用户名: 密码: 验证码:
大功率LED蓝白光转换关键封装技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着LED(light‐emitting diode)照明产业的发展,材料、芯片制造、管芯封装和应用产品已形成一个技术含量高、市场前景广阔的产业链,尤其是大功率、高亮度LED模组已成为国际半导体照明和显示领域的竞争热点。目前大功率白光LED的发光原理主要是应用以蓝宝石或碳化硅为衬底的蓝光LED芯片通过激发YAG(yttrium aluminum garnet钇铝石榴石)荧光粉发出白光而实现的。荧光粉涂覆技术作为白光LED封装中的关键技术之一,已成为产业发展的核心技术壁垒。当前国内大功率白光LED荧光粉涂覆工序,主要是使用点胶法来实现的,而过度使用这种传统涂覆技术,同时又缺乏对新型高效可靠的涂覆技术的研发投入,就决定了国内的LED生产企业无法生产高品质的白光LED的产业现状。因此,荧光粉喷涂技术中,荧光粉层厚度或均匀度的高精确可控性,就成为了当下的研究热点。本文以大功率LED封装的荧光粉涂覆工艺及其涂覆设备制造与设计中的若干关键问题为研究对象,研究主要集中在以下几个方面:
     1.对基于压电喷涂原理的荧光粉喷头进行研究与设计,针对其压电喷头结构原理与喷涂机理进行了系统的分析和总结。以提高系统响应速度、稳定性与涂覆精度为目的,建立了压电喷头结构原理与其涂覆过程原理的数学模型,通过对喷头腔体内部荧光粉胶流体运动的简化,推导出形成荧光粉微滴喷射的数学判据,提出了荧光粉喷头的关键性能指标。
     2.采用CFD(computational fluid dynamics计算流体动力学)与数值模拟方法研究大功率LED荧光粉喷涂过程中荧光粉胶的流动传输和雾化过程,建立了3‐D荧光粉流场模型与数学模型,用于描述雾化喷涂枪外部荧光粉胶流场的速度分布,最后通过喷涂实验验证了仿真预测结果与实验结果的一致性。研究表明:在不建立雾化过程模型的情况下,采用数值模拟仿真能准确预测LED荧光粉喷涂过程中荧光粉微滴轨迹和速度分布;在相同喷涂距离内,荧光粉微滴直径越小、速度越快,小荧光粉微滴加速和减速的距离相对更短。
     3.对于大功率LED荧光粉涂覆过程中机器视觉测量的应用,做出了以下几方面的研究:(1)给出了荧光粉涂覆设备中对LED芯片的机器视觉定位方法;(2)研究了通过中值滤波与数学形态学方法相结合,从而获得荧光粉胶点的图像边缘的边缘检测方法;(3)研究了通过对比荧光粉涂层图像与标准涂层图像模板,检测出荧光粉涂层涂覆面不规则、沾胶和异物等缺陷的缺陷检测方法;(4)主要研究了采用激光三角多点测量法快速检测荧光粉涂层表面上多个点的厚度,然后在胶点边缘曲线内对所测出的各点高度进行积分,从而估算出胶点近似体积的荧光粉胶点体积估计法。
     4.对于荧光粉涂覆控制过程,传统的荧光粉点胶过程一般采用开环控制,但由于大批量涂覆过程中,单颗LED的荧光粉涂覆量随着涂覆次数的增大,将有很大的漂移,从而严重影响白光LED的光色品质,因此本文把消除荧光粉量的漂移现象的控制策略作为研究的重点。由于影响点胶质量的大部分过程变量不可在线测量或者不便测量,因而控制方法和控制器的选择受到很大的限制,所以本文根据所建立的荧光粉涂覆过程模型,采用一种新的质量控制方法——SPC(Statistic Process Control统计过程控制)来调节喷出的胶量大小,进而提高点胶量的一致性。
     5.设计了荧光粉喷涂设备控制系统,并分别对本文所提出的机器视觉检测、批量涂覆控制等关键技术进行了实验设计与验证。经实验得出,本文所设计的荧光粉喷涂设备能高速高精度完成飞利浦流明公司设计的1W大功率LED芯片封装(1W大功率LED常用封装)的荧光粉涂覆工序;此外,还对多种COB封装、SMD封装的LED支架进行了批量涂覆实验,也获得了很好的效果,从而论证了本文所设计的荧光粉喷涂设备能广泛应用于目前市面上绝大多数的LED荧光粉涂覆工序。
     最后,本文总结了现有研究成果,还提出了值得研究和探索的几点问题,并对荧光粉喷涂技术问题的研究方向做了一些展望。
     本课题在广东省战略性新兴产业专项资金LED产业项目“大功率LED模组生产工艺及成套设备”(2010A081002007)和国家863计划项目(2012AA041312)的支持下完成。
With the development of LED (light‐emitting diode) lighting industry, chipmanufacturing, LED encapsulation and application products has formed a high technicalcontent industry chain with bright market prospect, especially the high power and highbrightness LED module has become a international research hotspot in the field ofsemiconductor lighting and display. The common Light-emitting principle of high powerwhite LED is to stimulate YAG(yttrium aluminum garnet) phosphor by a blue LED chipbonded on silicon carbide or sapphire substrate. As the matter of fact, the key technology ofthe phosphor coating has become the industry development barriers. So far, the domestic highpower white LED phosphor coating technology mainly is dependent on the method ofdispensing. The excessive use of this traditional coating technology and lack of research andinvestment in the new type of high efficiency coating technology determines that the statusquo of domestic light LED manufacturing enterprise can't produce high quality white LEDindustry. Therefore, the control of phosphor layer thickness and uniformity and precisephosphor spraying technology has become the current hot research topic. This article mainlybase on the high power LED packaging phosphor coating technology and some key problemswith the design of coating equipment, and the research focuses on the following sections:
     1. Based on the research and design principle of piezoelectric coating phosphor actuatorfor phosphor coating equipment, structure of the piezoelectric coating actuator coatingprocess is analyzed and summarized; In order to improve the system response speed, stabilityand accuracy of coating, the structure of phosphor actuator and the mathematical model of thephosphor coating process were established. Through the simplification of internal phosphorglue fluid motion of piezoelectric coating phosphor actuator, the mathematical criterion offorming phosphor droplets was deduced, and the key performance indicators of piezoelectricactuator are put forward.
     2. This chapter aims at the base studying and qualitative analysis of the high-power LEDphosphor coating process, especially in the atomizing phosphor flow field distribution and itsdroplets transportation. A CFD (Computational Fluid Dynamics) research and the numerical simulation of the coating process are presented in this paper. Mathematical models of thevelocity distribution of the phosphor gel flow and3-D models of the EFD-781and EFD-787spray guns are set up. A reasonable coating distance downstream from the phosphor coatinggun nozzle exit to the LED chip surface is found out in this research. In addition, thisnumerical simulation can also predict the droplets trajectories, and its velocity distributionwill highly match with experimentally observations.
     3. This chapter aims at the application of vision technologies for high power LEDfluorescent powder coating process. First of all, vision positioning method of the phosphorcoating equipment is introduced; Then after completion of the current coating process, we gotthe edges image of phosphor layer by using CCD to grab a two-dimensional gray image of thephosphor glue points, filtering image noise through the median filtering, and by using themathematical method of phosphor layer edge detection; Meanwhile, Through acquisition ofphosphor layer image after coating phosphor, compared with standard coating image template,so as to detect the surface defects of the phosphor layer such as irregular, glue stained andforeign bodies, the phosphor layer defect detection is realized. Then, the triangulationmulti-point laser measurement method is given to detect the thickness of the phosphor layer,to detect the defects and such as thick, thin and uneven thickness; Finally, the height of eachpoint on the surface of the phosphor layer inside the edge of the glue point can be measured tocalculate the approximate glue point volume.
     4. For control process of phosphor coating, open loop control has been used in thetraditional phosphor dispensing process, however, due to the large quantities of LEDs incoating process, the phosphor coating quantity of single one LED phosphor will increase asthe number of coating grows, and its quantity will have plenty of drifting, which willseriously affects the white LED light quality. As the matter of fact, this charpter focus on thecontrol strategy of eliminating this drift phenomenon. In the process of practical production,most of the process variables affecting the quality of glue incapable or inconvenience tomeasure, so the choice of control method and controller is limited. This charpter, we used anew method of quality control (statistical process control, SPC) to regulate the amount of glueout size and to promotive and enhance adhesive performance consistency, based on the established phosphor coating process model.
     5. The overall framework of phosphor coating equipment and its control system aredesigned, according to the vision detection techniques and the SPC control strategy, and therelative experiment is the designed and validated. These experiments show that the phosphorcoating equipment and control strategy we used can complete the phosphor coating process ofPhilips Lumens1W high power LED chips encapsulation, one of the commonly used1whigh power LED packaging form, precisely and efficiently. And we also run the SPC controlstrategy experiment for a variety of COB encapsulation, SMD encapsulation LEDs, and alsoobtained the very good effect, which demonstrated this control strategy and the design of thephosphor coating equipment can be widely used in the most of LED phosphor coatingprocess.
     Finally, on the basis of summarizing the existing research results, this article puts forwardsome problems worthy of thinking and exploration, and made some prospects for t theproblem of phosphor coating technology.
     This project is supported by the National high technology research and developmentprogram (863program)(Grant No.2012AA041312) and the Key Research CooperationProject of Guangdong Province and the Ministry of Education “High power LED moduleproduction technology and complete set of equipments”(Grant No.2010A081002007)
引文
[1] Roland Hait, Fred Kish, Jeff Tsao, et al. The Case for a National Research ProgramSemiconductor Lighting, Report of Optoelectronics Industry DevelopmentAssociation(OIDA) forum(1999)
    [2] Mike Muehlernann, The lighting Feasibility Chart-A Logical Systematic Approach,Illumination Technologies, Inc., http://www. ilhiminationtech.com.
    [3] Lumileds Lighting Company(LLC) Application Brief17, Benefits of Lumileds SolidState Lighting Solutions vs. Conventional Lighting, http://www.lumileds.com
    [4] K. Takahashi, N. Tadokoro and S. Takeuti. LED array Unit with silicon microreficetor[c],7th International Symposium on Micro Machine and Human Seienee,1994,67-70.
    [5] James M. Gee, Jeffey Y. Tsao, and Jerry A. Simmons. Prospects for LED Lighting[J],Proceedings of SPIE,2004,5187:227-233.
    [6] Jeny A, Sinunons. Solid State Lighting: Synergisms with Office of Science MaterialsPrograms[c], EMACC Meeting,2001.
    [7]韩琦,流丽.高亮度白光LED技术及市场分析[J],国际光电与显示, April,2004129-131.
    [8] Jeffrey Y. Tsao. Light Emitting Diodes(LEDs) for General Illumination, Opticalelectronics Industry Development Association(OIDA), An OIDA Technology RoadmapUpdate,2002.
    [9] Frank Wall, Paul S. Martin and Gerard Harbers. High Power LED PackageRequirements[J], Proceedings of SPIE,2003,5187:85-92.
    [10]刘行仁,薛胜薛,林秀华等.白光LED现状和问题[J],光源与照明,2003.3,4-8.
    [11] M. George Craford. Visible LEDs: The Trend toward High power Emitters andRemaining Challenges for Solid State Lighting[J], Proceedings. of SPIE,2002,4776:l-8
    [12] Lumileds Lighting LLC Company http://www.himileds.com
    [13] Cree Company press release, http://www.cree.com
    [14] Nichia Company press release, http://www.nichia.com
    [15] Yung S. Liu, Jung-Tsung Hsu, Jim Chi. Shyi-Ming Pan, et al. Progress of Solid StateLighting Technology in Taiwan[J], Proc. of SPIE,2004,5187:199-206.
    [16] David G, Pelka, Kavita Patel. An Overview of LED Applications for GeneralIllumination[J], Proeeedings of SPIE,2004,5186:15-26.
    [17] Jeff Y. Tsao. Solid State Lighting Lamps Chips and Materials for Tomorrow[J], IEEECIRCUITS&DEVICES MAGAZINE,2004,28-30.
    [18] Thomas Drennen, Roland Haitz and Jeffey Y. Tsao. A Market Diffusion and EnergyImpact Model for Solid-State Lighting[C], Reports of Solid State Lighting, August,2001.
    [19] E. Fred Schuber. Light-Emitting Diodes[N], Cambridge Press,2003,111-132.
    [20]黄德修,半导体光电子学[N],北京:电子工业出版社第二版,1996.
    [21] Xiaoyun Guo. Effect of Current Crowding and Device Structure on Operation ofGallium Nitride Based Light Emitting Diodes, College of Engineering Dissertation,Boston University, UMI:3031574(2002).
    [22] Wermer Goet. White Lighting(Illumination) with LEDs[C],5th InternationalConference on Nitride Semieonduetors, Nara, Japan, May25-30,2003.
    [23] Cree Optical, Products, G*SiC Technology for Bright Power ChipLEDXB900-S0100-A, http://www.cree.com
    [24] R. Seott Kern. Light-emitting diodes in automotive forward lighting applications:materials engineering solutions to fundamental challenges, SAE,2004.
    [25] Carl Zweben. New material options for light emitting diode packaging[J], Proceedingsof SPIE,2004,5366:173-182.
    [26] Dr. R. Scott Kern and Mr. Markus Maile. Innovative automotive lighting with LEDs:Luxeon LEDs for automotive front and interior lighting, Lumileds Lighting technicalpresentation, http://www.lumileds.com
    [27]张万生,布良基.功率型发光二极管的研究与应用进展[J],物理学和高新技术,2003,32(5):309-314.
    [28] W. Kennedy. Flip-Chip LEDs: An LED Perspective, http://www. mierolamps-tg. com.
    [29] J. J. Wierer, D. A. Steigerwald, M. R. Krames, et al. High-power AIGaInN flip-chiplight-emitting diodes[J], APPLIED PHYSICS LETTERS,2001,78(22):3379-3381.
    [30] Ceramics technical datasheet, on Metal Ceramics Solutions,http://www.laminaceramics.com
    [31] R. Mueller-Mach, G. O. Mueller, M. R. Krames, et al. High-power Phosphor-convertedligh-emitting diode based on III-nitrides[J], IEEE Journal on selected topics inquantumelectronics,2002,8(2):339-345.
    [32]王尔镇,高效率白光LED技术[J],灯与光源,2003,27(4),26-31.
    [33]中国科学院吉林物理所,中国科学技术大学《固体发光》编写组编.固体发光[M],1976.
    [34]钱可元,胡飞,吴慧颖等.大功率白LED封装技术的研究[J], SEMICONDUCTOROPTO ELECTRONICS,2005,26(2):118-120.
    [35] Georg Bogner, Alexandra Debray, Gunther Heidel, et al. Whilte LED, Conference onLight-Emitting Diodes Researeh[J], Manulacturing and Applications III.Califomia:1999:SPIE Vol.3621:143-150.
    [36]刘科,触变性研究新进展[J].树脂与聚合物,2003,21(3),31-33.
    [37]桑国仁,吴春雷,杨本意,段先健.气相二氧化硅生产及其在高分子工业中的应用[J],广东化工,2003年,第2期,56-59.
    [38] James Petroski. Thermal Challenges Facing New Generation Light EmittingDiodes(LEDs) for Lighting Applieations[J], Proeeedings of SPIE,2002,4776:215-222.
    [39]侯镇冰,何绍杰,李恕先.固体热传导(第一版)[M].上海:上海科学技术出版社,19842-94.
    [40] Hakan Nilsson. Heat Transfer[M], Ineropera&Dewitt. Chapter3
    [41] Rao R. Tummala, Eugene J. Rymaszewski and Alan G. Klopfenstein. Micro-electroniesPacking Handbook(SeeondEdition)[M],2001.
    [42] R. W. Keyes. Heattransfer inforced convection through fins[J], IEEE Trans. EleetronDeviees,1984,31:1218-1221.
    [43] Yunhyeok Im, Hvejung Cho, Minha Kim and Joonghyun Baek. Miero CoolingApplicationon High Density Memory Module[C],19thIEEE SEMI-THEMSymposium,2003.
    [44] Ali Shakoun, Yan Zhang. On-Chip Solid-State Cooling for Itergrated Circuits UsingThin-Film Micro-frigerators[J], IEEE Transactions on Components and PackagingTechnologies,2005,28(l):65-69.
    [45] Ronggui Yang. Gang Chen. G. Jeffrey Snyder, Jean Pierre Reurial, MultistageThermoelectric Micro-coolers[J], J. Appl. Phys.2004,95(12):8226-8232.
    [46] Avto Tavkhelidze, Givi Skhiladze, et al. Thermal Management Solutions Using ElectronTunneling Trougha Nano-Scale Vacuum Gap[J], AIPConf. Proc.2004,699:45-50.
    [47] Avto Tavkhelidze, Givi Skhiladze, et al. Electron Tunneling ToughLarge Area VacuumGap, ICT Conference Proeeedings,2002.
    [48] Scott Huxtable. Heat Transport in Superlattiees[z], Nano engineering Laboratory,Department of Mechanical Engineering, University of California-Berkeley,2002.
    [49] Avto Tavkhelidze, Zaza Taliashvili. Nano Cooling and Thermal Conversion:Construction of Useful5nm Vacuum Gap Across Maero-seopie Areas[C], Cool-Chipsplc.2008
    [50]余彬海,李绪锋. Flip-chip衬底粘接材料对大功率LED热特性的影响,第九届全国LED产业研讨与学术会议论文集,江西南昌,2004.
    [51] L. Trevisanello, M. Meneghini, G Muraetal. Aeeelerated Iifetest of high brightnessLight emitting diodes. IEEE Transactions on Device and Materials Reliability,2008,8304-311
    [52] L. Tan, J. Li, K. wang et al. Effects of defects on the thermal and optical Performance ofhigh-brightness light-emitting diodes. IEEE Transactions on Electronics PackagingManufacturing,2009,32:233-240
    [53] K. Yamada, Y. Imai, K. Ishii. Optical simulation of light source devices composed ofblue LEDs and YAG Phosphor. Journal of Light and Visual Environment,2003,27:70-74
    [54] N. Narendran, F. Gu, J. P. Freyssinier-Novaetal. Extraeting Phosphor-scatteredphotonstoim prove white LED efficiency. Physical Status Solidi,2005,202:R60-R62
    [55] Y. Zhu, N. Narendran, Y. Gu. Investigation of the optical Properties of YAG:CePhosphor in Sixth International Conference on Solid State Lighting. SPIE,2006.63370S-l-63370S-8
    [56] M. Arik, A. Setlur, S. Weaveretal. Chip to system levels thermal needs and alternativethermal technologies for high brightness LEDs. Journal of Electronic Packaging,2007,129:328-338
    [57] H. Luo, J. K. Kim, E. F. Sehubertetal. Analysis of high-Power Packages forPhosphor-based white-light-emitting diodes. Applied Physics Letters,2005,86:243505-l-243505-3
    [58] J. K. Kim, H. Luo, E. F. Sehubert et al. Strongly enhanced Phosphor efficiency inGaInN white light-emitting diodes using remote Phosphor configuration and diffusereflector cup. Japanese Journal of Applied Physics,2005,44:L649-L651
    [59] B. F. Fan, H. WU, Y. Zhao et al. Study of Phosphor thermal-isolated Packagingtechnologies for high-Power white light-emitting diodes. IEEE Photonics TechnologyLetters,2007,19:1121-1123
    [60] N. Narendran. Improved Performance white LED. In Fifth International Conference onSolid State Lighting, SPIE,2005.594108-594108-6
    [61] N. Narendran, Y. Gu, J. P. Freyssinieretal. Solid-state lighting: failure analysis of whiteLEDs. Journal of Crystal Growth,2004,268:449-456
    [62] A. W. Norris, M. Bahadur, M. Yoshitake. Novel silicon ematerials for LED Packaging.In Fifth International Conference on Solid State Lighting. SPIE,2005.594115-1-594115-7
    [63] M. Bahadur, A. W. Norris, A. Zarisfietal. Silicon ematerials for LED Packaging. InSixth International Conference on Solid State Lighting. SPIE,2006.63370F-l63370F-7
    [64] F. W. Mont, J. K. Kim, M. F. Sehubert et al. High refractive in dexnan oparticle-loadedencapsulates for light-emitting diodes. In Light-Emitting Diodes: Research,Manufacturing, and Applications XI. SPIE,2007.64861C-64861C-8
    [65] D. M. Wang, S. H. Chen, M. Wang et al. The design and fabrication of micro lens andLED integrated Packaging. In20067th international Conference on ElectronicPackaging Technology IEEE,2006.359803-1-359803-3
    [66]田大垒,关荣峰,赵文卿等. LED光取出技术研究进展.电子元件与材料,2008,27:42-44
    [67] L. Wang, K. Y. Qian, Y. Luo. Discontinuous free-form lens design for Prescribedirradiance. Applied Optics,2007,46:3716-3723
    [68] K. Wang, E. Chen, Z. Liuetal. Designof compact free form lens for application specificlight-emitting diode packaging. Optics Express,2010,18:413-425
    [69] K. Wang, S. Liu, X. B. Luoetal. Optical analysis of a3W light-emitting diode(LED)MR16lamp. In2008International Conference on Electronic Packaging Technology&High Density Packaging. IEEE,2008.
    [70]赵春雷,黄小卫,张书生等.助熔剂对Y3A15O12:Ce荧光粉性能的影响.中国稀土学报,2002,20:605-607
    [71] T. Tachiwaki, M. Yoshinaka, K. Hirota et al. Novels Analysis of Y3A15O12(YAG)leading to transparent ceramics. Solid State Communications,2001,119:603-606
    [72] R. J. Crawford, D. E. Mainwaring, I. H. Harding. Adsorption and precipitation of heavymetals from ammoniacal solutions using hydrousmetal oxides. Colloidsan Surfaces A:Physieo chemieal and Engineering Aspects,1997,126:167-179
    [73] Y. Pan, M. WU, Q. Su. Tailored Photo luminescence of YAG:Ce Phosphor throughvarious methods. Journal of Physics and Chemistry of solids,2004,65:845-850
    [74] J. K. Park, K. J. Choi, J. H. Yeon et al. Embodiment of the warm white-light-emittingdiodes by using a Bacooped SrSiO: Eu Phosphor. Applied Physics Letters,2006,88:043511-1-043511
    [75] J. S. Yoo, S. H. Kim, W. T. Yooetal. Control of spectral properties ofstrontium-alkaline-alkaline earth-silicate-europium Phosphors for LED applications.Journal of the Electro chemical Society,2005,152:G382-G385
    [76] H. S. Jang, D. Y. Jeon. Yellow-emitting Sr3SIO5:Ce3+, Li+phosphor forwhite-light-emitting diodes and yellow-light-emitting diodes. Applied Physics Letters,2007.
    [77] H. S. Jang, D. Y. Jeon. White light emission from blue and near ultravioletlight-emitting diodes pre-coated with a Sr3SIO5:Ce3+, Li+Phosphor. Optics Letters,2007,32:3444-3446
    [78] R. J. Xie, N. Hirosaki, K. Sakuma et al. White light-emitting diodes(LEDs) using (oxy)nitride Phosphors. Journal of Physies D:Applied Physies,2008,41144013-1-144013-5
    [79] R. Mueller-Mach, G Mueller, M. R. Kramesetal. Highly effieient all-nitridePhosphor-converted white light emitting diode. Physica Status Solidi(a),2005,1727-1732
    [80] K. Sakuma, K. Omiehi, N. Kimuraetal. Warm-white light-emitting diode with yellowishorange SiAION ceramic phosphor. Optics Letters,2004,29:2001-2003
    [81] R. C. Jordan, J. Bauer, H. Oppermarm. Optimized heat transfer and homogeneous colorconverting forultra-high brightness LED Package. In Photonics in the Automobile II.SPIE,2006.61980B-1-61980B-12
    [82] W. D. Collins, M. R. Krames, GJ. Vethoeckx et al. Using electro phoresis to Produce aconformal coated phosphor-converted lighte mitting semieon ductor. USPatent,6576488, June112001
    [83] B. P. Loh, N. W. M. JR, P. Andrews et al. Method of uniform phosphor chip coating andLED Package fabrieate dusing method. US Patent,2008079017A1,2008
    [84] B. Branne, K. Petersen, J. Straussetal. A new wafer level coating technique to reduce thecolor distribution of LEDs. In Light-Emitting Diodes: Research, Manufacturing, andApplications XI. SPIE,2007.6486OX-64860X-11
    [85] J. H. Yum, S. Y. Seo, S. Leeetal. Comparison of Y3A15O12:Ce0.05Phosphor coatingmethods for white-light-emitting diode on GalliumNitride. In Solid State Lighting andDisplays. SPIE,2001.60-69
    [86] Hou, H. Rao, J. Li. Methods of increasing luminous efficiency of Phosphor-convertedLED realizedby conformal Phosphor coating. Journal of Display Technology,2009,5:57-60
    [87]李君飞,饶海波,侯斌等.提高基于粉浆法的功率型白光LED发光效率的研究.半导体学报,2005,29:954-987
    [88] H. Beehtel, P. Schmidt, W. Busseltetal. Lumiramic: anew phosphor technology for highPerformance solid state light sources. SPIE,2008.
    [89] S. Fujita, S. Yoshihara, A. Sakamoto et al. YAG glass-ceramic Phosphor for whiteLED(I): background and development. In Fifth international Conference on Solid StateLighting. SPIE,2005.
    [90] J. Petroski. Spacing of high-brightness LEDs on metal substrate PCB’s for properthermal performance. In20049thIntersociety Conference on Thermal and Thermomcehanical Phenomena in Electronic Systems. IEEE,2004.507-514
    [91] X. B. Chen, W. J. Zhang,G. schoenau, B. Surgenor, Off-Line Control of Time-PressureDispensing Processes for Electronics Packaging, IEEE Transactions on ElectronicsPackaging Manufacturing, Vol.26, No.4, pp.286-293,2003
    [92] R. P. Chhabra. J. F. Richardson. Non-Newtonian flow in the process industries:fundamentals and engineering applications,Oxford: Butterworth-Heinemann,1999
    [93] Y. X. Zhao, H. X. Li, H. Ding,Y. L. Xiong, Integrated modeling of time-pressure fluiddispensing for electronics manufacturing. Int. J Adv. Manuf. Technol., Vol.26,pp.1-9,2005
    [94] A. A. West, D. J. Williams, and C. J. Hinde, Experience of the Application of IntelligentControl Paradigms to Real Manufacturing Processes,” Proc. Instn. Mech. Engrs. vol.209, pp.293-308,1995.
    [95] B. K. P. Horn,Height and gradient from shading,International Journal of ComputerVision,Vol.5,NO.1,pp.37-75,1990
    [96]赵翼翔,面向半导体封装的点胶系统建模、控制与实现,华中科技大学博士学位论文
    [97] Jang J S, Sun C T. Neuro-fuzzy and soft computing. New Jersey: Prentice Hall,1997
    [98] Economou G C, Morari M, Palsson B O. Internal model control: Extension to nonlinearsystems. Ind. Eng. Chem. Process,1986,25(2):403–411.
    [99] Morari M, Zafiriou E. Robust Process Control. New Jersey: Prentice Hall,1989
    [100] Rivals P. Nonlinear internal model control using neural networks: Application toprocess with delay and design issues. IEEE Trans on Neural Networks,2000,11(1):80-90
    [101] B. Hou, H. Rao, and J. Li, Phosphor coating technique with slurry method in applicationof white LED[C], inProc. SPIE,2008, vol.6841, p.106.
    [102] Zong-Tao Li, Qing-Hui Wang, Yong Tang, Light Extraction Improvement for LED COBDevices by Introducing a Patterned Leadframe Substrate Configuration[J], IEEETransactions on Electron Devices,2013, p1397-1403
    [103] Juntunen, E., Tapaninen, O., Sitomaniemi, A., Effect of Phosphor Encapsulant on theThermal Resistance of a High-Power COB LED Module[J], IEEE Transactions onComponents, Packaging and Manufacturing Technology,2013, p1148-1154
    [104]郁朋,高黏度压电微喷装置实验研究[D],哈尔滨工业大学硕士学位论文,2011
    [105] Zong-Yuan Liu, Sheng Liu, Kai Wang, Xiao-Bing Luo, Studies on Optical Consistencyof White LEDs Affected by Phosphor Thickness and Concentration Using OpticalSimulation[J], IEEE transactions on components and packaging technologies,2010, Vol.33, p137-142
    [106]姚悦,高黏度流体气力雾化机理及试验研究[D],浙江大学硕士学位论文,2006
    [107] Vladimir Mironov, Thomas Boland, Thomas Trusk, et al, Organ printing:computer-aided jet-based3D tissue engineering[J], Trends in Biotechnology,2004, vol.22, pp.265.
    [108] T. Ba, H.W. Ng, and C.W. Kang, Numerical Simulation of the Plasma Flow and ParticleBehavior with Inclusion of Curved Substrates in the Plasma Spray Process, Proceedingsof the4th Asian Thermal Spray Conference[C], C.J. Li and G.J. Yang, Eds.,2009(Xi_an, China),2009, p219-225
    [109] Y.X. Chen, X.B. Liang, Y. Liu, and B.S. Xu, Numerical Analysis of the Effect of ArcSpray Gun Configuration Parameters on the External Gas Flow[J], J. Mater. Process.Technol.,2009,209, p5924-5931
    [110] Z. Yin, S. Tao, X. Zhou, and C. Ding, Particle In-Flight Behavior and Its Influence onthe Microstructure and Mechanical Properties of Plasma-Sprayed Al2O3Coatings[C], J.Eur. Ceram. Soc.,2008,28, p1143-1148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700