用户名: 密码: 验证码:
疏水改性普鲁兰多糖及其自组装载药纳米粒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然多糖具有亲水、安全、稳定、无毒、生物可降解性、自然界存在广泛、易制备和价格便宜等优点;同时,多糖分子链有较多不同种类的基团,经化学和生化方法修饰,可获得相应的功能化多糖衍生物。因此,应用多糖及其衍生物作为药物载体的研究报告日益增多。普鲁兰多糖具有水溶性、无毒、多羟基易化学修饰和缺少免疫原性等优点,可做药物载体。内源性胆固醇分子具有环状结构,导致分子有一定的疏水性。而选择人体内源性小分子琥珀酸为连接臂代替文献报道的1,6-己二异氰酸酯,将胆固醇接枝到普鲁兰多糖分子链上,获得新型安全的两亲性胆固醇基普鲁兰(CHSP),此方法也为胆固醇基普鲁兰的合成提供了新策略。本文还报道合成胆固醇基羧甲基普鲁兰(CHS-CMP)。课题研究的具体内容如下:
     (1)合成新型两亲性胆固醇基普鲁兰(CHSP)、胆固醇基羧甲基普鲁兰(CHS-CMP)和FITC标记的CHSP(FITC-labeled CHSP)的普鲁兰糖衍生物。用红外(FT-IR)、核磁共振(NMR)、粉末晶体衍射(XRD)、差示扫描量热仪(DSC)、紫外-可见分光光度计和荧光分光光度计对合成普鲁兰衍生物进行表征。通过FT-IR、NMR、XRD和DSC实验证明,合成了两亲性胆固醇基普鲁兰。用NMR法和硫酸铵比色法计算系列CHSP的胆固醇取代度,每100糖单元取代3.87~5.70个胆固醇。采用琥珀酸连接臂,合成胆固醇基羧甲基普鲁兰(CHS-CMP),并对其中间体和CHS-CMP材料进行FT-IR和~1H NMR表征。以CHSP和FITC为原料,在二月桂酸二丁基锡(DBTDL)催化下,合成FITC-labeled CHSP并经FT-IR和~1H NMR表征,通过NMR和荧光分光光度法计算衍生物的FITC取代度,每100糖单元取代4.3个FITC。
     (2)通过溶胀超声法或透析法制备CHSP和FITC-labeled CHSP自聚集水凝胶纳米粒。用~1H NMR、动态激光散射(DLS)、透射电镜(TEM)和稳态荧光探针法对CHSP纳米粒物化性质进行表征。由于CHSP材料的胆固醇取代度不同,获得粒径在51.8~73 nm自聚集水凝胶纳米粒。CHSP分子结构中无极性取代基,其纳米粒在蒸馏水中的zeta电位绝对值近似为零。而CHSP材料的临界聚集浓度(cac)的大小直接与胆固醇取代度有关,当胆固醇取代度增大,cac浓度减小。采用透析法可制备粒径在50 nm左右的FITC-labeled CHSP自聚集纳米粒。
     (3)载药CHSP和载药FITC-labeled CHSP自聚集纳米粒的制备。用动态激光散射(DLS)、透射电镜(TEM)、紫外-可见分光光度计(UV-Vis)、XRD粉末晶体衍射和差示扫描量热(DSC)对载药纳米粒进行表征。以米托葸醌(MTO)作为抗瘤模型药物,用透析法制备CHSP载药纳米粒。动态光散射测得载药纳米粒的粒径为153.1~174.2 nm。UV-Vis法检测载药纳米粒的包封率为83.3~91.7%,载药量为4.35%~14.29%。透射电镜下观察,载药CHSP纳米粒为规则的球形。随着CHSP材料胆固醇取代度增大,纳米粒的载药量和包封率均增大。对照MTO药物晶体衍射峰,载药CHSP纳米粒的MTO药物的晶体峰消失,XRD结果表明,负载的MTO包入纳米粒内部。DSC实验结果同样证明这一结论。载药CHSP纳米粒的体外释放显示,MTO释放与释放介质的pH有关,pH低的释放介质药物释放快。但在pH6.8或7.4释放介质中,能缓慢释放MTO。药物释放与载体CHSP的胆固醇取代度有关,取代度越大,载药纳米粒缓释效果越明显。采用离子梯度法,用CHSP纳米粒包载强荧光性的表阿霉素(EPI),与包载MTO的CHSP纳米粒相比,包载EPI纳米粒的载药量和包封率都偏低。用透析法制备了负载EPI的FITC-labeled CHSP纳米粒。
     (4)CHSP自聚集纳米粒、载药CHSP自聚集纳米粒和载药FITC-labeled CHSP纳米粒的细胞实验评价。采用MTT、激光共聚焦显微镜、流式细胞仪对细胞实验进行评价。向HeLa肿瘤细胞中加入高达200μg/mL的CHSP自聚集水凝胶纳米粒的培养基,此浓度的CHSP纳米粒对共孵育的HeLa细胞的生长无抑制作用;无论是MTO还是EPI载药纳米粒,当载药纳米粒中药物浓度在1~10μg/mL,均显示出对HeLa细胞的毒性。将相同药物浓度的载药CHSP纳米粒和药物溶液的培养基加入HeLa细胞中,共孵育相同时间,载药纳米粒对肿瘤细胞生长抑制作用强于游离药物。流式细胞仪检测结果表明,肿瘤细胞对于载药纳米粒吞噬作用强于游离药物。激光共聚焦显微镜下观测的结果同样证明这一结论。为了观测CHSP材料自聚集水凝胶纳米粒进入HeLa细胞的情况,选择50 nm左右的FITC-labeled CHSP自聚集水凝胶纳米粒与HeLa细胞共孵育,随孵育时间延长,在激光共聚焦显微镜下可观测到纳米粒由粘附于肿瘤细胞膜,逐渐进入细胞浆,直到最后分布包括细胞核在内的整个细胞。而观测负载表阿霉素的FITC-labeled CHSP纳米粒与HeLa细胞共孵育2 h的照片,发现药物和CHSP纳米粒均可进入肿瘤细胞核。
     (5)负载表阿霉素CHSP自聚集水凝胶纳米粒的wistar大鼠药代实验初步研究。采用高效液相法检测不同时间游离EPI和载药的CHSP纳米粒在大鼠血液中的药物含量结果显示,载药纳米粒在血液中药物含量较单独EPI药物明显增加,载药纳米粒在大鼠体内可达到长循环和缓释效果。
     本文合成未见文献报道的两亲性胆固醇基普鲁兰、胆固醇基羧甲基普鲁兰和FITC标记的CHSP的普鲁兰糖衍生物。安全无毒的两亲性CHSP材料可在水中形成自聚集凝胶纳米粒并可用作包载疏水性抗瘤药物的纳米载体;wistar大鼠药代实验表明,包载EPI的CHSP纳米粒在大鼠体内能达到长循环和缓释作用;而FITC-labeled CHSP纳米粒可用作材料导入细胞的标志物,用其纳米粒与细胞共孵育,可有效观测纳米粒入胞的过程。
Polysaccharides are highly stable,safe,non-toxic,hydrophilic,biodegradable, abundant resources in nature and low cost in their processing.Moreover,there are various derivable groups on molecular chains,so that polysaccharides can be easily modified and result in many kinds of derivatives by chemically and biochemically.Due to above outstanding merits,polysaccharides and their derivatives have received more and more attention in the area of drug delivery systems.Pullulan has many advantages as a macromolecular drug carrier,e.g.highly water-soluble,non-toxic,multiple hydroxyl groups that can readily be modified chemically,lacks immunogenicity,and usefulness as a plasma expander.Cholesterol has the hydrophobic property due to the presence of hydrophobic moieties such as cyclopentenophenanthrene nucleus in its molecule. Succinic acid is a natural compound existing in the human body which can be used as a linker between hydrophobic groups and hydrophilic polysaccharides skeleton.Therefore, using succinic acid,small endogenous molecule of the body's metabolic process,replace the exogenous 1,6-hexyl diisocyanate.This provides a new strategy for the effective and safe synthesis cholesterol-modified pullulan.It also is of great significance to further expand its application.Based on above information,we developed a new method to synthesize CHSP or CHS-CMP by directly grafting proper cholesterol residues onto pullulan or O-carboxymethyl pullulan.The main content of this research are shown as follows.
     (1) Cholesterol-modified pullulan(CHSP) conjugate with succinyl linkage was synthesized and characterized by fourier transform infrared(FT-IR),proton nuclear magnetic resonance(~1H NMR),and X-ray diffraction(XRD).The degree of substitution (DS)of cholesterol moiety determined by ~1H NMR ranged from 3.87 to 5.70 cholesterol groups per hundred glucose units.The CHS-CMP was also synthesized by using cholesterol succinate reacted with O-carboxylmethyl pullulan,and the intermediates and pullulan derivatives were characterized by FT-IR and ~1H NMR.The synthesis of FITC-labeled CHSP was reacted CHSP and FITC catalyzed by DBTDL.The DS of FITC grafted onto CHSP was characterized by NMR and fluorescence spectrophotometry.
     (2) CHSP self-aggregated nanoparticles were prepared by probe sonication in aqueous media and analyzed by dynamic laser light-scattering(DLS),zeta potential, transmission electron microscopy(TEM) and the fluorescence probe technologies.These novel nanoparticles were almost spherical in shape,and their size,ranging from 51.8 to 73.0 nm,could be controlled by DS of cholesterol moiety.The zeta potentials of CHSP self-aggregated nanoparticles were near zero in aqueous media.The value of critical aggregation concentration(cac) was dependent on the DS of cholesterol moiety. FITC-labeled CHSP self-aggregated nanoparticles with D_h about 50 nm can be obtained by a dialysis method.
     (3) Mitoxantrone(MTO) was loaded into the CHSP nanoparticles by dialysis method.MTO-loaded CHSP self-aggregated nanoparticles were almost spherical in shape and their size increased from 153.1 to 174.2 nm with the MTO-loading capacity increasing from 4.35%to 14.29%.The encapsulation efficiency(EE) of the process and loading capacity(LC) of the nanoparticles increased with increasing cholesterol DS. XRD powder patterns showed that crystal peaks of MTO disappeared when MTO was entrapped into CHSP nanoparticles.DSC experimental results also proved the same conclusions.The release behavior of MTO from CHSP self-aggregated nanoparticles was studied in vitro.The results showed that the release behavior of MTO from CHSP nanoparticles exhibited a sustained release,and MTO release rate decreased with the pH increase of the release media.Epirubicin(EPI) was also physically entrapped inside the CHCS self-aggregated nanoparticles by remote loading method,and the EE and LC of EPI-loaded CHSP nanoparticles appeared rather lower than those of MTO-loaded CHSP self-aggregated nanoparticles.
     (4) The study of cell cytotoxicity in vitro showed CHSP self-aggregated nanoparticles had no antitumor activity even the CHSP concentration at 200ug/mL. However,whether MTO loaded CHSP or EPI loaded CHSP nanoparticles showed antirumor activity when adjusted the drug concentration at 1~10μg/mL.Moreover,the cytotoxicity of the MTO or EPI loaded nanoparticles was higher than free drug with the same concentration.The result of flow cytometry and confocal image ananlysis revealed that EPI loaded CHSP self-aggregated nanoparticles appeared much easier cellular endocytic than free EPI.The analysis of intracellular distribution of FITC-labeled CHSP self-aggregated nanoparticles in HeLa cell was carried out,and the result showed that the FITC labeled nanoparticles accumulated in cell membrane firstly,and then the nanoparticles passed through cell membrane and arrived at cellular nuclear with incubation time prolonged.EPI loaded FITC-CHSP nanoparticles cell entry also confirmed by the same way.
     (5) The EPI loaded CHSP nanoparticles and free drugs were injected intravenously to wistar mice respectively,and the preliminary study about Pharmacokinetics was carried out.The concentration of EPI at different times in blood was detected by high performance liquid.The result showed that the EPI-loaded CHSP nanoparticles achieved long-circulating and sustained-release effect.
引文
[1]Jung T.,Kamm W.,Breitenbach A.,Kaiserling E.,Xiao J.X.,Kissel T.Biodegradable nanoparticles for oral delivery of peptides:is there a role for polymers to affect mucosal uptake?[J].Eur J Pharm Biopharm,2000,50:147-60.
    [2]Illum L.Nanoparticulate systems for nasal delivery of drugs:a real improvement over simple systems?[J].J Pharm Sci,2007,96:473-83.
    [3]Kimoto T.,Shibuya T.,Shiobara S.Safety studies of a novel starch,pullulan:chronic toxicity in rats and bacterial mutagenicity[J].Food Chem Toxicol,1997,35(3-4):323-9.
    [4]Leathers T.D.Biotechnological production and applications of pullulan[J].Appl Microbiol Biotechnol,2003,62(5-6):468-73.
    [5]Lee J.W.,Park J.H.,Robinson J.R.Bioadhesive-based dosage forms:the next generation[J].J Pharm Sci,2000,89:850-66.
    [6]Sinha V.R.,Kumria R.Polysaccharides in colon-specific drug delivery[J].Int J Pharm,2001,224:19-38.
    [7]Letchford K.,Burt H.A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures:micelles,nanospheres,nanocapsules and polymersomes[J].Eur.J.Pharm.Biopharm.,2007,65:259-69.
    [8]Ouchi T.,Nishizawa H.,Ohya Y.Aggregation phenomenon of PEG-grafted chitosan in aqueous solution[J].Polymer,1998.39:5171-5.
    [9]Yoksan R.,Matsusaki M.,Akashi M.,Chirachanchai S.Controlled hydrophobic/hydrophilic chitosan:colloidal phenomena and nanosphere formation[J].Colloid Polym.Sci.,2004,282:337-42.
    [10]Jeong Y.I.,Kim S.H.,Jung T.Y.,Kim I.Y.,Kang S.S.,Jin Y.H.,Ryu H.H.,Sun H.S.,Jin S.G.,Kim K.K.,Ahn K.Y.,Jung S.Polyion complex micelles composed of all-trans retinoic acid and poly(ethylene glycol)-grafted-citosan[J].J.Pharm.Sci.,2006,95:2348-60.
    [11]Yang X.D.,Zhang Q.Q.,Wang Y.S.,Chen H.,Zhang H.Z.,Gao F.P.,Liu L.R.Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan:Synthesis;characterization;aggregation and methotrexate release in vitro[J].Colloids Surf.B,2008,61:125-31.
    [12]Chen X.G.,Lee C.M.,Park H.J.OM emulsification for the self-aggregation and nanoparticle formation of linoleic acid-modified chitosan in the aqueous system[J].J.Agric.Food Chem.,2003,51:3135-9.
    [13]Liu C.G.,Desai K.G.H.,Chen X.G.,Park H.J.Linolenic acid-modified chitosan for formation of self-assembled nanoparticles[J].J.Agric.Food Chem.,2005,53:437-41.
    [14]Liu C.G.,Desai K.G.H.,Chen X.G.,Park H.J.Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan[J].J.Agric.Food Chem.,2005,53:1728-33.
    [15]Jiang G.B.,Quan D.,Liao K.,Wang H.Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery[J].Mol.Pharmacol.,2006,3:152-60.
    [16]Hu F.Q.,Ren G.F.,Yuan H.,Du Y.Z.,Zeng S.Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel[J].Colloids Surf.,B,2006,50:97-103.
    [17]Zhang J.,Chen X.G.,Li Y.Y.,Liu C.S.Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin[J].Nanomedicine,2007,3:258-65.
    [18]Yu H.J.,Wang W.S.,Chen X.S.,Deng C.,Jing X.B.Synthesis and characterization of the biodegradable polycaprolactone-graft-chitosan amphiphilic copolymers,Biopolymers[J].2006,83:233-42.
    [19]徐庆国,原续波,常津.含胆汁酸和胆固醇的双亲性聚合物的研究进展[J].高分子通报,2004,6(3):76-83.
    [20]Wang Y.S.,Liu L.R.,Jiang Q.,Zhang Q.Q.Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin[J].Eur.Polym.J.,2007,43:43-51.
    [21]Wang Y.S.,Jiang Q.,Liu L.R.,Zhang Q.Q.The interaction between bovine serum albumin and the self-aggregated nanoparticles of cholesterol-modified Ocarboxymethyl chitosan[J].Polymer,2007,48:4135-42.
    [22]Akiyama E.,Morimoto N.,Kujawa P.,Ozawa Y.,Winnik F.M.,Akiyoshi K.Self-Assembled Nanogels of Cholesteryl-Modified Polysaccharides:Effect of the Polysaccharide Structure on Their Association Characteristics in the Dilute and Semidilute Regimes[J].Biomacromolecules,2007,8:2366-73
    [23]Lee S.,Akiyoshi K.Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces[J].Biomaterials,2004,25:2911-18.
    [24]Akiyoshi K.,Deguchi S.,Tajima H.,Nishikawa T.,Sunamoto J.Microscopic Structure and thermoresponsivenes of a hydrogel nanoparticle by Self-Assembly of a hydrophobized Polysaccharide[J].Macromolecules,1997,30:857-61.
    [25]Akiyoshi K.,Sunamoto J.Supramolecular assembly of hydrophobized polysaccharides[J].Supramol Sci,1996,3:157-63.
    [26]Deguchi S.,Kuroda K.,Akiyoshi K.,Lindman B.,Sunamoto J.Gelation of cholesterol-bearing pullulan by surfactant and its rheology[J].Colloid Surface A,1999,147:203-11.
    [27]Akiyoshi K.,Deguchi S.,Moriguchi N.,Yamaguchi S.,Sunamoto J.Self-Aggregates of Hydrophobized Polysaccharides in Water.Formation and Characteristics of Nanoparticles[J].Macromolecules,1993,26:3062-68.
    [28]Akiyoshi K.,Kobayashi S.,Shichibe S.,Mix D.,Baudys M.,Kim S.W.,Sunamoto J.Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs:complexation and stabilization of insulin[J].J.Control.Release,1998,54:313-20.
    [29]Nishikawa T.,Akiyoshi K.,Sunamoto J.Macromolecular Complexation between Bovine Serum Albumin and the Self-Assembled Hydrogel Nanoparticle of Hydrophobized Polysaccharides[J].J.Am.Chem.Soc,1996,118:6110-5.
    [30]Nishikawa T.,Akiyoshi K.,Sunamoto J.Supramolecular Assembly between Nanoparticles of Hydrophobized Polysaccharide and Soluble Protein Complexation between the Self-Aggregate of Cholesterol-Bearing Pullulan and a-Chymotrypsin.Macromolecules,1994,27:7654-9.
    [31]Shimizu T.,Kishida T.,Hasegawa U.,Ueda Y.,Imanishi J.,Yamagishi H.,Akiyoshi K.,Otsuji E.,Mazda O.Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy.Biochem Biophys Res Commun,2008,367:330-35.
    [32]Akiyoshi K.Heat Shock Protein-like Activity of a Nanogel Artificial Chaperone for Citrate Synthase[J].J Bioact Compat Polym,2006,21:487-501.
    [33]Akiyoshi K.,Nishikawa T.,Mitsui Y.,Miyata T.,Kodama M.,Sunamoto J.Self-assembly of polymer amphiphiles:thermodynamics of complexation between bovine serum albumin and self-aggregate of cholesterol-bearing pullulan[J].Colloid Surface A,1996,112:91-95.
    [34]Sawada,S.Nomura Y.,Aoyama Y.,Akiyoshi K.,Suda Y.,Yamamoto M.Cell Specificity of macromolecular assembly of cholesteryl and galactoside groups-conjugated pullulan[J].J Bioact Compat Polym,1999,14(3):195-212.
    [35]Taniguchi I.,Akiyoshi K.,Sunamoto J.Self-aggregate nanoparticles of cholesteryl and galactoside groups-substituted pullulan and their specific binding to galactose specific lectin,RCA120[J].Macromol.Chem.Phys.,1999,200:1554-60.
    [36]Hasegawa U.,Nomura S.M.,Kaul S.C.,Hirano T.,Akiyoshi K.Nanogel-quantum dot hybrid nanoparticles for live cell imaging[J].Biochem Biophys Res Commun,2005,331:917-21.
    [37]Lee K.Y.,Jo W.H.,Kwon I.C,Kim Y.H.,Jeong S.Y.Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water[J].Macromolecules,1998,31:378-83.
    [38]Lee K.Y.,Kwon I.C,Kim Y.H.,Jo W.H.,Jeong S.Y.Preparation of chitosan self-aggregates as a gene delivery system[J].J.Control.Release,1998,51:213-220.
    [39]Lee K.Y.,Kim J.H.,Kwon I.C,Jeong S.Y.Self-aggregates of deoxycholic acid modified chitosan as a novel carrier of adriamycin[J].Colloid Polym.Sci.,2000,278:1216-19.
    [40]Chae S.Y.,Son S.,Lee M.,Jang M.K.,Nah J.W.Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier[J].J.Control.Release,2005,109:330-44.
    [41]Park K.,Kim K.,Kwon I.C,Kim S.K.,Lee S.,Lee D.Y.,Byun Y.Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates[J].Langmuir,2004,20:11726-31.
    [42]Kim K.,Kwon S.,Park J.H.,Chung H.,Jeong S.Y.,Kwon I.C.Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates[J].Biomacromolecules,2005,6:1154-58.
    [43]Kwon S.,Park J.H.,Chung H.,Kwon I.C,Jeong S.Y.,Kim I.S.Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5 beta-cholanic acid[J].Langmuir,2003,19:10188-93.
    [44]Park K.,Kim J.H.,Nam Y.S.,Lee S.,Nam H.Y.,Kim K.,Park J.H.,Kim I.S.,Choi K.,Kim S.Y.,Kwon I.C.Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles[J].J.Control.Release,2007,122:305-14.
    [45]Park J.H.,Kwon S.G.,Nam J.O.,Park R.W.,Chung H.,Seo S.B.,Kim I.S.,Kwon I.C,Jeong S.Y.Self-assembled nanoparticles based on glycol chitosan bearing 5 beta cholanic acid for RGD peptide delivery[J].J.Control.Release,2004,95:579-88.
    [46]Yoo H.S.,Lee J.E.,Chung H.,Kwon I.C,Jeong S.Y.Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery[J].J.Control.Release,2005,103:235-43.
    [47]Kim J.H.,Kim Y.S.,Kim S.,Park J.H.,Kim K.,Choi K.,Chung H.,Jeong S.Y.,Park R.W.,Kim I.S.,Kwon I.C.Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel[J].J.Control.Release,2006,111:228-234.
    [48]Lee M.,Cho Y.W.,Park J.H.,Chung H.S.,Jeong S.Y.,Choi K.W.,Moon D.H.,Kim S.Y.,Kim I.S.,Kwon I.C.Size control of self-assembled nanoparticles by an emulsion/ solvent evaporation method[J].Colloid.Polym.Sci.,2006,284:506-12.
    [49]Son Y.J.,Jang J.S.,Cho Y.W.,Chung H.,Park R.W.,Kwon I.C,Kim I.S.,Park J.Y.,Seo S.B.,Park C.R.,Jeong S.Y.Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect[J].J.Control.Release,2003,91:135-45.
    [50]Park J.H.,Kwon S.,Lee M.,Chung H.,Kim J.H.,Kim Y.S.,Park R.W.,Kim I.S.,Seo S.B.,Kwon I.C,Jeong S.Y.Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin:in vivo biodistribution and anti-tumor activity[J].Biomaterials,2006,27:119-26.
    [51]Park J.H.,Cho Y.W.,Son Y.J.,Kim K.,Chung H.,Jeong S.Y.,Choi K.,Park C.R.,Park R.W.,Kim I.S.,Kwon I.C.Preparation and characterization of self-assembled nanoparticles based on glycol chitosan bearing adriamycin[J].Colloid Polym.Sci.,2006,284:763-70.
    [52]Na K.,Lee T.B.,Park K.H.,Shin E.K.,Lee Y.B.,Cho H.K.Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anticancer drug delivery system[J].Eur.J.Pharm.Sci.,2003,18:165-73.
    [53]Passirani C,Barratt G.,Devissaguet J.P.,Labarre D.Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate)with the complement system[J].Life Sci.,1998,62:775-85.
    [54]Yang S.C,Ge H.X.,Hu Y.,Jiang X.Q.,Yang C.Z.Formation of positively charged poly(butyl cyanoacrylate)nanoparticles stabilized with chitosan[J].Colloid Polym.Sci.,2000,278:285-92.
    [55]Chauvierre C,Labarre D.,Couvreur P.,Vauthier C.Novel polysaccharide-decorated poly(isobutyl cyanoacrylate)nanoparticles[J].Pharm.Res.,2003,20:1786-93.
    [56]Maeda H.The enhanced permeability and retention(EPR)effect in tumor vasculature:the key role of tumor-selective macromolecular drug targeting[J].Adv.Enzyme Regul.,2001,41:189-207.
    [57]Maeda H.,Seymour L.W.,Miyamoto Y.Conjugates of anticancer agents and polymers:advantages of macromolecular therapeutics in vivo[J].Bioconjugate Chem.,1992,3:351-62.
    [58]Maeda H.,Wu J.,Sawa T.,Matsumura Y.,Hori K.Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review[J].J.Controlled Release,2000,65:271-84.
    [59]Seymour L.W.,Miyamoto Y.,Maeda H.,Brereton M.,Strohalm J.,Ulbrich K., Duncan R.Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier[J].Eur.J.Cancer,1995,31 A:766-70.
    [60]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,2005:257.
    [61]Lee,E.S.Na K.,Bae Y.H.Polymeric micelle for tumor pH and folate-mediated targeting[J].J.Controlled Release,2003,91:103-13.
    [62]Lee E.S.,Na K.,Bae Y.H.Super pH-Sensitive Multifunctional Polymeric Micelle[J].Nano Lett.,2005,5:325-29.
    [63]Lee E.S.,Na K.,Bae Y.H.Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor[J].J.Controlled Release,2005,103:405-18.
    [64]Lee E.S.,Shin H.J.,Na K.,Bae Y.H.Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization[J].J.Controlled Release,2003,90:363-74.
    [65]Sawant R.M.,Hurley J.P.,Salmaso S.,Kale A.,Tolcheva E.,Levchenko T.S.,Torchilin V.P.SMART ”Drug Delivery Systems:Double-Targeted pH-Responsive Pharmaceutical Nanocarriers[J].Bioconjugate Chem.,2006,17:943-9.
    [66]Bae Y.,Nishiyama N.,Fukushima S.,Koyama H.,Yasuhiro M.,Kataoka K.Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property:Tumor Permeability,Controlled Subcellular Drug Distribution,and Enhanced in Vivo Antitumor Efficacy[J].Bioconjugate Chem.,2005,16:122-30.
    [67]Stubbs M.,McSheehy P.M.,Griffiths J.R..Causes and consequences of acidic pH in tumors:a magnetic resonance study[J].Adv.Enzyme Regul.,1999,39:13-30.
    [68]Stubbs M.,McSheehy P.M.,Griffiths J.R.,Bashford C.L.Causes and consequences of tumour acidity and implications for treatment.Mol.Med.Today,2000,6:15-19.
    [69]Gillies R.J.,Schornack P.A.,Secomb T.W.,Raghunand N.Causes and Effects of Heterogeneous Perfusion in Tumors[J].Neoplasia,1999,1:197-207.
    [70]Leeper D.B.,Engin K.,Thistlethwaite A.J.,Hitchon H.D.,Dover J.D.,Li D.J.,Tupchong L.Human tumor extracellular pH as a function of blood glucose concentration[J].Int.J.Radiat.Oncol.,Biol.,Phys.,1994,28:935-43.
    [71]Na K.,Lee E.S.,Bae Y.H.A driamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH:pH-dependent cell interaction,internalization and cytotoxicity in vitro[J].J.Controlled Release,2003,87:3-13.
    [72]Forgac M.Structure and properties of the vacuolar(H+)-ATPases[J].J.Biol.Chem.,1999,274:12951-4.
    [73]Stevens T.H.,Forgac M.Structure,function and regulation of the vacuolar (H+)-ATPase[J].Annu.Rev.Cell Dev,Biol.,1997,13:779-808.
    [74]Tannock I.R,Rotin D.Acid pH in tumor and its potential for therapeutic exploitation[J].Cancer Res.,1989,49:4373-84.
    [75]E.R.Gillies,A.R Goodwin,J.M.Acetals as pH-Sensitive Linkages for Drug Delivery.Frechet.Bioconjugate Chem.,2004,15,1254-63.
    [76]Gillies E.R.,Jonsson T.B.,Frechet J.M.Stimuli-responsive supramolecular Assemblies of linear-dendritic copolymers[J].J.Am.Chem.Soc,2004,126:11936-43.
    [77]Tomlinson R.,Heller J.,Brocchini S.,Duncan R..Polyacetal-doxorubicin conjugates designed for pH-dependent degradation[J].Bioconjugate Chem.,2003,14:1096-106.
    [78]Gillies E.R.,Frechet J.M.pH-responsive Copolymer Assemblies for controlled release of doxorubicin[J].Bioconjugate Chem.,2005,16:361-8.
    [79]Tomlinson R.,Klee M.,Garrett S.,Heller J.,Duncan R.,Brocchini S.Pendent Chain Functionalized Polyacetals That Display pH-Dependent Degradation:A platform for the development of novel Polymer therapeutics[J].Macromolecules,2002,35:473-80.
    [80]Bae Y.,Nishiyama N.,Fukushima S.,Koyama H.,Yasuhiro M,Kataoka K.Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property:Tumor Permeability,Controlled Subcellular Drug Distribution,and Enhanced in Vivo Antitumor Efficacy[J].Bioconjugate Chem.,2005,16:122-30.
    [81]Hruby M.,Konak C,Ulbrich K.Polymeric micellar pH-sensitive drug delivery system for doxorubicin[J].J.Controlled Release,2005,103:137-48.
    [82]Bae Y,Fukushima S.,Harada A.,Kataoka K..Design of Environment-Sensitive SupramolecularAssemblies for Intracellular Drug Delivery:Polymeric Micelles that are Responsive to Intracellular pH Change[J].Angew.Chem.,Int.Ed.,2003,42:4640-3.
    [83]Willner D.,Trail P.A.,Hofstead S.J.,King H.D.,Lasch S.J.,Braslawsky G.R.,Greenfield R.S.,Kaneko T.,Firestone R.A.(6-Maleimidocaproyl)hydrazone of doxorubicin.A new derivative for the preparation of immunoconjugates of doxorubicin[J].Bioconjugate Chem.,1993,4:521-7.
    [84]Kong S.D.,Luong A.,Manorek G..,Howell S.B.,Yang J.Acidic Hydrolysis of N-Ethoxybenzylimidazoles(NEBIs):Potential Applications as pH-Sensitive Linkers for Drug Delivery[J].Bioconjugate Chem.,2007,18:293-296.
    [85]Cammas S.,Suzuki K.,Sone C,Sakurai Y,Kataoka K.,Okano T..Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers[J].J.Controlled Release,1997,48:157-164.
    [86]Chung J.E.,Yokoyama M.,Okano T.Inner core segment design for drug delivery control of thermo-responsive polymeric micelles[J].J.Controlled Release,2000,65:93-103.
    [87]Chung J.E.,Yokoyama M.,Aoyagi T.,Sakurai Y,Okano T.Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide)on the formation of thermoresponsive core-shell micellar drug carriers[J].J.Controlled Release,1998,53:119-30.
    [88]Chung J.E.,Yokoyama M.,Yamato M.,Aoyagi T.,Sakurai Y,Okano T.Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide)and poly(butylmethacrylate)[J].J.Controlled Release,1999,62:115-27.
    [89]Kikuchi A.,Okano T.Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds[J].Prog.Polym.Sci.,2002,27:1165-93.
    [90]Jeong B.,Bae Y H.,Kim S.W.Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers[J].Colloids Surf,B Biointerfaces,1999,16:185-193.
    [91]Na K.,Lee K.H.,Lee D.H.,Bae Y H..Biodegradable thermo-sensitive nanoparticles from poly(l-lactic acid)/poly(ethylene glycol)alternating multi-block copolymer for potential anti-cancer drug carrier[J].Eur.J.Pharm.Sci.,2006,27:115-22.
    [92]Chilkoti A.,Dreher M.R.,Meyer D.E.,Raucher D.Targeted drug delivery by thermally responsive polymers[J].Adv.Drug Delivery Rev.,2002,54:613-30.
    [93]Dreher M.R.,Raucher D.,Balu N.,Michael Colvin O.,Ludeman S.M.,Chilkoti A.Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy[J].J.Controlled Release,2003,91:31-43.
    [94]Furgeson D.Y,Dreher M.R.,Chilkoti A..Enhancement of bronchial octreotide absorption by chitosan and N-trimethyl chitosan shows linear in vitro/in vivo correlation[J].J.Controlled Release,2006,110:362-9.
    [95]Carlos Rodriguez-Cabello J.,Reguera J.,Girotti A.,Alonso M.,Testera A.M..Developing functionality in elastin-like polymers by increasing their molecular complexity:the power of the genetic engineering approach[J].Prog.Polym.Sci.,2005,30:1119-45.
    [96]Urry D.W.Physical Chemistry of Biological Free Energy Transduction As Demonstrated by Elastic Protein-Based Polymers[J].J.Phys.Chem.B,1997,101:11007-28.
    [97]Urry D.W.,Luan C.H.,Parker T.M.,Gowda D.C.,Prasad K.U.,Reid M.C.,Safavy A. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity[J].J.Am.Chem.Soc,1991,113:4346-8.
    [98]Ponce A.M.,Vujaskovic Z.,Yuan R,Needham D.,Dewhirst M.W.Hyperthermia mediated liposomal drug delivery.Int.J.Hyperthermia,2006,22,205-213.
    [99]Jain R.K.Transport of molecules across tumor vasculature[J].Cancer Metastasis Rev.,1987,6:559-593.
    [100]Liu S.Q.,Tong Y.W.,Yang Y.Y.Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide)with varying compositions[J].Biomaterials,2005,26:5064-74.
    [101]Liu S.Q.,Wiradharma N.,Gao S.J.,Tong Y.W.,Yang Y.Y.Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs[J].Biomaterials,2007,28:1423-33.
    [102]Duncan R.,Gac-Breton S.,Keane R.,Musila R.,Sat Y.N.,Satchi R.,Searle F.Polymer-drug conjugates,PDEPT and PELT:basic principles for design and transfer from the laboratory to clinic[J].J.Controlled Release,2001,74:135-146.
    [103]E.Gianasi,M.Wasil,E.G.Evagorou,A.Keddle,G.Wilson,R.Duncan.HPMA copolymer platinates as novel antitumour agents:in vitro properties,pharmacokinetics and antitumour activity in vivo[J].Eur.J.Cancer,1999,35,994-1002.
    [104]Kasuya Y,Lu Z.R.,Kopeckova P.,Minko T.,Tabibi S.E.,Kopecek J.Synthesis and characterization of HPMA copolymer-aminopropylgeldanamycin conjugates[J].J.Controlled Release,2001,74,203-11.
    [105]Lu Z.R.,Gao S.Q.,Kopeckova P.,Kopecek J.Synthesis of Bioadhesive Lectin-HPMA Copolymer-Cyclosporin Conjugates[J].Bioconjugate Chem.,2000,11:3-7.
    [106]Pechar M.,Ulbrich K.,Subr V.,Seymour L.W.,Schacht E.H.Poly(ethylene glycol)Multiblock Copolymer as a Carrier of Anti-Cancer Drug Doxorubicin[J].Bioconjugate Chem.,2000,11:131-9.
    [107]Ulbrich K.,Subr V.,Strohalm J.,Plocova D.,Jelinkova M.,Rihova B.Polymeric drugs based on conjugates of synthetic and natural macromolecules:I.Synthesis and physico-chemical characterisation[J].J.Controlled Release,2000,64:63-79.
    [108]Vicent M.J.,Manzanaro S.,dela Fuente J.A.,Duncan R.HPMA copolymer-1,5-diazaanthraquinone conjugates as novel anticancer therapeutics[J].J.Drug Targeting,2004,12:503-15.
    [109]Veronese R M.,Schiavon O.,Pasut G..,Mendichi R.,Andersson L.,Tsirk A.,Pord J.,Wu G..,Kneller S.,Davies J.,Duncan R.PEG-Doxorubicin Conjugates:Influence of Polymer Structure on Drug Release,in Vitro Cytotoxicity,Biodistribution,and Antitumor Activity[J].Bioconjugate Chem.,2005,16:775-84.
    [110]Khandare J.J.,Jayant S.,Singh A.,Chandna R,Wang Y.,Vorsa N.,Minko T.Dendrimer Versus Linear Conjugate:Influence of Polymeric Architecture on the Delivery and Anticancer Effect of Paclitaxel[J].Bioconjugate Chem.,2006,17:1464-72.
    [111]Haba K.,Popkov M.,Shamis M.,Lerner R.A.,Barbas C.F.,Shabat Ⅲ,D.Single-Triggered Trimeric Prodrugs[J].Angew.Chem.,Int.Ed.,2005,44:716-720.
    [112]Shamis M.,Lode H.N.,Shabat D.Bioactivation of Self-Immolative Dendritic Prodrugs by Catalytic Antibody 38C2[J].J.Am.Chem.Soc.,2004,126:1726-31.
    [113]Gopin A.,Ebner S.,Attali B.,Shabat D.Enzymatic Activation of Second-Generation Dendritic Prodrugs:Conjugation of Self-Immolative Dendrimers with Poly(ethylene glycol) via Click Chemistry[J].Bioconjugate Chem.,2006,17:1432-40.
    [114]Oh K.T.,Yin H.Q.,Lee E.S.,Bae Y.H.Polymeric nanovehicles for anticancer drugs with triggering release mechanisms[J].J.Mater.Chem.,2007,17:3987-4001.
    [115]Kimoto T.,Shibuya T.,Shiobara S.Safety studies of a novel starch,pullulan:chronic toxicity in rats and bacterial mutagenicity[J].Food Chem.Toxicol.,1997,35(3-4):323-29.
    [116]王京滨,谭剑斌,李欣,张静,熊习昆,黄俊明.普鲁兰多糖对小鼠的致突变性实验研究[J].中国热带医学,2006,6(5):882-3.
    [117]许勤虎 徐勇虎 闫雪冰 咸燕 赵仲林.普鲁兰多糖及应用进展研究[J].山西食品工业,2003,2:19-21.
    [118]Sallustio S.,Galantini L.,Gente G.,Masci G.,Mesa C.L.Hydrophobically Modified Pullulans:Characterization and Physicochemical Properties[J].J.Phys.Chem.B,2004,108:18876-83.
    [119]Shibata M.,Nozawa R.,Teramoto N.,Yosomiya R.Synthesis and properties of etherified pullulans[J].Eur.Polym.J.,2002,38:497-501.
    [120]Jung S.W.,Jeong Y.Il,Kim S.H.Characterization of hydrophobized pullulan with various hydrophobicities[J].Int.J.Pharm.,2003,254:109-121.
    [121]王银松.胆甾醇基-壳聚糖衍生物自聚集纳米粒的制备及其用作药物载体的初步研究[D].北京:北京协和医学院,2006:16
    [122]Akiyoshi K.,Sasaki Y.,Sunamoto J.Molecular Chaperone-Like Activity of Hydrogel Nanoparticles of Hydrophobized Pullulan:Thermal Stabilization with Refolding of Carbonic Anhydrase B[J].Bioconjugate Chem.,1999,10:321-4.
    [123]Ayame H.,Morimoto N.,Akiyoshi K.Self-Assembled Cationic Nanogels for Intracellular Protein Delivery[J].Bioconjugate Chem.,2008,19:882-90.
    [124]Akiyoshi,K.,Takanabe,H.,Sato,T.,Sato,T.,Kondo,H.,Sunamoto,J.Cell Specificity of Polysaccharide Derivatives on Liposomal Surface[J].Chem.Lett.,1990,473-6.
    [125]Yoshiharu K.,Tetsuro T.,Takayuki N.,Yasunori Y.Evidence for receptor-mediated hepatic uptake of pullulan in rats[J].J.Controlled Release,2001,70:365-73.
    [126]Na K.,Lee K.H.,Bae Y.H.pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate[J].J.Controlled Release,2004,97:513-25.
    [127]Na K.,Lee K.H.,Bae Y.H.Self-Organized Nanogels Responding to Tumor Extracellular pH:pH-Dependent Drug Release and in Vitro Cytotoxicity against MCF-7 Cells[J].Bioconjugate Chem.,2007,18:1568-74.
    [128]Deguchi S.,Akiyoshi K.,Sunamoto J.Solution property of hydrophobized pullulan conjugated with poly(ethylene oxide)-poly(propylene oxide)-polyqethyleneoxide)block copolymer.Formation of nanoparticles and their thermosensitivity[J].J.Mukromol.Chem.Rapid Commun.1994,15:705-11
    [129]Morimoto N.,Winnik F.M.,Akiyoshi K.Botryoidal Assembly of Cholesteryl-Pullulan/ Poly(N-isopropylacrylamide)Nanogels[J].Langmuir,2007,23:217-23.
    [130]Kim S.,Chae S.Y.,Na K.,Kim S.W.,Bae Y.H.Insulinotropic activity of sulfonylurea/pullulan conjugate in rat islet microcapsule[J].Biomaterials,2003,24:4843-51
    [131]Jeong Y,Na H.S.,Oh J.S.,Choi K.C.,Song C.E.,Lee H.C.Adriamycin release from self-assembling nanospheres of poly(dl-lactide-co-glycolide)-grafted pullulan[J].Int.J.Pharm.,2006,322:154-60.
    [132]Mishima K.,Satoh K.,Suzuki K.Molecular order of lipid membranes modified with polysaccharide pullulan and a pullulan-derivative bearing a hydrophobic anchor[J].Colloids Surf,B Biointerfaces,1997,9:9-15.
    [133]Sivakumar P.A.,Panduranga Rao K.The use of cholesteryl pullulan for the preparation of stable vincristine liposomes[J].Carbohyd.Polym.,2003,51:327-32.
    [134]Constantin M.,Fundueanu G,Bortolotti F.A novel multicompartimental system based on animated poly(vinyl alcohol)microspheres/succinoylated pullulan microspheres for oral delivery of anionic drugs[J].Int.J.Pharm.,2007,330:129-137.
    [135]Tijsen C.J.,Kolk H.J.,Stamhuis E.J.,Beenackers A.A.C.M.An experimental study on the carboxymethylation of granular potato starch in non-aqueous media[J].Carbohyd. Polym.,2001,45:219-26.
    [136]Bataille I.,Huguet J.,Muller G.,Mocanu G.,Carpov A.Associative behaviour of hydrophobically modified carboxymethylpullulan derivatives[J].Int.J.Biol.Macromol.,1997,20:179-91.
    [137]Picton L.,Mocand G.,Mihaib D.,Carpo A.,Mullera G.Chemically modified exopolysaccharide pullulans:physico-chemical characteristics of ionic-derivatives[J].Carbohyd.Polym.,1995,28:131-136.
    [138]Miania M.,Giannia R.,Liuta G.,Rizzoa R.,Toffaninb R.,Delben F.Gel beads from novel ionic polysaccharides[J].Carbohyd.Polym.,2004,55:163-169.
    [139]Souguir Z.,Roudesli S.,About-Jaudet E.,Le Cerf D.,Picton L.Synthesis and physicochemical characterization of a novel ampholytic pullulan derivative with amphiphilic behavior in alkaline media[J].J.Colloid Interface Sci.,2007,313:108-16.
    [140]安俊健,李新平.羧甲基淀粉钠(CMC)的合成与应用现状[J].造纸化学品与应用,2005,1:27-30.
    [141]Glinel K.,Sauvage J.P.,Oulyadi H.,Huguet J.Determination of substituents distribution in carboxymethylpullulans by NMR spectroscopy[J].Carbohyd.Res,2000,328:343-54.
    [142]黄静,潘丽军,郑志,姜绍通.一种快速准确测定羧甲基淀粉取代度的方法[J].食品工业科技,2003,3:82-84.
    [143]Ge H.C.,Luo D.K.Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation[J].Carbohyd.Res.,2005,340:1351-56.
    [144]Chen X.G.,Park H.J.Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions[J].Carbohyd.Polym.,2003,53:355-9.
    [145]贾之慎,李奇彪.双突跃电位滴定法测定壳聚糖脱乙酰度[J].化学世界,2001,5:240-53.
    [146]丁卓平,王明华,刘振华,何钰,赵东艳.食品中胆固醇含量测定方法的研究与比较[J].食品科学,2004,25(1):130-5.
    [147]GB/T 15206-1994.中华人民共和国国家标准食品中胆固醇的测定方法[S].北京:中国标准出版社,1994.
    [148]Belder A.N.D.E.,Granath K.Preparation and properties of fluorescein-labelled dextrans[J].Carbohyd.Res.,1973,30:375-8.
    [149]Shaikh V.A.E.,Maldar N.N.,Lonikar S.V.Thermotropic behavior of cholesterol-linked polysaccharides[J].J.Appl.Polym.Sci.,1998,7(1):195-201.
    [150]Pavia D.L.,Lampman G.M.,Kriz G.S.Infrared absorption process.In:Holt,Rinehart,Winston(Eds.),Introduction to spectroscopy:a guide for students of organic chemistry.Saunders College,Philadelphia,1979,13-15
    [151]Casu B.,Reggiani M.,Gallo G.G.,Vigenvani A.Hydrogen bonding and conformation of glucose and polyglucoses in dimethylsulphoxide solution[J].Tetrahedron,1966;22:3061-83
    [152]Xu X.Y.,Li L.,Zhou J.P.,Lu S.H.Y.,Yang J.,Yin X.J.Preparation and characterization of N-succinyl-N'-octyl chitosan micelles as doxorubicin carriers for effective anti-tumor activity[J].Colloids Surf.,B,2007,55:222-8.
    [153]Nichifor M.,Carpov A.Bile acids covalently bound to polysaccharides.1.Esters of bile acids with dextran[J].Eur.Polym.J.,1999,35:2125-9.
    [154]Yuan,X.B.,Li,H.,Zhu,X.X.,Woo,H.G.Self-aggregated nanoparticles composed of periodate-oxidized dextran and cholic acid:Preparation,stabilization and in vitro drug release[J].J.Chem.Technol.Biotechnol.,2006,81:746-54.
    [155]Olsson Y.,Svensj(o|¨) E.,Arfors K.E.,Hultstr(o|¨)m D.Fluorescein labelled dextrans as tracers for vascular permeability studies in the nervous system[J].Acta Neuropathol.,1975,33(1):45-50.
    [156]Aliabadi H.M.,Brocks D.R.,Lavasanifar A.Polymeric micelles for the solubilization and delivery of cyclosporine A:pharmacokinetics and biodistribution.Biomaterials[J],2005,26(35):7251-7259
    [157]Nakanishi T.,Fukushima S.,Okamoto K.,Suzuki M.,Matsumura Y.,Yokoyama M.,Okano T.,Sakurai Y.,Kataoka K.Development of the polymer micelle carrier system for doxorubicin[J].J.Control.Release,2001,74(1-3):295-302
    [158]Gref R.,Minamitake Y.,Peracchia M T.,Trubetskoy V.,Torchilin V.,Langer R.Biodegradable long-circulating polymeric nanospheres[J],Science,1994,263:1600-3.
    [159]Greish K.,Sawa T.,Fang J.,Akaike T.,Maeda H.SMA-doxorubicin,a new polymeric micellar drug for effective targeting to solid tumours[J].J.Control.Release,2004,97(2):219-30.
    [160]牛文强,傅国旗,吴俊丽.PLA/PEG/PLA三嵌段共聚物载药纳米胶囊的制备及表征[J].高等学校化学学报,2005,26(7):1369-71.
    [161]徐建平,陈伟东,计剑,沈家骢.新型仿生聚合物胶束用于纳米药物载体的研究[J].高等学校化学学报,2007,28(2):394-6.
    [162]Kabanov A.V.,Nazarova I.R.,Astafieva I.V.,Batrakova E.V.,Alakhov V.Y.,Yaroslavov A.A.,Kabanov V.A.Micelle Formation and Solubilization of Fluorescent Probes in Poly(oxyethylene-b-oxypropylene-b-oxyethylene) Solutions[J].Macromolecules,1995,28:2303-14.
    [163]Poppe A.,Willner L.,Allgaier J.,Stellbrink J.,Richter D.Structural Investigation of Micelles Formed by an Amphiphilic PEP-PEO Block Copolymer in Water[J].Macromolecules,1997,30:7462-71.
    [164]Lee S.C.,Chang Y.,Yoon J.,Kim C.,Kwon I.C.,Kim Y.,Jeong S.Y.Synthesis and Micellar Characterization of Amphiphilic Diblock Copolymers Based on Poly(2-ethyl-2-oxazoline) and Aliphatic Polyestersl[J].Macromolecules,1999,32:1847-52.
    [165]Naira L.S.,Laurencin C.T.Biodegradable polymers as biomaterials[J].Prog.Polym.Sci.,2007,32:762-98.
    [166]Liu Z.H.,Jiao Y.P.,Wang Y.F.,Zhou C.G.,Zhang Z.Y.Polysaccharides-based nanoparticles as drug delivery systems[J].Adv.Drug Delivery Rev.,2008,60(15):1650-62.
    [167]Na K.,Park K.-H.,Kim S.W.,Bae Y.H.Self-assembled hydrogel nanoparticles from curdlan derivatives:characterization,anticancer drug release and interaction with a hepatoma cell line(HepG2)[J].J.Control.Release,2000,69:225-36.
    [168]Lee K.Y.,Jo W.H.,Kwon I.C.,Kim Y.H.,Jeong S.Y.Structure determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water[J].Macromolecules,1998,31:378-83.
    [169]Wang Y.S.,Liu L.R.,Weng J.,Zhang Q.Q.Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan conjugates[J].Carbohyd.Polym.,2007,69:597-606.
    [170]Yuan X.B.,Li H.,Yuan Y.Preparation of cholesterol-modified chitosan self-aggregates for delivery of drugs to ocular surface[J].Carbohyd.Polym.,2006,65:337-45.
    [171]Wang Y.S.,Jiang Q.,Li R.S.,Liu L.R.,Zhang Q.Q.,Wang Y.M.,Zhao J.Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel[J].Nanotechnology,2008,19:145101(Spp)
    [172]Gao F.P.,Zhang H.Z.,Liu L.R.,Wang Y.S.,Jiang Q.,Yang X.D.,Zhang Q.Q.Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates[J].Carbohyd.Polym.,2008,71:606-13.
    [173]吴世康.荧光探针技术在高分子科学中的应用[J].化学进展,1996 8(2):118-28.
    [174]高峰,任碧野,童真.“标记”芘的激基缔合物荧光在水溶性高分子研究中的应用[J].高分子通报,2000,4:49-59.
    [175]Kalyanasundaram K.,Thomas J.K.Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems[J].J.Am.Chem.Soc,1977,99:2039-44.
    [176]Rahman A.,Brown C.W.Effect of pH on the critical micelle concentration of sodium dodecyl sulphate[J].J.Appl.Polym.Sci.,2003,28(4):1331-34.
    [177]Kratohvil J.P.,Hsu W.P.,Kwok V.How large are the micelles of di-a-hydroxy bile salts at the critical micellization concentrations in aqueous electrolyte solutions?Results for sodium taurodeoxycholate and sodium deoxycholate[J].Langmuir,1986,2:256-8.
    [178]平其能,孙晓芳.现代药剂学[M].北京:中国医药科技出版社,1998:
    [179]Deme B.,Rosilio V.,Baszkin A.Polysaccharides at interfaces 1.Adsorption of cholesteryl-pullulan derivatives at the solution-air interface.Kinetic study by surface tension measurements[J].Colloids Surf.B,1995,4:357-65.
    [180]Deme B.,Rosilio V.,Baszkin A.Polysaccharides at interfaces 2.Surface potential of adsorbed cholesteryl-pullulan monolayers at the solution-air interface[J].Colloids Surf.B,1995,4:367-73.
    [181]Storm G.,Crommelin D.J.A.Pharmacokinetic modulation with particulate drug formulation.Liposomes:quo Vadis.PSTT,1998,1(1):19-31.
    [182]Cersosimo R.J.,Hong W.K.Epirubicin:a review of the pharmacology,clinical activity,and adverse effects of an adriamycin analogue[J].J.Clin.Oncol.,1986,14:425-39.
    [183]Bonadonna G.,Gianni L.,Santoro A.,Bonfante V.,Bidoli P.,Casali P.Drugs ten years later:epirubicin[J].Ann.Oncol.,1993,4(5):359-69.
    [184]Zingler V.C.,Nabauer M.,Jahn K.,Gross A.,Hohlfeld R.,Brandt T.,Strupp M.Assessment of potential cardiotoxic side effects of mitoxantrone in patients with multiple sclerosis[J].Eur.Neurol.,2005,54(1):28-33.
    [185]Hagemeister F.,Cabanillas F.,Coleman M.,Gregory S.A.,Zinzani P.L.The role of mitoxantrone in the treatment of indolent lymphomas[J].Oncologist,2005,10:150-9.
    [186]Haran G.,Cohen R.,Bar L.K.,Barenholz Y.Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases[J].Biochim.Biophys.Acta,1993,1151:201-15.
    [187]Lasic D.D.,Ceh B.,Stuart M.C.A.,Guo L.,Frederik P.M.,Barenholz Y.Transmembrane gradient driven phase transitions within vesicles:lessons for drug delivery[J].Biochim.Biophys.Acta,1995,1239:145-56.
    [188]Hana H.D.,Lee A.,Songa C.K.,Hwang T.,Seong H.,Ock Lee C,Shin B.C.In vivo distribution and antitumor activity of heparin-stabilized doxorubicin-loaded liposomes[J].Int.J.Pharm.,2006,313:181-8.
    [189]Sludden J.,Uchegbu I.F.,Schatzlein A.G.The encapsulation of bleomycin within chitosan based polymeric vesicles does not alter its biodistribution[J].J.Pharm.Pharmaclo.,2000,52:377-82.
    [190]Zheng Y.L.,Yang W.,Wang C.C.,Hu J.H.,Fu S.K.,Dong L.,Wu L.,Shen X.Z.Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt:Preparation,characterization and the use for 5-fluorouracil delivery[J].Eur.J.Pharm.Biopharm.,2007,67:621-31.
    [191]Tian Y.,Bromberg L.,Lin S.N.,Alan Hatton T.,Tam K.C.Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers[J].J.Control.Release,2007,121:137-45.
    [192]Tewes F.,Munnier E.,Antoon B.,Ngaboni Okassa L.,Cohen-Jonathan S.,Marchais H.,Douziech-Eyrolles L.,Souce' M.,Dubois P.,Chourpa I.Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods[J].Eur.J.Pharm.Biopharm.,2007,66:488-92.
    [193]仉文升,李安良.药物化学[M].北京:高等教育出版社,1999:481.
    [194]Bell D.H.Characterization of the fluorescence of the antitumor agent,mitoxantrone[J].Biochim.Biophys.Acta.,1988,949(1):132-7.
    [195]Paul J.,Smith,2 Hazel Sykes R.,Fox M.E.,Furlong I.J.Subcellular Distribution of the Anticancer Drug Mitoxantrone in Human and Drug-resistant Murine Cells Analyzed by Flow Cytometry and Confocal.Microscopy and Its Relationship to the Induction of DNA Damage[J].Cancer Res.,1992,52:4000-8.
    [196]Kataoka K.,Matsumotob T.,Yokoyamac M.,Okanoc T.,Sakurai Y.,Fukushima S.,Okamoto K.,Kwon G.S.Doxorubicin-loaded poly(ethylene glycol)-poly (b-benzyl-Laspartate) copolymer micelles:their pharmaceutical characteristics and biological significance[J].J.Control.Release,2000,64:143-53.
    [197]黄园,段逸松,于波涛,张志荣.硫酸铵梯度法制备米托蒽醌长循环脂质体[J].中国药学杂志,2002,37(12):917-9.
    [198]张良珂,侯世祥,卢懿,宋相容.叶酸偶联米托葸醌白蛋白纳米粒的制备及体外性质研究[J].2005,40(10):763-5.
    [199]Kwon G.,Natio M.,Yokoyama M.,Okana T.,Sakurai Y.,Kataoka K.Block copolymer micelles for drug delivery:loading and release of doxorubicin[J].J.Control.Release,1997,48:195-210.
    [200]Kim D.G.,Jeong Y.Il,Choi C.Y.,Roh S.H.,Kang S.K.,Jang M.K.,Nah J.W.Retinol-encapsulated low molecular water-soluble chitosan nanoparticles[J].Int.J.Pharm.,2006,319:130-8.
    [201]徐辉碧.纳米医药[M].北京:清华大学出版社,2004:
    [202]Vasir J.K.,Labhasetwar V.Biodegradable nanoparticles for cytosolic delivery of therapeutics[J].Adv.Drug Delivery Rev.,2007,59:718-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700