonal basis sets.J.Mol.Phys.1950,41,1419-1430.
    (c) Wolinski,K.;Hinton,J.F.;Pulay,P.Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations.J.Am.Chem.Soc.1990,112,8251-8260.
    [21](a) Huertas,O.;Poater,J.;Fuentes-Cabrera,M.;Orozco,M.;Sola,M.;Luque,F.G.;Local aromaticity in natural nucleobases and their size-expanded benzo-fused derivatives.J.Phys.Chem.A 2006,110,12249-12258.
    (b) Schleyer,P.v.R.Jiao,H.What is aromaticity? Pure Appl.Chem.1996,68,209.
    (c)Schleyer,P.v.R.Maerker,C.Dransfeld,A.Jiao,H.van Eikema Hommes,N.J.R.Nucleus-independent chemical shifts:A simple and efficient aromaticity probe,J.Am.Chem.Soc.1996,118,6317.
    [22]Reed,A.E.;Curtiss,L.A.;Weinhold,F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint.Chem.Rev.1988.88.899-926.
    [23]Sychrovsky,V.;Sporer,J.;Hobza,P.Theoretical calculation of the NMR spin-spin coupling constants and the NMR shifts allow distinguishability between the specific direct and the water-mediated binding of a divalent metal cation to guanine.J.Am.Chem.Soc.2004,126,663.
    [24]Frisch,M.J.;Trucks,G W.;Schlegel,H.B.;Scuseria,G E.etal.Gaussian 03,Gaussian,Inc.;Pittsburgh,PA,2003.
    [25](a) Alabugin,I.V.;Manoharan,M.;Peabody,S.;Weinhold,F.Electronic basis of improper hydrogen bonding:A subtle balance of hyperconjugation and rehybridization.J.Am.Chem.Soc.2003,125,5973.
    (b) Li,H.F.;Bu,Y.X.;Yan,S.H.;Li,P.;Cukier,R.I.Proton character of the peptide unit in the Ca~(2+)-binding sites of calcium pump.J.Phys.Chem.B 2006,110,11005-11013.
    [26]Zhang,J.D.;Schaefer,H.F.Molecular structures and energetics associated with hydrogen atom addition to the guanine-cytosine base pair.J.Chem.Theory Comput.2007,3,115-126.
    [27]Periyasamy,G.;Burton,N.A.;Hillier,I.H.;Thomas,J.M.H.Eectron delocalization in the metallabenzenes:A computational analysis of ring currents.J.Phys.Chem.A 2008,112,5960-5972.
    [1]Gervasio,F.L.;Boero,M.;Parrinello,M.Double proton coupled charge transfer in DNA.Angew.Chem.Int.Ed.2006,45,5606-5609.
    [2]Barnett,R.N.;Cleveland,C.L.;Joy,A.;Landman,U.;Schuster,G.B.Charge migration in DNA:ion-gated transport.Science 2001,294,567-571.
    [3]O'Neill,M.A.;Barton,J.K.DNA charge transport:conformationally gated hopping through stacked domains.J.Am.Chem.Soc.2004,126,11471-11483.
    [4]Barnett,R.N.;Bongiorno,A.;Cleveland,C.L.;Joy,A.;Landman,U.;Schuster,G.B.Oxidative damage to DNA:counterion-assisted addition of water to ionized DNA.J.Am.Chem.Soc.2006,128,10795-10800.
    [5]Bixon,M.;Giese,B.;Wessely,S.;Langenbacher,T.;Michel-Beyerle,M.E.;Jortner,J.Long-range charge hopping in DNA.Proc.Natl.Acad.Sci.U.S.A.1999,96,11713-11716.
    [6]Dekker,C.;Ratner,M.A.Electronic properties of DNA.Phys.Word 2001,14,29-33.
    [7](a) Kelley,S.O.;Barton,J.K.Electron transfer between bases in double helical DNA.Science 1999,283,375-383.
    (b) Kelley,S.O.;Jackson,N.M.;Hill,M.G.;Barton,J.K.Long-range electron transfer through DNA films.Angew.Chem.Int.Ed.1999,38,941-945.
    [8](a) Jortner,J.;Bixon,M.;Langenbacher,T.;Michel-Beyerle,M.E.Inaugural article:charge transfer and transport in DNA.Proc.Natl.Acad.Sci.U.S.A.1998,95,12759-12765.
    (b) Schuster,G.B.Long-Range Charge Transfer in DNA:Transient structural distortions control the distance dependence.Acc.Chem.Res.2000,33,253-260.
    [9](a) Sugiyama,H.;Saito,I.Theoretical studies of GG-specific photocleavage of DNA via electron transfer:Significant lowering of ionization potential and 5'-localization of HOMO of stacked GG bases in B-form DNA.J.Am.Chem. Soc. 1996,118, 7063-7068.
    
    (b) Berlin, Y. A.; Burin, A. L.; Ratner, M. A. Charge hopping in DNA. J. Am. Chem. Soc. 2001,123, 260-268.
     [10] Meggers, E.; Michel-Beyerle, M. E.; Giese, B. Sequence dependent long range hole transport in DNA. J. Am. Chem. Soc. 1998,120, 12950-12955.
    [11] Conwell, E. M.; Basko, D. M. Hole traps in DNA. J. Am. Chem. Soc. 2001, 123, 11441-11445.
    [12] Nitzan, A. Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 2001, 52, 681-750.
    [13] Ly, D.; Kan, Y.; Armitage, B.; Schuster, G. B. Cleavage of DNA by irradiation of substituted anthraquinones: Intercalation promotes electron transfer and efficient reaction at GG steps. J. Am. Chem. Soc. 1996, 118, 8747-8748.
    [14] Yoshioka, Y.; Kitagawa, Y.; Takano, Y.; Yamaguchi, K.; Nakamura, T.; Saito, I. Experimental and theoretical studies on the selectivity of GGG triplets toward one-electron oxidation in B-form DNA. J. Am. Chem. Soc. 1999,121, 8712-8719.
    [15] Holmlin, R. E.; Dandliker, P. J.; Barton, J. K. Charge transfer through the DNA base stack. Angew. Chem. Int. Ed. Engl. 1997, 36, 2714-2730.
    [16] Fink, H.W.; Schonenberger, C. Electrical conduction through DNA molecules. Nature 1999, 398, 407-410.
     [17] Porath D, Bezryadin A, de Vries S, et al. Direct measurement of electrical transport through DNA molecules. Nature, 2000, 403, 635-638
    [18] Kasumov, A. Y.; Kociak, M.; Guéron, S.; Reulet, B.; Volkov, V. T.; Klinov, D. V.; Bouchiat, H. Proximity-induced superconductivity in DNA. Science 2001, 291, 280-282.
    [19] Porath, D.; Bezryadin, A.; deVries, S.; Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature 2000, 403, 635-638.
    
    [20] Gómez-Navarro, C.;Moreno-Herrero, F.; de Pablo, P. J.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior.Proc.Natl.Acad.Sci.U.S.A.2002,99,8484-8487.
    [21](a) Tanaka,K.;Clever,G.H.;Takezawa,Y.;Yamada,Y.;Kaul,C.;Shionoya,M.;Carell,T.Programmable self-assembly of metal ions inside artificial DNA duplexes.Nat.Nanotechnol.2006,1,190-194.
    (b) Tanaka,K.;Tengeiji,A.;Kato,T.;Toyama,N.;Shionoya,M.A discrete self-assembled metal array in artificial DNA.Science 2003,299,1212-1213.
    (c) Clever,G.H.;Carell,T.Controlled stacking of 10 transition-metal ions inside a DNA duplex.Angew.Chem.,Int.Ed.2007,46,250-253.
    (d) Zhang,H.Y.;Calzolari,A.;Di Felice,R.On the magnetic alignment of metal ions in a DNA-mimic double helix,J.Phys.Chem.B 2005,109,15345-15348.
    (e) Rakitin,A.;Aich,P.;Papadopoulus,C.;Kobzar,Yu.;Vedeneev,A.S.;Lee,J.S.;Xu,J.M.Metallic Conduction through engineered DNA:DNA nanoelectronic building blocks.Phys.ReV.Lett.2001,86,3670-3673.
    (f) Alexandre,S.S.;Soler,J.M.;Seijo,L.;Zamora,F.Geometry and electronic structure of M-DNA(M=Zn~(2+),Co~(2+),and Fe~(2+)).Phys.ReV.B 2006,73,205112-1,205112-5.
    [22]Liu,H.B.;Gao,J.M.;Lynch,S.R.;Saito,Y.D.;Maynard,L.;Kool,E.T.A four-base paired genetic helix with expanded size.Science 2003,302,868-871.
    [23]Zhang,J.M.;Cukier,R.I.;Bu,Y.X.Rational design of hetero-ring-expanded guanine analogs with enhanced properties for modified DNA building blocks,J.Phys.Chem.B 2007,111,8335-8341.
    [24]Di Felice,R.;Calzolari,A.;Garbesi,A.;Alexandre,S.S.;Soler,J.M.Strain-dependence of the electronic properties in periodic quadruple helical G4-wires.J.Phys.Chem,B 2005,109,22301-22307.
    [25]Fuentes-Cabrera,M.;Zhao,X.C.;Kent,P.R.C.;Sumpter,B.G.Electronic structure of xDNA,J.Phys.Chem.B 2007,111,9057-9061.
    [26]Becke,A.D.Density-functional thermochemistry.Ⅲ.The role of exact exchange.J.Chem.Phys.1993,98,5648-5652.
    [27](a) Wang,Y.;Perdew,J.P.Correlation hole of the spin-polarized electron gas,with exact small-wave-vector and high-density scaling.Phys.Rev.B 1991,44,13298-13307.
    (b) Perdew,J.P.;Wang,Y.Accurate and simple analytic representation of the electron-gas correlation energy.Phys.ReV.B 1992,45,13244-13249.
    [28]Schleyer,P.v.R.;Maerker,C.;Dransfeld,A.;Jiao,H.;van Eikema Hommes,N.J.R.Nucleus-independent chemical shifts:a simple and efficient aromaticity probe.J.Am.Chem.Soc.1996,118,6317-6318.
    [29]Case,D.A.;Darden,T.A.;Cheatham,T.E.Ⅲ;Simmerling,C.L.;Wang,J.;uke,R.E.;Luo,R.;Merz,K.M.;Wang,B.;Pearlman,D.A.;Crowley,M.;Brozell,S.;Tsui,V.;Gohlke,H.;Mongan,J.;Hornak,V.;Cui,G;Beroza,P.;Schafmeister,C.;Caldwell,J.W.;Ross,W.S.;Kollman,P.A.AMBER 8;University of California:San Francisco,2004.
    [30](a) Cornell,W.D.;Cieplak,P.;Bayly,C.I.;Gould,I.R.;Merz,K.M.;Ferguson,D.M.;Spellmeyer,D.C.;Fox,T.;Caldwell,J.W.;Kollman,P.A.A second generation force field for the simulation of proteins,nucleic acids,and organic molecules.J.Am.Chem.Soc.1995,117,5179-5197.
    (b) Wang,J.;Cieplak,P.;Kollman,P.A.How well does a restrained electrostatic potential(RESP) model perform in calculating conformational energies of organic and biological molecules? J.Comput.Chem.2000,21,1049-1074.
    [31]Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.D.;Impey,R.W.;Klein,M.L.Comparison of simple potential functions for simulating liquid water.J.Chem.Phys.1953,79,926-936.
    [32]Ryckaert,J.P.;Ciccotti,G.;Berendsen,H.J.C.Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes.J.Comput.Phys.1977,23,327-336.
    [33]Kottalam,J.;Case,D.A.Langevin modes of macromolecules:applications to crambin and DNA hexamers.Biopolymers 1990.29.1409-1421.
    [34] Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092.
    
    [35] Ponomarev, S. Y.; Thayer, K. M.; Beveridge, D. L. Ion motions in molecular dynamics simulations on DNA. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14771-14775
    
    [36] Shields, G. C.;Laughton, C. A.; Orozco, M. Molecular dynamics simulation of a PNADNA-PNA triple helix in aqueous solution. J. Am. Chem. Soc. 1998,120, 5895-5904.
    [37] Lin, P.; Pedersen, L. C.;Batra, V. K.; Beard, W. A.; Wilson, S. H.; Pedersen, L. G. Energy analysis of chemistry for correct insertion by DNA polymerase p. Proc. Natl. Acad Sci. U.S.A. 2006,103, 13294-13299.
    [38] (a) Vreven, T., Morokuma, K., Farkas, O., Schlegel, H. B. & Frisch, M. J. Geometry optimization with QM/MM, ONTOM, and other combined methods. I. Microiterations and constraints. J. Comput. Chem. 2003, 24, 760-769.
    
    (b) Dapprich, S., Komaromi, I., Byun, K. S., Morokuma, K. & Frisch, M. J. A new ON10M implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. 1999, 462, 1-21.
    [39] Ye, Y. J.; Chen, R. S.; Martinez, A.; Otto, P.; Ladik, Calculated state densities of aperiodic nucleotide base stacks. J. Physica B 2000, 279, 246-252.
    [40] Saito, I.; Nakamura, T.; Nakatani, K. Mapping of highest occupied molecular orbitals of duplex DNA by cobalt-mediated guanine oxidation. J. Am. Chem. Soc. 2000,122, 3001-3006.
    [41] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; etal. Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford, CT, 2004.
    [42] Gorb, L.; Podolyan, Y.; Dziekonski, R.; Sokalski, W. A.; Leszczynski, J. Double-proton transfer in adenine thymine and guanine-cytosine base pairs. A post-hartree-fock ab initio study J. Am. Chem. Soc. 2004, 126, 10119-10129.
    [43] Huertas, O.; Poater, J.; Fuentes-Cabrera, M; Orozco, M.; Sola, M.; Lugue, F. J. Local aromaticity in natural nucleobases and their size-expanded benzo-fused derivatives. J. Phys. Chem. A 2006,110, 12249-12258.
    [44] Okamoto, A.; Kanatani, K.; Taiji, T.; Saito, I. ~(15)N NMR study on site-selective binding of metal ions to guanine runs in DNA: a good correlation with HOMO distribution J. Am. Chem. Soc. 2003, 125, 1172-1173.
    [45] Fukui, K. Recognition of stereochemical paths by orbital interaction. Accounts Chem. Res. 1971. 4. 57-64.
     [46] Moldrheim, E.; Andersen, B.; Froystein, N. A.; Sletten, E. Interaction of manganese(II), cobalt(II) and nickel(II) with DNA oligomers studied by 1H NMR spectroscopy. Inorg. Chim. Acta. 1998. 273. 41
    [47] (a) Saito, I.; Takayama, M.; Sugiyama, H.; Nakatani, K.; Tsuchida, I.; Yamamoto, M. Photoinduced DNA cleavage via electron transfer: demonstration that guanine residues located 5' to guanine are the most electron-donating sites. J. Am. Chem. Soc. 1995,117, 6406.
    
    (b) Sugiyama, H.; Saito, I. Theoretical studies of GG-specific photocleavage of DNA via electron transfer: significant lowering of ionization potential and 5'-localization of HOMO of stacked GG bases in B-form DNA. J. Am. Chem. Soc. 1996,118,7063.
    
    (c) For a review, see: Burrows, C. J.; Muller, J. G. Oxidative nucleobase modifications leading to strand scission. Chem. ReV. 1998, 98, 1109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700