用户名: 密码: 验证码:
基于粘弹特性的沥青疲劳—流变机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青的抗疲劳能力对沥青路面长期使用性能具有显著影响,因此沥青的疲劳问题多年来一直是国内外研究的热点课题。大量研究认为,沥青的疲劳是损伤造成的,并基于损伤提出了采用累计耗散能比、耗散能变化率等作为疲劳评价指标。然而,随着人们对沥青性能研究的不断深入,沥青的自愈性和触变性受到了越来越多的关注和重视,研究者们已经开始注意到沥青的疲劳不仅与损伤有关,而且与沥青非线性粘弹的自愈能力和流变特性直接相关。因此,沥青疲劳特性及疲劳评价指标的研究应综合考虑损伤及流变特性的影响。基于以上原因,从沥青的粘弹特性入手,深入研究了沥青的自愈性、触变性,分析了触变性和自愈性对沥青疲劳特性的影响,并在此基础上分析确定了沥青的疲劳-流变机理,提出了沥青的疲劳评价指标。主要研究内容及成果概括如下:
     在深入了解沥青疲劳特性研究方法的基础上,对原有的沥青疲劳特性研究方法进行了改进,考虑了触变性的影响,确定了基于流变特性的沥青疲劳特性的研究方法。
     借助于动态剪切流变仪研究了沥青的自愈能力及间歇时间、间歇前沥青状态、温度、加载模式等因素对沥青自愈性的影响。研究表明:间歇时间越长,沥青性能恢复得越好;荷载作用次数越少,沥青性能恢复得越快;温度越高,沥青的性能恢复得越快;加载模式不同沥青的自愈能力不同。间歇加载模式下,沥青的疲劳曲线仅在大于间歇前模量(间歇前,荷载停止作用时的模量)的部分发生变化,当达到间歇前模量后仍然按照连续加载模式下沥青疲劳曲线的变化规律变化。结合动态剪切试验结果及沥青试样的横截面扫描图片分析得出:当荷载在沥青出现银纹前或刚刚出现银纹时停止作用,如果间歇时间足够长,沥青的模量是可以完全恢复的。
     分别采用初始模量比(HI1)、斜率比(HI2)、荷载作用次数比(HI3)评价了各种沥青的自愈性。通过比较分析得出:初始模量比(HI1)适于评价沥青初始模量的恢复能力;荷载作用次数比(HI3)较适合评价沥青的长期愈合能力。
     借鉴胶体材料触变性的研究方法,分别采用滞后圈法、阶跃试验法和动态模量法研究了沥青的触变性,并建立了相应的触变模型。研究表明:滞后圈法研究沥青的触变性,触变性的大小依赖于施加的最大剪变率。当剪变率过低时,粘度随着剪变率的增加先增大后减小,随着剪变率的增加,粘度增大的现象逐渐消失;伴随着剪变率的降低,沥青的粘度会渐渐恢复。指数触变模型可以较好地拟合单一剪变率的剪切试验结果。扩展指数函数可以较好地拟合动态剪切试验法下得到的贮能模量—时间关系曲线。并且拟合得到的特征时间系数越小,沥青初始模量的短期恢复速度越快。结合触变性和自愈性的研究成果得出:荷载作用初期,沥青模量的降低以及停止荷载作用后沥青模量的恢复完全是由触变性造成的。
     通过分析不同荷载作用下沥青的修正模量—荷载作用次数关系曲线、相位角—荷载作用次数关系曲线和修正(复数)模量—相位角关系曲线,研究了沥青的疲劳-流变过程以及触变性对沥青疲劳过程的影响。研究得出:根据复数模量—相位角关系曲线的转折点可以较合理地确定触变性影响区。根据疲劳试验和应力(应变)扫描试验的复数模量—相位角关系曲线确定了四种沥青触变性影响区的分界点;根据触变性的研究成果及疲劳试验数据实现了触变性和损伤对沥青疲劳过程影响的分离。剔除触变性影响后沥青的疲劳曲线与试验测得的疲劳曲线存在明显差别。
     最后,分析了目前常用的几种沥青疲劳评价指标(模量降低为初始模量的50%时所对应的荷载作用次数(50%G*)、累计耗散能比、耗散能变化率和相位角)的优缺点。各种指标均能在一定程度上反映沥青的疲劳特性,也均存在不足之处。采用将触变性影响分离后的50%G*作为沥青的疲劳评价指标可以较好地评价沥青的疲劳性能。
The ability of asphalt binder to resist accumulation of fatigue damage can have a profound effect on the long term performance of asphalt pavements. So the fatigue of asphalt binder has always been the hot research topic at home and overseas. Many researchers believe that the fatigue of asphalt binder is caused by damage, and some fatigue evaluation indices such as Dissipated Energe Ratio, Dissipated Rate were put forward. However, the healing and thixotropy of asphalt binder are getting more and more attention with the research about binder performance going on, and some researchers notice that the fatigue of asphalt binder is not only related to damage but also related to nonlinear viscoelastic healing and rheological characteristic of asphalt binder. So the researches of fatigue characteristic and fatigue evaluation index for asphalt binder should contain both of the influence of damage and rheology. For the above reasons, the healing and thixotropy of asphalt binder were researched deeply from the angle of viscoelastic characteristic of asphalt binder, the influences of thixotropy and healing on the fatigue characteristic of asphalt binder were analyzed. Based on these analysis the fatigue and rheology mechanism of asphalt binder was researched, and the fatigue evaluation index of asphalt binder was brought forward. The contents and results of the research are shown as follow.
     The existing research method for fatigue characteristic of asphalt binder and mixture was modified after understanding the method deeply. The new research method is based on the rheological characteristic, and the influence of thixotropy was considered in this method.
     The healing ability of asphalt binder and the influences of rest period, status before rest, temperature, loading cycles, and loading mode etc were researched by using dynamic shear rheometer. The research shows that the longer the rest period, the better asphalt binder heals. The shorter the loading time, the faster asphalt binder heals. The healing velocity increases with the increase in temperature. The healing ability of asphalt binder is different with different loading modes. Under intermittent loading mode, the fatigue curve of asphalt binder differs from the curve under continuous loading mode when the modulus is bigger than the modulus before rest periods applied. When the modulus is smaller than the modulus before rest period applied, the cuver under intermittent loading mode is the same to the curve under continuous loading mode. By comparing and analyzing the dynamic shear test results and the cross section of the specimens, it is concluded that if the loading stops before microcrack appearing or just at the time when microcrack appearing, the modulus can heal totally with enough rest periods.
     Three evaluation indice were chosen to evaluate the healing characteristic of asphalt binder. The indice were modulus ratio (HI1), slope ratio (HI2) and cycle number ratio (HI3). The healing characteristics of five kinds of asphalt binder were analyzed. By comparing and analyzing the results, it shows that modulus ratio (HI1) is suitable for evaluating the healing ability of initial modulus of asphalt binder and cycle number ratio (HI3) is suitable for evaluating the long term healing ability of asphalt binder.
     Using the thixotropy research methods in colliod materials as reference, the hysteresis method, stepwise test method and dynamic modulus method were used to research the thixotropy of asphalt binder and the corresponding thixotropy models were established. The research indicates that thixotropy depends on maximum shear rate applied to asphalt binder by using hysteresis method. When the shear rate is very low, the viscosity increases first then decreases with increase in shear rate. This phenomenon disappears when the shear rate is big enough. With decrease in shear rate, the viscosity of asphalt binder will recover slowly. Exponential function can fit the test results at single shear rate better. Extend exponential function obtained from dynamic modulus method can fit the relationship between storage modulus and time better. And the smaller the characteristic time coefficient, the faster the initial modulus heals in short term. The bigger the healing coefficient in kinetics thixotropy model, the better the healing ability of asphalt binder is. Comparing the research results of thixotropy and the results of healing, it shows that the decrease of modulus and the recovery of modulus after loading stops are caused by thixotropy at the beginning of loading.
     The fatigue-rheology course of asphalt binder and the influence of thixotropy on binder fatigue were researched by analyzing the curve of normalized modulus versus number of cycles, the curve of phase angle versus number of cycles and the curve of normalized (complex) modulus versus phase angle. The results show that the thixotropy influence phase can be fixed well using the turning point at curve of complex modulus versus phase angle. Based on the curve of complex modulus versus phase angle of fatigue test and stress (strain) sweep test, the dividing point of thixotropy phase for the four kinds of asphalt binder were confirmed. The influences of thixotropy and damage on fatigue were separated based on the thixotropy research results and fatigue test data. The fatigue curve after eliminating the influence of thixotropy is greatly different from the curve obtained by the test.
     Finally, the most common used fatigue indices of asphalt binder were analyzed, that is the cycles when the modulus gets to 50% of the initial value (50%G*), Dissipated Energe Ratio, Damage Rate and phase angle. All the indice can reflect the fatigue characteristic of asphalt binder in some extent, but they all have some deficiency. 50%G* after eliminating the influence of thixotropy was chosen as the fatigue evaluation index, and it can evaluate the fatigue performance of asphalt binder better.
引文
1. Rajib B. Mallick, Tahar EI-Korch. Pavement Engineering: Principles and Practice. CRC Press, 2008: 204~205
    2. American Association of State Highway and Transportation Officials. Specification for Performance-graded Asphalt Binder. AASHTO Standard MP1. Washington, D.C.,1998:15~18
    3. A.C. Pronk, P.C. Hopman. Energy Dissipation: the Leading Factor of Fatigue. Strategic Highway Research Program: Sharing the Benefits. Strategic Highway Research Program. London, 1990:30~32
    4. A.C. Pronk. Evaluation of the Dissipated Energy Concept for the Interpretation of Fatigue Measurements in the Crack Initiation Phase. Road and Hydraulic Engineering Division. the Netherlands, 1995:22~28
    5. H.U. Bahia, D.I. Hanson. M. Zeng, H. Zhai, M.A. Khatri. NCHRP Report 459—Characterization of Modified Asphalt Binders in Superpave Mix Design. National Academy Press. 2001: 63~68
    6.张肖宁.沥青与沥青混合料的粘弹力学原理及应用.人民交通出版社. 2006:197~198
    7.袁燕.改性沥青胶浆的疲劳评价研究现状.中外公路. 2005,25(4):163~166
    8.袁燕.改性沥青胶浆的疲劳性能评价.华南理工大学博士学位论文. 2005:53~81
    9.李晓民.基于流变特性的沥青胶浆评价方法及性能的研究.哈尔滨工业大学博士学位论文. 2006:64~79
    10. Yiqiu Tan, Liyan Shan, Xiaomin Li. Fatigue Characteristic of Asphalt. Pavements and Materials: Characterization, Modeling, and Simulation. Geotechnical Special Publication, 2008, No. 182: 98~107
    11. A Shenoy. Fatigue Testing and Evaluation of Asphalt Binders using the Dynamic Shear Rheometer. Journal of Testing and Evaluation. 2002,30(4): 303~305
    12. K.S. Bonnetti, Kitae Nam, H. U. Bahia. Measuring and Defining Fatigue Behavior of Asphalt Binders. Transportation Research Record (No 1810). Transportation Research Borad. 2002:33~43
    13. K.D. Raithby, A.B. Sterling. Effect of Rest Periods on Fatigue Performance ofHot-rolled Asphalt under Reversed Axial Loading. Association of Asphalt Paving Technologists. 1970,39:134~147
    14. J.A. Deacon. Fatigue of Asphalt Concrete. Ph.D. Dissertation of University of California. 1965:50~80
    15. Y.R. Kim, D.N. Little. One-Dimensional Constitutive Modeling of Asphalt Concrete. J. Eng. Mech.. 1990,116(4):751~772.
    16. Y.R. Kim, D.N. Little, R.C. Burghardt. SEM Analysis on Fracture and Healing of Sand-Asphalt Mixture. Journal of Materials in Civil Engineering, 1991,3 (2): 140~153
    17. Y.R. Kim, S.L. Whitmoyer, D.N. Little. Healing in Asphalt Concrete Pavements: Is It Real? Transportation Research Record 1454. Transportation Research Board. 1994:89~96
    18. Y.R. Kim, Y.C. Lee, H.J. Lee. Correspondence Principle for Characterization of Asphalt Concrete.’’Journal of Material in Civil Engineering. 1995,7(1): 59~68
    19. C. De La Roche, P. Marsac. Caractérisation Expérimentale De La Dissipation Thermique Dans Un EnrobéBitumineux SollicitéEn Fatigue. Proc.,1st Eurasphalt and Eurobitume Congress. Strasbourg, France. 1996
    20. H. Baaj. Comportement a La Fatigue Des Matériaux Granulairs Traités Aux Liants Hydrocarbonés. PhD thesis. Institut National des Sciences Appliquées de Lyon. 2002:90~95
    21. F. Bonnaure, A. Huibers, A. Bonders. Etude en Laboratoire de L’influence des Temps de repos Sur Les Caractéristiques de Fatigue des Enrobés Bitumineux. Rev. Gén. Routes Aérodrom. 1983,595: 74~82
    22. L. Francken, C. Clauwaert. Characterization and Structural Assessment of Bound Materials for Flexible Road Structures. Proc., 6th Int. Conf. on Structural Design of Asphalt Pavements. 1987: 130~144
    23. D. Breysse, C. De La Roche, V. Domec, et al. Influence of Rest Time on Recovery and Damage during Fatigue Tests on Bituminous Composites. Materials and Structure. 2003,36:648~651
    24. H.U. Bahia, H. Zhai, K. Bonnetti, et al. Non-Linear Viscoelastic and Fatigue Properties of Asphalt Binders. The Journal of Association of Asphalt Paving Technologists. 1999,68:1~34
    25. J.P. Planche, D.A. Anderson, G. Gauthier, et al. Evaluation of Fatigue Properties of Bituminous Binders. Material and Structures. 2004,37:356~359 - 112 -
    26.葛折圣,黄朝晖,黄晓明.沥青混合料疲劳特性的影响因素分析.公路交通科技. 2002,19(6):1~4
    27.葛折圣,黄晓明.沥青混合料疲劳性能影响因素的灰关联分析.交通运输工程学报. 2002,2(2):8~11
    28.张晓华,崔勇.高应力水平下沥青混合料的疲劳特性和疲劳方程.公路交通科技(应用技术版). 2007,(2):96~98
    29.栾立强.考虑损伤与愈合的沥青混凝土疲劳性能的研究.长沙理工大学硕士学位论文. 2009:27~29
    30. K.D. Raithby, A.B. Sterling. Some Effects of Loading History on the Fatigue Performance of Rolled Asphalt. Transport and Road Research Laboratory, Rep. No. LR496, Crowthorne, U.K., 1972:15~19
    31. María Castro, JoséA. Sánchez. Fatigue and Healing of Asphalt Mixtures: Discriminate Analysis of Fatigue Curves. Journal of Transportation Engineering. 2006,132(2):168~174
    32. Y.R Kim, D.N. Little, R.L. Lytton. Fatigue and Healing Characterization of Asphalt Mixtures. Journal of Materials in Civil Engineering. 2003,15 (1): 75~83
    33. D.N. Little, R.L. Lytton, D. Williams, et al. An Analysis of the Mechanism of Microdamage Healing Based on the Application of Micromechanics First Principles of Fracture and Healing. Journal of the Association and Asphalt Paving Technologists. 1999,68:501~532
    34. C.L. Monismith, J.A. Epps, D.A. Kasianchuk, et al. Asphalt Mixture Behavior in Repeated Flexure. Report TE 70-5. University of California, 1971: 303~304
    35. F. N. Finn, C. Saraf, R. Kulkarni, et al. The Use of Distress Prediction Subsystem for the Design of Pavement Structures. Proceedings Fourth International Conference on the Structural Design of Asphalt Pavements. University of Michigan, 1977:35~39
    36. Shell International Petroleum Company, Ltd. Shell Pavement Design Design Manual. London, England, 1978:8~15
    37. Asphalt Institute. Research and Development of the Asphalt Institute’s Thickness Design Manual (MS-1), 9th Edition, Research Report 82-2, Asphalt Institute, Lexington, Kentucky, 1982:20~23
    38.谢军,郭忠印.沥青混合料疲劳响应模型试验研究.公路交通科技. 2007,24(5):21~25
    39. G. Chomton, P.J. Valayer. Applied Rheology of Asphalt Mixes, Practical Applications. Proceedings of the Third International Comference on the Structural Design of Asphalt Pavements. England, 1972: 214~215
    40. W. Van Dijk, H. Moreaud, A. Quederville, et al. The Fatigue of Bitumen and Bituminous Mixes. Proceedings of the Third International Conference on the Structural Design of Asphalt Pavements. London, England, 1972: 354~366
    41. W. Van Dijk. Practical Fatigue Characterization of Bituminous Mixes. Association of Asphalt Paving Technologists. 1975, 44: 38~75
    42. W. Van Dijk. The Energy Approach to Fatigue for Pavement Design. Association of Asphalt Pavement Technologists. 1977, 46: 1~40
    43. A.A. Tayebali, G.M. Rowe, J.B. Sousa. Fatigue Response of Asphalt-Aggregate Mixtures. Association of Asphalt Paving Technologists. 1992, 61: 333~353
    44. Shihui Shen, S.H. Carpenter. Development of an Asphalt Fatigue Model Based on Energy Principles. Journal of the Association and Asphalt Paving Technologists. 2007, 76: 525~555
    45.张婧娜,谭忆秋,张肖宁.应用能量原理预测沥青混合料的疲劳破坏.中国公路学报. 1998,11(4):11~17
    46.郑健龙,吕松涛,田小革.基于损伤力学的沥青混合料疲劳寿命预估.中外公路. 2005,25(3):94~98
    47.关宏信.沥青混合料粘弹性疲劳损伤模型研究.中南大学博士学位论文. 2005: 50~59
    48.刘伟民,黄晓明.基于耗散能原理的沥青混合料疲劳特性分析.河南科技大学学报自然科学版. 2006,27(2):23~25
    49.黄卫,邓学钧,C.L. Monismith.沥青混合料疲劳响应新模型研究.中国公路学报. 1995,8(1):56~60
    50.李喆,李志栋.基于能量法的沥青混合料冻融循环疲劳特性分析.山西交通科技. 2005,(1):26~28
    51.黄爱明,刘铁山.沥青混合料疲劳性能的耗散分析方法研究.山西建筑. 2005,31(23):148~149
    52.周淑珍,汤铁铭,张旭宏.基于耗散能理论的沥青混合料疲劳性能的研究.公路交通科技(应用技术版). 2006(3): 85~86
    53. S.W. Park, R.A. Schapery. Methods of Interconversion between Linear Viscoelastic Material Functions. PartⅠ—A number Method based on Prony Series. International Journal of Solid and Structures. 1999, 36: 1653~1675
    54. H.J. Lee, Y.R. Kim. Viscoelastic Constitutive Model for Asphalt Concrete under Cyclic Loading. Journal of Engineering Mechanics. 1998, 124 (1): 32~40
    55. Zhiming Si. Characterization of Microdamage and Healing of Asphalt Concrete Mixtures. Ph.D. Dissertation of Texas A&M University. 2001:12~16
    56. Zhiming Si, D.N. Little, R.L. Lytton. Characterization of Microdamage and Healing of Asphalt Concrete Mixtures. Journal of Materials in Civil Engineering. 2002,14(6):461~470
    57. Y.R. Kim. Evaluation of Healing and Constitutive Modeling of Asphalt Concrete by Means of the Theory of Nonlinear Viscoelasticity and Damage Mechanics. Ph.D. Dissertation of Texas A&M University. 1988:80~103
    58. H.J. Lee. Uniaxial Constitutive Modeling of Asphalt Concrete Using Viscoelasticity and Continuum Damage Theory. Ph.D Dissertation of North Carolina State University. 1996:45~56
    59. Y.R. Kim. Mechanistic Fatigue Characterization and Damage Modeling of Asphalt Mixture. Ph.D. Dissertation of Texas A&M University. 2003:19~23
    60. Haifang Wen, H.U. Bahia. Characterizing Fatigue of Asphalt Binders Using Viscoelastic Continuum Damage Mechanics. 88th Transportation Research Board Meeting, Washington DC, 2009:1~10
    61. J.A. Deacon, J.T. Harvey, A. Tayebali, et al. Influence of Binder Loss Modulus on the Fatigue Performance of Asphalt Concrete Pavement. Journal of the Association of Asphalt Paving Technologist. 1997,66:633~668
    62. Huachun Zhai. Superpave Protocols for Modified Asphalt Binders. University of Wisconsin-Madison, 2001:2~4
    63. H.U. Bahia, D.I. Hanson, M. Zeng, et al. Characterization of Modified Asphalt Binders in Superpave Mix Design. NCHRP Report 459, Transportation Research Board, Washington. D.C, 2001:12~17
    64. R. Delgadillo, H.U. Bahia. Rational Fatigue Limits for Asphalt Binders Derived from Pavement Analysis. Journal of the Association and Asphalt Paving Technologists. 2005, 74:97~133
    65. S.H. Carpenter, Shihui Shen. A Dissipated Energy Approach to Study HMA Healing in Fatigue. Transportation Research Record (No. 1970). Transportation Research Board. 2006:178~185
    66. Jo Sias Daniel, William Bisirri, Y.R. Kim. Fatigue Evaluation of Asphalt Mixtures Using Dissipated Energy and Viscoelastic Continuum DamageApproaches. Journal of the Association of Asphalt Paving Technologists. 2004:557~581
    67. H.U. Bahia, D.I. Hanson, M.Zeng, et al. Characterization of Modified Asphalt Binders in Superpave Mix Design. National Academy Press. 2001: 60~65
    68. Ghazi Al-Khateeb, A Shenoy. A Disctinctive Fatigue Failure Criterion. Journal of the Association of Asphalt Paving Technologists. 2004,73:585~609
    69.谭忆秋,赵晶,张肖宁.重复荷载作用下沥青低温粘弹效应的试验研究.哈尔滨建筑大学学报. 1999,32(2):99~102
    70.谭忆秋,孙立军,陶志政等.重复荷载作用下沥青低温粘弹特性研究.同济大学学报. 2002,30(6):690~694
    71.黄卫东,吕伟民.沥青及沥青混合料流变性质与动稳定度的关系.同济大学学报. 2000,28(4):501~504
    72.刘福明,邓英才,桂增俭.用流变学原理评价改性沥青的高温稳定性.天津建设科技. 2002,(1):24~26
    73.李静,袁建,郝培文等.沥青混合料低温抗裂性能研究.公路交通科技. 2005,22(4):9~12
    74.李晓民,张肖宁,南雪丽.改性沥青老化后动态粘弹力学行为的研究.中外公路. 2006,26(3):269~272
    75. Zheng Jian-long, Lv Song-tao, Tian Xiao-ge. The Time-Temperature-Aging Equilvalent Principle of Asphalt Mixture and Its Application.长沙理工大学学报. 2006,3(3):27~35
    76.郑健龙,吕松涛,田小革.沥青混合料粘弹性参数及其应用.郑州大学学报(工学版). 2004,25(4):8~11
    77.刘丽,郝培文.沥青胶浆粘度特性分析.河北工业大学学报. 2006,35(2):110~113
    78.闵召辉,黄卫.环氧树脂沥青的粘弹性能研究.石油沥青. 2005,19(2):10~14
    79.陈华鑫,袁迎捷,张争奇等.动态剪切流变仪试验影响因素研究.中南公路工程. 2005,30(2):142~145
    80. H. Di Benedetto, C. de La Roche, H. Baaj, et al. Fatigue of Bituminous Mixtures. Materials and Structures. 2004,37(15): 202~216
    81. Ashayer, M.A. Soltani. Comportement des Matériaux Granualires Traités aux Liants Hydrocarbonés. ENTPE-INSA Lyon, 2002: 248~249
    82. De la Roche, C.. Module de Rigiditéet Comportement en Fatigue des Enrobés Bitumineux. Expérimentations et Nouvelles Perspectives D’analyse.1996:189~190
    83. Y. R. Kim. Modeling of Asphalt Concrete. 2009: 261~262.
    84. A Soltani, D.A. Anderson. New Fatigue Protocal for Asphalt Mixture. Road Materials and Pavement Design. 2005,6(4): 486~514.
    85. E Schalek, A Szegvari. The Slow Coagulation of Concentrated Iron Oxide Sol to a Reversible Gel. Kolloid-Zeitschrift, 1923,33(6): 326~334
    86. T. Peterfi. Arch. Entwichkungsmech. Organ. 1927,112:680~681
    87. H. Green, R.N. Weltmann. Analysis of the Thixotropy of Pigmen-vehicle Suspension-Basic Principles of the Hysteresis Loop. Industrial and Engineering Chemistry Analytical Edition. 1943,15:201~206
    88. P Coussot, H Tabuteau, X Chateau, et al. Aging and Solid or Liquid Behavior in Pastes. Journal of Rheology. 2006,50(6): 975~994
    89. Uhlherr PHT, Guo J, Tiu C, Zhang XM, et al. The Shear-induced Solid-liquid Transition in Yield Stress Materials with Chemically Different Structures. Journal of Non-Newtonian Fluid Mechanics. 2005,125(2):101~119.
    90. Srinivasa R, Raghavan, Saad A. Khan. Shear-induced Microstructural Changes in Flocculated Suspensions of Fumed Silica. Journal of Rheology. 1993,39(6):1311~1325
    91. SR Raghavan, SA Khan. Shear-induced Microstructural Changes in Flocculated Suspensions of Fumed Silica. Journal of Rheology. 1995,39(6): 1311~1325.
    92. F Yziquel, PJ Carreau, M Moan, et al. Rheological Modeling of Concentrated Colloidal Suspension. Journal of Non-Newtonian Fluid Mechanics. 1999,86(1):133~155
    93. A Mujumdar, AN Beris, AB Metzner. Transient Phenomena in Thixotropy Systems. Journal of Non-Newtonian Fluid Mechanics, 2002,102(2): 157~178.
    94. CO Klein, HW Spiess, A Calin, et al. Separation of the Nonliear Oscillatory Response into a Superposition of Linear, Strain Hardening, Strain Softening, and Wall Slip Response. Macromolecules. 2007, 40(12):4250~4259.
    95. A Slibar, PR Paslay. In: Reiner M, Abir D, editors. Intern Symp on Second Order Effects in Elasticity. Plasticity and Fluid Dynamics. Pergamon Press. 1964: 314~315
    96. S Montes, JL White. Rheological Models of Rubber Carbon-Black Compounds-Low Interaction Viscoelastic Models and High Interaction Thixtropic Plastic Viscoelastic Models. Journal of Non-Newtonian Fluid Mechanics. 1993,49(2):277~298
    97. JD. Goddard. Dissipative Materials as Models of Thixotropy and Plasticity. Journal of Non-Newtonian Fluid Mechanics. 1984,14:141~160
    98. JJ. Stickel, RJ. Phillips, RL. Powell. A Constitutive Model for Microstructure and Total Stress in Particulate Suspension. Journal of Rheology. 2006, 50(4):379~413
    99. F Moore. The Rheology of Ceramic Slips and Bodies. Transactions of the British Ceramic Society. 1959, 58: 470-494
    100. QD Nguyen, DV Boger. Thixotropic Behavior of Concentrated Bauxite Residue Suspensions. Rheologica Acta. 1985,24(4):427~437
    101. EA Toorman. Modeling the Thixotropic Behaviour of Dense Cohesive Sediment Suspensions. Rheologica Acta. 1997,36(1):56~65
    102. P Coussot, QD Nguyen, HT Hyunh, et al. Viscosity Bifurcation in Thixotropic, Yielding Fluids. Journal of Rheology. 2002,46(3):573~589
    103. K Dullaert, J Mewis. A Structural Kinetics Model for Thixotropy. Journal of Non-Newtonian Fluid Mechanics. 2006,139(1):21~30.
    104. D.C.H. Cheng, F. Evans. Phenomenological Characterization of Rheological Behaviour of Inelastic Reversible Thixotropic and Antithixotropic Fluids. British Journal of Applied Physics. 1965,16: 1599~1600.
    105. J. Mewis, N. J. Wagner. Thixotropy. Advances in Colloid and Interface Science. 2009: 214~227.
    106. R. Derooij, A. A. Potanin, D. Vandenende, et al. Steady Shear Viscosity of Weakly Aggregating Polystyrene Latex Dispersions. Journal of Chemical. Physics. 1993, 99(11): 9213~9223
    107. K. Dullaert, J. Mewis. Stress Jumps on Weakly Flocculated Dispersions: Steady State and Transient Results. Journal of Colloid Interface Science. 2004, 287: 542~551
    108.吴其晔,巫静安.高分子材料流变学.高等教育出版社. 2002:60~61
    109. J. Van Rompu, H. Di Benedetto, G. Gauthier, et al. New Fatigue Test on Bituminous Binders and Mastics Using an Annular Shear Rheometer Prototype and Waves Propagation. RILEM 7th Symposium on Advanced Characterization and Testing on Bituminous Materials, Rhodes, 2009
    110. B. Delapore, J. Van Rompu, H. Di Benedetto, et al. New Procedure to Evaluate Fatigue of Bituminous Mastics using An Annular Shear RheometerPrototype. Proceedings of the 6th RILEM International Comference on Cracking in Pavement, Chicago, 2008: 457~467
    111. D.A. Anderson, Y.M. Le Hir, M.O. Marasteaun, et al. Evaluation of Fatigue Criteria for Asphalt Binders. Transportation Research Record, 1766. Transportation Research Board. 2001:48~56
    112. W. Martono, H. U. Bahia, J. D. Angelo. Comparison of Asphalt Binders’Fatigue Measured using Parallel Plate Geometry with Torsion Cylinder Geometry. 41st Petersen Asphalt Research Conference, Cheyenne, Wyoming, 2004,6: 1~9
    113. J. Anderson. Christensen, D.W.etl. Binder Characterization and Evaluation (SHPR-A-369),Vo3,Physical Characterization, SHRP, National Research Council,1994:20~22
    114. D. Breysse, C. De La Roche, V. Domec, et al. Influence of Rest Time on Recovery and Damage during Fatigue Tests on Bituminous Composites. Materials and Structure. 2003,36: 648~651
    115. D.N. Little, R.L. Lytton, D. Williams, et al. An Analysis of the Mechanism of Microdamage Healing Based on the Application of Micromechanics First Principles of Fracture and Healing. Journal of the Association and Asphalt Paving Technologists. 1999,68:501~532
    116. Per Redelius, Hilde Soenen. Binder Fatigue Predicition. Fatigue Damage Prediction Symposium, Laramie, Wyoming, 2001: 1~10
    117. A. Bhasin, D.N. Little, R. Bommavaram, et al. A Framework to Quantify the Effect of Healing in Bituminous Materials using Materials Properties. Road Materials and Pavement Design. 2008,9: 219~242
    118. R.R. Bommavaram, A. Bhasin, D.N. Little. Use of Dynamic Shear Rheometer to Determine the Intrinsic Healing Properties of Asphalt Binders. Proceedings of the 88th Annual Meeting of the Transportation Research Road, Washington DC, 2009: 1~18
    119. J. Mewis, Norman J. Wagner. Thixotropy. Advances in Colloid and Interface Science. 2009,147: 214~227
    120.纪士东,周道森.陶瓷泥浆触变模型的研究.硅酸盐通报. 1996,(5):23~27
    121.张亮军.几种含蜡原油触变模型的比较.江汉石油职工大学学报. 2008,21(6):56~58
    122.宋艾玲,梁光川,王文耀.描述含蜡原油触变性的新型三参数模型.油气储运. 2007,26(7):40~45
    123. Howard A. Barnes. Thixotropy—A Review. Journal of Non-Newtonian Fluid Mechanics. 1997, 70: 1~33
    124. P.C. Hopman, P.A.J.C. Kunst, A.C. Pronk. A Renewed Interpretation Method for Fatigue Measurement, Verification of Miner’s Rule. 4th Eurobitume Symposium, 1989, 1:557~561
    125. G.M. Row. Performance of Asphalt Mixtures in the Trapezoidal Fatigue Test. Journal of the Association of Asphalt Paving Technologist. 1993:334~335
    126. G.M. Row, M.G. Bouldin. Improved Techniques to Evaluate the Fatigue Resistance of Asphaltic Mixtures. 2nd E&E Congress, Barcelona, 2000: 263~271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700