用户名: 密码: 验证码:
超高压处理对莲子淀粉结构及理化特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉是自然界中第二大天然高分子碳水化合物,产量仅次于纤维素,天然淀粉因不溶于冷水,乳化能力差,易老化,机械稳定性和贮藏稳定性差等不足,极大限制了淀粉的应用。对淀粉进行改性处理使之符合工业化应用的要求已成为当前淀粉研究领域的一大热点。在各种物理改性淀粉方法中,超高压(Ultra High Pressure)技术是非热力物理加工技术,为淀粉改性提供了一种新方法,具有良好的应用前景。本文以莲子淀粉为研究对象,系统研究不同超高压压力、保压时间和淀粉乳浓度处理对莲子淀粉结构和理化特性的影响,探明作用机理,研究经超高压处理后的淀粉对双歧杆菌体外增殖作用以及对罐藏莲子品质的影响,研究结果表明:
     (1)超高压处理对莲子淀粉颗粒特性的影响
     莲子淀粉乳在超高压处理下的颗粒形态、偏光十字、粒径大小和分布以及淀粉颗粒的结晶结构发生不同程度的变化。莲子淀粉乳在500MPa压力处理60min以及600MPa压力处理30min条件下的颗粒特性发生明显变化。莲子淀粉乳经600MPa压力后偏光十字消失,颗粒内部有序的晶体结构被破坏,淀粉的X-射线衍射图谱由C-型向B-型转变;淀粉颗粒发生崩溃,表面出现凹陷,糊化的淀粉颗粒粘连在一起,颗粒粒径大小和分布达到最大值。超高压处理对不同淀粉乳浓度的莲子淀粉颗粒特性无显著影响。
     (2)超高压处理对莲子淀粉分子特性的影响
     傅立叶红外光谱仪(FTIR)研究发现莲子淀粉乳在超高压处理前后没有出现新的吸收峰或某个特征峰的消失,没有产生新的基团,表明超高压处理淀粉乳是物理改性过程。核磁共振波谱仪(NMR)研究结果表明莲子原淀粉在C1区域出现三重峰,表现出A-型晶体结构特征,经600MPa压力后表现出B-型晶体结构特性。随着超高压处理压力或保压时间的增加,C1和C4区域特征峰的强度逐渐减弱,相对结晶度降低。尺寸排阻色谱与18角度激光光散射仪和示差检测器串联系统(SEC-MALLS-RI)研究结果表明,莲子原淀粉的重均分子量(Mw)和数均分子量(Mn)分别为1.433×107Da和1.118×107Da,多分散系数(MW/Mn)为1.282。超高压处理导致莲子淀粉分子量分布变宽,分子内部结构受到破坏。
     (3)超高压处理对莲子淀粉糊特性的影响
     超高压处理提高了莲子淀粉在低温条件下(55℃-75℃)的溶解度和膨胀度;降低了淀粉糊的透光率以及淀粉在高温条件下(85℃~95℃)的溶解度和膨胀度;经500MPa超高压处理10~50min或100~500MPa处理30min有利于改善莲子淀粉糊的凝沉性和冻融稳定性,而随着超高压处理压力和保压时间的增加,淀粉糊的凝沉性和析水率显著升高。与莲子原淀粉形成的凝胶相比,超高压处理改变了莲子淀粉糊的凝胶质构特性,降低了淀粉的胶黏性、硬度、凝聚性、咀嚼性和粘性,而弹性无显著性变化。
     (4)超高压处理对莲子淀粉糊化和老化特性的影响
     快速粘度仪(RVA)研究结果表明,超高压处理可以显著提高莲子淀粉糊的峰值粘度、谷粘度和最终粘度,而显著降低淀粉糊的崩解值和回生值,但经600MPa压力处理后的莲子淀粉表现出最小的峰值粘度、谷粘度、最终粘度、崩解值和回生值。在适当超高压压力和保压时间处理下,莲子淀粉糊的峰值时间和成糊温度随着超高压处理压力和时间的增加而增大。差示扫描量热仪(DSC)研究结果表明,莲子淀粉的起始温度、峰值温度、终止温度、糊化温度范围和热焓值均随着超高压处理压力和保压时间的增加而显著下降,莲子淀粉乳经600MPa压力处理后热力学参数均未检出。糊化后的莲子淀粉样品在4℃条件贮藏期间,与莲子原淀粉相比,超高压处理提高了淀粉的Avrami成核指数,降低了重结晶速率常数,表明超高压处理有利于延缓莲子淀粉糊在低温贮藏条件下的老化速率。
     (5)超高压处理对莲子淀粉流变特性的影响
     静态流变学特性研究结果表明,经超高压处理前后的莲子淀粉糊均属于非牛顿流体,表现出假塑性流体特征,可用Herschel-Bulkley方程对其流变学特性曲线进行较好的拟合。莲子淀粉糊的表观黏度经超高压处理后发生不同程度的变化,在相同处理条件下,淀粉糊的表观黏度随剪切速率的增大而减小。超高压处理前后的淀粉糊均存在剪切稀化现象,具有明显的触变性。动态流变特性研究结果表明,莲子淀粉糊的储能模量(G')显著大于损耗模量(G”),二者随超高压处理压力和时间的增加呈先上升后下降的趋势。剪切结构恢复力试验结果表明,经超高压处理后的淀粉糊在经历低速一高速—低速剪切后较难恢复到原始结构。
     (6)超高压处理莲子淀粉对双歧杆菌体外增殖作用的影响
     以不同超高压条件处理后的莲子淀粉作为培养双歧杆菌的碳源,研究了其体外促进双歧杆菌的增殖效应以及对双歧杆菌耐酸性、耐胆汁酸盐和模拟胃肠液逆环境耐受性的影响。结果表明,经超高压处理后的莲子淀粉对促进双歧杆菌增殖作用优于对照组(莲子原淀粉组和葡萄糖组)。600MPa压力处理30min的莲子淀粉对双歧杆菌的增殖作用以及对模拟胃肠液逆环境耐受性的效果最显著。
     (7)超高压处理对罐藏莲子品质特性的影响
     通过选择能够延缓淀粉老化的超高压处理条件,将其应用于整颗莲子的复杂体系中,结合莲子罐头的加工工艺,研究了超高压前处理对罐藏莲子在贮藏过程中品质特性的变化规律。结果表明,超高压预处理能显著降低莲子罐头在贮藏期间抗性淀粉的含量和莲子的硬度值,延缓莲子返生味的出现时间,具有较好的抗老化效果。验证试验表明,莲子经600MPa压力处理30min后制成的莲子罐头在常温条件下贮藏300d未出现返生味,提示超高压预处理技术具有明显的商业应用价值。
Starch is the second most abundant polymer carbohydrates found in nature, next to cellulose. However, unmodified native starches have very limited use in the food industry because of some inadequacies, such as insolubility, easy retrogradation and instability during storage. Therefore, investigation of proper modification processing of starch to fulfill the industrial requirements has been a prevalent urgent realm of the current starch researches. Among various physical modification methods, ultra high pressure (UHP) is a non-thermal and physical processing. It provides a new method for starch modification and has a good application prospect. Lotus seed starch was chosen as raw material in this paper. The starch particle structure and physicochemical properties influenced by different pressure, pressure holding time and starch concentration were investigated. In addition, the proliferation effects of lotus seeds starch on Bifidobacterium as well as the quality of canning lotus seed treated by UHP were studied. The results were concluded as follows:
     The degrees of change in the granule morphology, polarization cross, particle size distribution and crystal structure of lotus seed starch after ultra high pressure treatment were different. The particle characteristics of lotus seed starch exhibited significant change when treated at500MPa for60min or600MPa at30min. The UHP-treated lotus seed starch granules at600MPa showed a complete loss of birefringence and the ordered crystallite structural disrupted. X-ray diffraction analyses revealed that UHP treatment converted native starch (C-type) to a B-type pattern. The UHP treatments altered the shape of starch granules and the starch granules presented irreversible loss of the particle structure and showed viscous gel-like appearance. The diameters and particle size distribution of lotus seed starch granules were maximum after UHP treatment at600MPa. However, UHP treatment had no significant effect on the particle characteristics of lotus seed starch with different starch concentration.
     The Fourier transform infrared spectra (FTIR) analysis of lotus seed starch showed that UHP is a physical modification processing because no new groups formed and changed. The13C CP/MAS NMR results showed that native lotus seed starch showed multiplicity in the resonance peak of the Cl site, which exhibited A-type crystal structure. However, starch subjected to600MPa displayed a typical B-type crystal structure and the relative crystallinity and intensity in the crystalline state gradually decreased with increasing pressure or pressure holding time. Analysis of SEC-MALLS-RI suggested that the Mw, Mn and Mw/Mn were1.433×107Da,1.118×107Da and1.282respectively. UHP treatment resulted in broadening the molecular weight distribution of lotus seed starch, indicating damage of the internal structure of starch molecule.
     Light transmittance of lotus seed starch decreased after UHP treatment. The treatment of starch suspension with UHP resulted in a significant decrease of swelling power and solubility at85℃and95℃, but opposite trends were found at55℃,65℃and75℃. Compared with the native starch, the freeze-thaw stability and retrogradation of lotus seed starch were improved under the suitable UHP treatment conditions (100~500MPa for30min or500MPa for10~50min). However, the retrogradation and syneresis rate of lotus seed starch improved significantly with the increasing pressure or pressure holding time. UHP treatment changed the textural properties of lotus seed starch. The gumminess, hardness, cohesiveness, chewiness and stickiness of lotus seed starch decreased significantly after UHP treatment. There was no significant change of the springiness.
     The RVA viscograms revealed that UHP-treated lotus seed starch revealed an increase in paste viscosity, peak time, and pasting temperatures and a reduction in breakdown and setback viscosity compared to native starch. However, starch treated at600MPa exhibited the lowest PV, PT, BD and SB values. The peak time and pasting temperatures increased under suitable pressure or pressure holding time. The DSC results showed a obvious reduction in gelatinization temperatures and gelatinization enthalpy with increasing UHP treatment pressure or pressure holding time. There were no thermal parameters detected in starch pressurized at600MPa, indicating a total loss of the native crystalline structure and molecular order. During storage, UHP-treated starch gels had higher Avrami exponent values and lower recrystallization rates compared with native starch, which suggested a lower retrogradation tendency.
     The static rheological properties investigation demonstrated that the native and UHP-treated lotus seed starch pastes were non-Newtonian flow with pseudoplastic flow behaviour. Based on the results determined from static flow curves, the Herschel-Bulkley model can be used to fit well on the flow behavior of starch pastes. Under the same processing conditions, the apparent viscosity of lotus-seed starch pastes decreased with the increasing treatment time. The lotus seed starch pastes displayed shear-thinning pseudoplastic behavior after UHP treatment, with significant thixotropy. The determination of dynamic rheological properties indicated that their storage modulus (G') and loss modulus(G") increased first and then decreased with the increasing treatment pressure or pressure holding time. The in-shear structural recovery test revealed that it is difficult for the UHP-treated starch pastes to recover their original structure under low-high-low shear conditions.
     Lotus seed starches treated by UHP were used as carbon source to cultivate Bifidobacterium. The proliferation effect of UHP-treated lotus seed starch on the Bifidobacterium in vitro and its influence on the acid, bile salts and simulated gastrointestinal fluid tolerance of Bifidobacterium were studied. The results showed that UHP-treated starch could significantly promote the proliferation of Bifidobacterium than the control group (native lotus seed starch and glucose). Compared with other substrates, lotus seed starch treated at600MPa for30min could significantly enhance the acid, bile salts and simulated gastrointestinal fluid tolerance of Bifidobacterium.
     The effective UHP treatment conditions for delaying lotus seed starch retrogradation was selected to apply in the complex system of whole lotus seed, combining with the processing technology of canning lotus seed. The effect of UHP treatment on the quality of canning lotus seed during storage was investigated. The results showed that the content of RS, hardness of canning lotus seed decreased significantly during storage. In addition, the back to raw taste appeared later than control group, indicating good anti-retrogradation effect. The experiment that canning lotus seed storage under room temperature for300days showed that the back to raw taste didn't appear when lotus seed treated at600MPa for30min. The technology of UHP pre-treatment has great commercial application value in the processing of canning lotus seed.
引文
[1]Bhat R, Sridhar K R. Nutritional quality evaluation of electron beam-irradiated lotus (Nelumbo nucifera) seeds[J]. Food Chemistry.2008,107(1):174-184.
    [2]Kim M J, Shin H S. Antioxidative effect of lotus seed and seedpod extracts[J]. Food Science and Biotechnology.2012,21(6):1761-1766.
    [3]郑宝东.莲子科学与工程[M].科学出版社,2010.
    [4]Mani S, Subramanian I, Pillai S, et al. Evaluation of hypoglycemic activity of inorganic constituents in Nelumbo nucifera seeds on streptozotocin-induced diabetes in rats[J]. Biological Trace Element Research.2010,138(1-3):226-237.
    [5]Rai S, Wahile A, Mukherjee K, et al. Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds[J]. Journal of Ethnopharmacology.2006,104(3):322-327.
    [6]郑宝东,郑金贵,曾绍校.我国主要莲子品种中三种功效成分的研究[J].营养学报.2004,26(2):158-160.
    [7]郑宝东,郑金贵,曾绍校.我国主要莲子品种营养成分的分析[J].营养学报.2003,25(2):153-156.
    [8]曾绍校,陈秉彦,郭泽镔,等.莲子生理活性的研究进展[J].热带作物学报.2012,33(11):2110-2114.
    [9]郑宝东.中国莲子(Nympheaceae Nelumbo Adans)种质资源主要品质的研究与应用[D].福建农林大学。2004.
    [10]曾绍校.莲子淀粉品质特性的研究与应用[D].福建农林大学,2007.
    [11]林鸳缘.莲子淀粉糊特性的研究与应用[D].福建农林大学,2011.
    [12]卓晓红.莲子淀粉分子结构的研究与应用[D].福建农林大学,2006.
    [13]张帆.干热变性莲子淀粉制备工艺及其成膜特性的研究与应用[D].福建农林大学,2012.
    [14]杜艳芳.微波辐射对莲子质构特性的影响及抑制淀粉老化机理的研究[D].福建农林大学,2013.
    [15]陈婵.莲子多糖提取及其结构性质的研究[D].福建农林大学,2007.
    [16]黄素英.莲子多酚提取及其抗氧化抑菌活性的研究[D].福建农林大学,2010.
    [17]卢旭.莲子低聚糖对双歧杆菌增殖效应的研究[D].福建农林大学,2012.
    [18]汪颖.莲子抗性淀粉制备、性质及其对双歧杆菌增殖效应的研究[D].福建农林大学,2013.
    [19]黄杰.建莲PPO动力学研究及其在速冻加工和贮藏中的应用[D].福建农林大学,2003.
    [20]李怡彬.莲子淀粉品质对莲子汁流变特性和保质期影响的研究[D].福建农林大学,2006.
    [21]梁静.莲子微波干燥特性及干燥工艺优化的研究[D].福建农林大学,2007.
    [22]陈丰.莲子微波真空干燥工艺的研究[D].福建农林大学,2010.
    [23]曾绍校,郑宝东,林鸳缘,等.莲子淀粉颗粒特性的研究[J],中国粮油学报.2009(8):62-64.
    [24]钱芳,黄立新,杨晓泉.莲子淀粉性质的研究[J].食品工业科技.2007(3):57-60.
    [25]曾绍校,林鸳缘,郑宝东,等.莲子淀粉糊的特性研究[J].中国农学通报.2009(18):74-78.
    [26]杨彬,周裔彬,陈俊芳,等.莲子淀粉的流变性初步研究[J].食品研究与开发.2011(11):40-43.
    [27]郑铁松,李起弘,陶锦鸿.DSC法研究6种莲子淀粉糊化和老化特性[J].食品科学.2011(7):151-155.
    [28]Annison G, Topping D L. Nutritional role of resistant starch:chemical structure vs physiological function[J]. Annual Review of Nutrition.1994,14(1):297-320.
    [29]Fuentes-Zaragoza E, Riquelme-Navarrete M J, Sanchez-Zapata E, et al. Resistant starch as functional ingredient:A review[J]. Food Research International.2010,43(4):931-942.
    [30]Sharma A, Yadav B S, Ritika. Resistant starch:physiological roles and food applications[J]. Food Reviews International.2008,24(2):193-234.
    [31]Zhang Y, Wang Y, Zheng B, et al. The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of Bifidobacterium adolescentis[J]. Food& Function. 2013,4(11):1609-1616.
    [32]Zhang Y, Zeng H, Wang Y, et al. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects[J]. Food Chemistry.2014,155:311-318.
    [33]张帆,张怡,郭泽镔,等.干热变性莲子淀粉特性的研究[J].热带作物学报.2012,33(2):364-369.
    [34]张乾能,吴斌,宗力.微细化莲子淀粉的流变特性研究[J].食品科学.2009(9):89-94.
    [35]Singh J, Kaur L, Mccarthy O J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review[J]. Food Hydrocolloids.2007,21(1):1-22.
    [36]张友松.变性淀粉生产与应用手册[M].中国轻工业出版社,2007.
    [37]Whistler R L, Bemiller J N, Paschall E F. Starch:chemistry and technology[M]. Orlando: Academic Press,1984.
    [38]Jobling S. Improving starch for food and industrial applications[J]. Current Opinion in Plant Biology.2004,7(2):210-218.
    [39]张燕萍.变性淀粉制造与应用[M].化学工业出版社,2007.
    [40]赵凯,张守文,方桂珍,等.湿热处理对马铃薯淀粉颗粒特性的影响[J].食品与发酵工业.2006(6):8-10.
    [41]Gunaratne A, Hoover R. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches[J]. Carbohydrate Polymers.2002,49(4):425-437.
    [42]赵凯,张守文,方桂珍,等.压热处理对玉米淀粉颗粒结构及热焓特性的影响研究[J].食品科学.2004(11):31-33.
    [43]赵凯.淀粉非化学改性技术[M].化学工业出版社,2009.
    [44]Haghayegh G, Schoenlechner R. Physically modified starches:A review[J]. Journal of Food Agriculture & Environment.2011,9(1):27-29.
    [45]Cho C G, Lee K. Preparation of starch-g-polystyrene copolymer by emulsion polymerization[J]. Carbohydrate Polymers.2002,48(2):125-130.
    [46]石佳,辛嘉英,王艳,等.酯化改性淀粉研究进展[J].食品工业科技.2014,35(2):395-399.
    [47]Ayoub A, Gruyer S, Bliard C. Enzymatic degradation of hydroxypropyltrimethylammonium wheat starches[J]. International Journal of Biological Macromolecules.2003,32(3):209-216.
    [48]邹建,刘亚伟.复合改性淀粉流变学特性、SEM及IR分析研究[J].食品科技.2010(11):253-256.
    [49]王旭.山药淀粉改性及山药蛋白复合物的研究[D].天津大学,2008.
    [50]赵凯.食品淀粉的结构、功能及应用[M].中国轻工业出版社,2009.
    [51]Behzad N, Saeideh J. Application of high hydrostatic pressure in modifying functional properties of starches:a review[J]. Middle-East Journal of Scientific Research.2012,11(7):856-861.
    [52]陈复生.食品超高压加工技术[M].化学工业出版社,2005.
    [53]Yaldagard M, Mortazavi S A, Tabatabaie F. The principles of ultra high pressure technology and its application in food processing/preservation:A review of microbiological and quality aspects[J]. African Journal of Biotechnology.2008,7(16):2739-2767.
    [54]Farr D. High pressure technology in the food industry[J]. Trends in Food Science & Technology. 1990,1:14-16.
    [55]Knorr D, Heinz V, Buckow R. High pressure application for food biopolymers[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics.2006,1764(3):619-631.
    [56]Hite B H. The effect of pressure in the preservation of milk[J]. West Virginia Agriculture & Forestry. Experimental Station Bull.1899,58:15-35.
    [57]Bridgman P W. The coagulation of albumen by pressure[J]. Journal of Biological Chemistry.1914, 19:511-512.
    [58]Arroyo G, Sanz P D, Prestamo G. Effect of high pressure on the reduction of microbial populations in vegetables[J]. Journal of Applied Microbiology.1997,82(6):735-742.
    [59]Butz P, Fernandez Garcia A, Lindauer R, et al. Influence of ultra high pressure processing on fruit and vegetable products[J]. Journal of Food Engineering.2003,56(2-3):233-236.
    [60]Lee S, Dougherty R H, Kang D. Inhibitory effects of high pressure and heat on alicyclobacillus acidoterrestris spores in apple juice[J]. Applied and Environmental Microbiology.2002,68(8): 4158-4161.
    [61]Phunchaisri C, Apichartsrangkoon A. Effects of ultra-high pressure on biochemical and physical modification of lychee (Litchi chinensis Sonn.)[J]. Food Chemistry.2005,93(1):57-64.
    [62]Campus M. High pressure processing of meat, meat products and seafood[J]. Food Engineering Reviews.2010,2(4):256-273.
    [63]Norton T, Sun D. Recent advances in the use of high pressure as an effective processing technique in the food industry[J]. Food and Bioprocess Technology.2008,1(1):2-34.
    [64]Spilimbergo S, Elvassore N, Bertucco A. Microbial inactivation by high-pressure[J], The Journal of Supercritical Fluids.2002,22(1):55-63.
    [65]杨徽.基于超高压技术的虾脱壳工艺与品质检测研究[D].浙江大学,2011.
    [66]Cruz-Romero M, Smiddy M, Hill C, et al. Effects of high pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas)[J]. Innovative Food Science & Emerging Technologies.2004,5(2):161-169.
    [67]Mcardle R, Marcos B, Kerry J P, et al. Monitoring the effects of high pressure processing and temperature on selected beef quality attributes[J]. Meat Science.2010,86(3):629-634.
    [68]Drake M A, Harrison S L, Asplund M, et al. High pressure treatment of milk and effects on microbiological and sensory quality of cheddar cheese[J]. Journal of Food Science.1997,62(4): 843-860.
    [69]Lopez-Fandino R, Carrascosa A V, Olano A. The effects of high pressure on whey protein denaturation and cheese-making properties of raw milk[J]. Journal of Dairy Science.1996,79(6): 929-936.
    [70]励建荣,傅月华,顾振宇,等.高压催陈黄酒的研究[J].食品与发酵工业.1999(3):38-40.
    [71]段旭昌,李绍峰,张吉焕,等.超高压技术处理对白酒物理特性和风味的影响[J].中国食品学报.2006(6):78-82.
    [72]Liu P, Hu X, Shen Q. Effect of high hydrostatic pressure on starches:A review[J]. Starch-Starke. 2010,62(12):615-628.
    [73]Stute R, Heilbronn, Klingler R W, et al. Effects of high pressures treatment on starches[J]. Starch-Starke.1996,48(11-12):399-408.
    [74]Kaur L, Singh J, Mccarthy O J, et al. Physico-chemical, rheological and structural properties of fractionated potato starches[J]. Journal of Food Engineering.2007,82(3):383-394.
    [75]Chiotelli E, Le Meste M. Effect of small and large wheat starch granules on thermomechanical behavior of starch[J]. Cereal Chemistry Journal.2002,79(2):286-293.
    [76]刘延奇,李昌文,赵光远,等.超高压对玉米淀粉颗粒结构的影响研究[J].农产品加工(学刊).2006(10):44-46.
    [77]Blaszczak W, Fornal J, Kiseleva Ⅴ Ⅱ, et al. Effect of high pressure on thermal, structural and osmotic properties of waxy maize and Hylon Ⅶ starch blends[J]. Carbohydrate Polymers.2007, 68(3):387-396.
    [78]Oh H E, Pinder D N, Hemar Y, et al. Effect of high-pressure treatment on various starch-in-water suspensions[J]. Food Hydrocolloids.2008,22(1):150-155.
    [79]Liu P, Zhang Q, Shen Q, et al. Effect of high hydrostatic pressure on modified noncrystalline granular starch of starches with different granular type and amylase content[J]. LWT-Food Science and Technology.2012,47(2):450-458.
    [80]Kweon M, Slade L, Levine H. Role of glassy and crystalline transitions in the responses of corn starches to heat and high pressure treatments:Prediction of solute-induced barostabilty from solute-induced thermostability[J]. Carbohydrate Polymers.2008,72(2):293-299.
    [81]Blaszczak W, Valverde S, Fornal J. Effect of high pressure on the structure of potato starch[J]. Carbohydrate Polymers.2005,59(3):377-383.
    [82]Stolt M, Oinonen S, Autio K. Effect of high pressure on the physical properties of barley starch[J]. Innovative Food Science & Emerging Technologies.2001,1(3):167-175.
    [83]Buckow R, Heinz V, Knorr D. High pressure phase transition kinetics of maize starch[J]. Journal of Food Engineering.2007,81(2):469-475.
    [84]Douzals J P, Perrier-Cornet J M, Coquille J C, et al. Pressure-temperature phase transition diagram for wheat starch[J]. Journal of Agricultural and Food Chemistry.2001,49(2):873-876.
    [85]Vallons K J R, Arendt E K. Effects of high pressure and temperature on buckwheat starch characteristics[J]. European Food Research and Technology.2009,230(2):343-351.
    [86]Bauer B A, Knorr D. The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinisation as pressure time temperature indicator for high hydrostatic pressure processing[J]. Journal of Food Engineering.2005,68(3):329-334.
    [87]Katopo H, Song Y, Jane J. Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches[J]. Carbohydrate Polymers.2002,47(3):233-244.
    [88]Douzals J P, Cornet J, Gervais P, et al. High-pressure gelatinization of wheat starch and properties of pressure-induced gels[J]. Journal of Agricultural and Food Chemistry.1998,46(12): 4824-4829.
    [89]Douzals J P, Marechal P A, Coquille J C, et al. Microscopic study of starch gelatinization under high hydrostatic pressure[J]. Journal of Agricultural and Food Chemistry.1996,44(6):1403-1408.
    [90]Hermansson A, Svegmark K. Developments in the understanding of starch functionality[J]. Trends in Food Science & Technology.1996,7(11):345-353.
    [91]马成林,左春柽,张守勤,等.高压对玉米淀粉糊化度影响的研究[J].农业工程学报.1997(1):178-182.
    [92]张守勤,马成林,左春柽,等.玉米淀粉微晶结构在加热和高压作用下的变化[J].农业工程学报.1997(1):174-177.
    [93]Ahmed J, Varshney S K, Ramaswamy H S. Effect of high pressure treatment on thermal and rheological properties of lentil flour slurry[J]. LWT-Food Science and Technology.2009,42(9): 1538-1544.
    [94]Wang B, Li D, Wang L, et al. Effect of high-pressure homogenization on the structure and thermal properties of maize starch[J]. Journal of Food Engineering.2008,87(3):436-444.
    [95]Kawai K, Fukami K, Yamamoto K. Effect of temperature on gelatinization and retrogradation in high hydrostatic pressure treatment of potato starch-water mixtures[J]. Carbohydrate Polymers. 2012,87(1):314-321.
    [96]Bauer B A, Knorr D. The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinisation as pressure time temperature indicator for high hydrostatic pressure processing[J]. Journal of Food Engineering.2005,68(3):329-334.
    [97]Simonin H, Marzouki S, Guyon C, et al. Pasting properties of high-pressure-treated starch suspensions[J]. High Pressure Research.2009,29(4):726-731.
    [98]Li W, Bai Y, Mousaa S S, et al. Effect of high hydrostatic pressure on physicochemical and structural properties of rice starch[J]. Food and Bioprocess Technology.2012,5(6):2233-2241.
    [99]Li W, Zhang F, Liu P, et al. Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch[J]. Journal of Food Engineering. 2011,103(4):388-393.
    [100]Muhr A H, Blanshard J M V. Effect of hydrostatic pressure on starch gelatinisation[J]. Carbohydrate Polymers.1982,2(1):61-74.
    [101]Kudla E, Tomasik P. The modification of starch by high pressure. Part Ⅱ:Compression of starch with additives[J]. Starch-Starke.1992,44(7):253-259.
    [102]Kawai K, Fukami K, Yamamoto K. Effects of treatment pressure, holding time, and starch content on gelatinization and retrogradation properties of potato starch-water mixtures treated with high hydrostatic pressure[J]. Carbohydrate Polymers.2007,69(3):590-596.
    [103]叶怀义,杨素玲,徐倩.小麦淀粉高压糊化动力学的研究[J].中国粮油学报.2000(3):9-12.
    [104]左春柽,张守勤.玉米淀粉高压糊化动力学的初步探讨[J].农业工程学报.1997,13(1):177-180.
    [105]Davis J P, Supatcharee N, Khandelwal R L, et al. Synthesis of novel starches in planta: opportunities and challenges[J]. Starch-Starke.2003,55(3-4):107-120.
    [106]Orford P D, Ring S G, Carroll V, et al. The effect of concentration and botanical source on the gelation and retrogradation of starch[J]. Journal of the Science of Food and Agriculture.1987, 39(2):169-177.
    [107]Doona C J, Feeherry F E, Baik M. Water dynamics and retrogradation of ultrahigh pressurized wheat starch[J]. Journal of Agricultural and Food Chemistry.2006,54(18):6719-6724.
    [108]刘延奇,郭妤薇,周婧琦,等.超高压改性玉米淀粉的回生性研究[J].食品科学.2007(8):76-78.
    [109]King A, Kaletunc G. Retrogradation characteristics of high hydrostatic pressure processed corn and wheat starch[J]. Journal of Thermal Analysis and Calorimetry.2009,98(1):83-89.
    [110]Hu X, Xu X, Jin Z, et al. Retrogradation properties of rice starch gelatinized by heat and high hydrostatic pressure (HHP)[J]. Journal of Food Engineering.2011,106(3):262-266.
    [111]许永亮,程科,邱承光,等.不同品种大米淀粉的流变学特性研究[J].中国粮油学报.2006,21(4):16-20.
    [112]Singh N, Singh J, Kaur L, et al. Morphological, thermal and rheological properties of starches from different botanical sources[J]. Food Chemistry.2003,81(2):219-231.
    [113]刘延奇,周婧琦.超高压处理对淀粉的影响研究进展[J].食品科技.2006(8):56-59.
    [114]Vallons K J R, Arendt E K. Understanding high pressure-induced changes in wheat flour-water suspensions using starch-gluten mixtures as model systems[J]. Food Research International.2010, 43(3):893-901.
    [115]Tan F, Dai W, Hsu K. Changes in gelatinization and rheological characteristics of japonica rice starch induced by pressure/heat combinations[J]. Journal of Cereal Science.2009,49(2):285-289.
    [116]Oh H E, Hemar Y, Anema S G, et al. Effect of high-pressure treatment on normal rice and waxy rice starch-in-water suspensions[J]. Carbohydrate Polymers.2008,73(2):332-343.
    [117]Stolt M, Stoforos N G, Taoukis P S, et al. Evaluation and modelling of rheological properties of high pressure treated waxy maize starch dispersions[J]. Journal of Food Engineering.1999,40(4): 293-298.
    [118]张守勤,马成林,左春柽,等.玉米高压淀粉糊流变特性的研究[J].农业工程学报.1997(2):204-208.
    [119]Vallons K J R, Arendt E K. Effects of high pressure and temperature on the structural and rheological properties of sorghum starch[J]. Innovative Food Science & Emerging Technologies. 2009,10(4):449-456.
    [120]Blaszczak W, Bidzinska E, Dyrek K, et al. Effect of phosphorylation and pretreatment with high hydrostatic pressure on radical processes in maize starches with different amylose contents[J]. Carbohydrate Polymers.2011,85(1):86-96.
    [121]Ratnayake W S, Ratnajothi H, Tom W. Pea starch:Composition, structure and properties—a review[J]. Starch-Starke.2002,54(6):217-234.
    [122]Le Bail P, Chauvet B, Simonin H, et al. Formation and stability of amylose ligand complexes formed by high pressure treatment[J]. Innovative Food Science & Emerging Technologies.2013, 18:1-6.
    [123]Kaur L, Singh J, Mccarthy O J, et al. Physico-chemical, rheological and structural properties of fractionated potato starches[J]. Journal of Food Engineering.2007,82(3):383-394.
    [124]Zobel H F. Starch crystal transformations and their industrial importance[J]. Starch-Starke.1988, 40(1):1-7.
    [125]Liu D, Wu Q, Chen H, et al. Transitional properties of starch colloid with particle size reduction from micro-to nanometer[J]. Journal of Colloid and Interface Science.2009,339(1):117-124.
    [126]Varatharajan V, Hoover R, Liu Q, et al. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches[J]. Carbohydrate Polymers.2010,81(2):466-475.
    [127]Baik M, Dickinson L C, Chinachoti P. Solid-state 13C CP/MAS NMR studies on aging of starch in white bread[J]. Journal of Agricultural and Food Chemistry.2003,51(5):1242-1248.
    [128]Therien-Aubin H, Janvier F, Bailie W E, et al. Study of hydration of cross-linked high amylose starch by solid state 13C NMR spectroscopy[J]. Carbohydrate Research.2007,342(11): 1525-1529.
    [129]Tan I, Flanagan B M, Halley P J, et al. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR[J]. Biomacromolecules.2007,8(3):885-891.
    [130]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999.
    [131]Yoo S, Jane J. Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors[J]. Carbohydrate Polymers.2002,49(3):307-314.
    [132]Sandhu K S, Lim S. Structural characteristics and in vitro digestibility of Mango kernel starches (Mangifera indica L.)[J]. Food Chemistry.2008,107(1):92-97.
    [133]Atichokudomchai N, Varavinit S, Chinachoti P. A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR[J]. Carbohydrate Polymers.2004,58(4): 383-389.
    [134]Lin J, Wang S, Chang Y. Effect of molecular size on gelatinization thermal properties before and after annealing of rice starch with different amylose contents[J]. Food Hydrocolloids.2008,22(1): 156-163.
    [135]Flores-Morales A, Jimenez-Estrada M, Mora-Escobedo R. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas[J]. Carbohydrate Polymers.2012,87(1):61-68.
    [136]Zhang J, Chen F, Liu F, et al. Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro[J]. Food Hydrocolloids.2010,24(1): 27-34.
    [137]Wei C, Qin F, Zhou W, et al. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its wild type during heating[J]. Food Chemistry. 2011,128(3):645-652.
    [138]Gidley M J, Bociek S M. Molecular organization in starches:a carbon 13 CP/MAS NMR studyfJ]. Journal of the American Chemical Society.1985,107(24):7040-7044.
    [139]Veregin R P, Fyfe C A, Marchessault R H, et al. Characterization of the crystalline A and B starch polymorphs and investigation of starch crystallization by high-resolution carbon-13 CP/MAS NMR[J]. Macromolecules.1986,19(4):1030-1034.
    [140]Buleon A, Colonna P, Planchot V, et al. Starch granules:structure and biosynthesis[J]. International Journal of Biological Macromolecules.1998,23(2):85-112.
    [141]Tester R F, Karkalas J, Qi X. Starch—composition, fine structure and architecture[J]. Journal of Cereal Science.2004,39(2):151-165.
    [142]李玥.大米淀粉的制备方法及物理化学特性研究[D].江南大学,2008.
    [143]岳晓霞,毛迪锐,赵全,等.玉米淀粉与玉米变性淀粉性质比较研究[J].食品科学.2005,26(5):116-118.
    [144]Mandala I G, Bayas E. Xanthan effect on swelling, solubility and viscosity of wheat starch dispersions[J]. Food Hydrocolloids.2004,18(2):191-201.
    [145]Tsai M, Li C, Lii C. Effects of granular structures on the pasting behaviors of starches[J]. Cereal Chemistry Journal.1997,74(6):750-757.
    [146]顾娟,洪雁,顾正彪.荞麦淀粉理化性质的研究[J].食品与发酵工业.2008,34(4):36-39.
    [147]杜先锋,许时婴,王璋.淀粉凝胶力学性能的研究[J].农业工程学报.2001(2):16-19.
    [148]Jacobson M R, Obanni M, Bemiller J N. Retrogradation of starches from different botanical sources[J]. Cereal Chemistry.1997,74(5):511-518.
    [149]吴磊,石英,高群玉.淀粉凝沉的机理与抑制方法[J].食品研究与开发.2008(8):170-174.
    [150]Fredriksson H, Silverio J, Andersson R, et al. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches[J]. Carbohydrate Polymers.1998,35(3):119-134.
    [151]Lee M H, Baek M H, Cha D S, et al. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums[J]. Food Hydrocolloids.2002,16(4):345-352.
    [152]Muadklay J, Charoenrein S. Effects of hydrocolloids and freezing rates on freeze-thaw stability of tapioca starch gels[J]. Food Hydrocolloids.2008,22(7):1268-1272.
    [153]Deetae P, Shobsngob S, Varanyanond W, et al. Preparation, pasting properties and freeze-thaw stability of dual modified crosslink-phosphorylated rice starch[J]. Carbohydrate Polymers.2008, 73(2):351-358.
    [154]孙秀萍,于九皋,刘延奇.DSC分析方法在淀粉凝胶化研究中的应用[J].化学通报.2003,66(5):1-8.
    [155]Sandhu K S, Singh N. Some properties of corn starches Ⅱ:Physicochemical, gelatinization, retrogradation, pasting and gel textural properties[J]. Food Chemistry.2007,101(4):1499-1507.
    [156]Puncha-Arnon S, Pathipanawat W, Puttanlek C, et al. Effects of relative granule size and gelatinization temperature on paste and gel properties of starch blends[J]. Food Research International.2008,41(5):552-561.
    [157]AACC. General pasting method for wheat or rye flour or starch using the rapid visco analyzer[S]. St Paul, MN:American Association of Cereal Chemists,1999.
    [158]Xu J, Fan X, Ning Y, et al. Effect of spring dextrin on retrogradation of wheat and corn starch gels[J]. Food Hydrocolloids.2013,33(2):361-367.
    [159]Mua J P, Jackson D S. Retrogradation and gel textural attributes of corn starch amylose and amylopectin fractions[J]. Journal of Cereal Science.1998,27(2):157-166.
    [160]Tian Y, Li Y, Manthey F A, et al. Influence of β-cyclodextrin on the short-term retrogradation of rice starch[J]. Food Chemistry.2009,116(1):54-58.
    [161]Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches:a review[J]. Carbohydrate Polymers.2001,45(3):253-267.
    [162]Singh N, Singh J, Kaur L, et al. Morphological, thermal and rheological properties of starches from different botanical sources[J]. Food Chemistry.2003,81(2):219-231.
    [163]Mcpherson A E, Jane J. Comparison of waxy potato with other root and tuber starches[J]. Carbohydrate Polymers.1999,40(1):57-70.
    [164]Miao M, Zhang T, Jiang B. Characterisations of kabuli and desi chickpea starches cultivated in China[J]. Food Chemistry.2009,113(4):1025-1032.
    [165]Ahmed J, Ramaswamy H S, Ayad A, et al. Effect of high-pressure treatment on rheological, thermal and structural changes in Basmati rice flour slurry[J]. Journal of Cereal Science.2007, 46(2):148-156.
    [166]Liu Y, Selomulyo V O, Zhou W. Effect of high pressure on some physicochemical properties of several native starches[J]. Journal of Food Engineering.2008,88(1):126-136.
    [167]Iturriaga L B, Lopez De Mishima B, Afion M C.A study of the retrogradation process in five argentine rice starches[J]. LWT-Food Science and Technology.2010,43(4):670-674.
    [168]谭洪卓,谭斌,高虹,等.甘薯淀粉热力学特性及其回生机理探讨[J].食品与生物技术学报.2008(3):21-27.
    [169]刘志东,郭本恒.食品流变学的研究进展[J].食品研究与开发.2006,27(11):211-215.
    [170]Wang B, Wang L, Li D, et al. Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose[J]. Carbohydrate Polymers.2009,77(3):472-481.
    [171]胡珊珊,王颉,孙剑锋,等.不同添加物对羟丙基木薯淀粉流变特性的影响[J].中国粮油学报.2012(5):35-38.
    [172]Moorthy S N. Effect of steam pressure treatment on the physicochemical properties of Dioscorea starches[J]. Journal of Agricultural and Food Chemistry.1999,47(4):1695-1699.
    [173]Marcotte M, Taherian Hoshahili A R, Ramaswamy H S. Rheological properties of selected hydrocolloids as a function of concentration and temperature[J]. Food Research International. 2001,34(8):695-703.
    [174]周雪,陈福泉,张本山.氧化蜡质玉米淀粉的糊流变特性研究[J].粮食与饲料工业.2010(9):27-30.
    [175]李云飞,殷涌光,徐树来,等.食品物性学[M].第二版.中国轻工业出版社,2009.
    [176]邹铁,华汉威,赵春梅,等.菱角淀粉糊的流变性质研究[J].中国粮油学报.2011(12):45-.48.
    [177]Banchathanakij R, Suphantharika M. Effect of different β-glucans on the gelatinisation and retrogradation of rice starch[J]. Food Chemistry.2009,114(1):5-14.
    [178]Achayuthakan P, Suphantharika M. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum[J]. Carbohydrate Polymers.2008,71(1):9-17.
    [179]朱俊晨,李世敏,魏小青.双歧杆菌对人体的生理作用及研究进展[J].中国微生态学杂志.2000(1):56-58.
    [180]He T, Priebe M G, Zhong Y, et al. Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects[J]. Journal of Applied Microbiology.2008, 104(2):595-604.
    [181]Rastall R A. Functional oligosaccharides:application and manufacture[J]. Annual Review of Food Science and Technology.2010,1(1):305-339.
    [182]曾绍校,林鸳缘,郑宝东.莲子及莲子淀粉对双歧杆菌增殖作用的影响[J].福建农林大学学 报(自然科学版).2009(4):417-419.
    [183]Siew-Wai L, Zi-Ni T, Karim A A, et al. Fermentation of metroxylon sagu resistant starch type III by Lactobacillus sp. and Bifidobacterium bifidum[J]. Journal of agricultural and food chemistry. 2010,58(4):2274-2278.
    [184]Regmi P R, Metzler-Zebeli B U, G A Nzle M G, et al. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifldobacteria in pigs[J]. The Journal of Nutrition.2011,141(7):1273-1280.
    [185]卢旭.莲子低聚糖对双歧杆菌增殖效应的研究[D].福建农林大学,2012.
    [186]Wronkowska M, Soral-Smietana M, Biedrzycka E. Utilization of resistant starch of native tapioca, corn and waxy corn starches and their retrograded preparations by Bifidobacterium[J]. International Journal of Food Sciences and Nutrition.2007,59(1):80-87.
    [187]Soral-Smietana M, Wronkowska M, Biedrzycka E, et al. Native and physically-modified starches-: Utilization of resistant starch by bifldobacteria (in vitro)[J]. Polish Journal of Food and Nutrition Sciences.2005,14(3):273-279.
    [188]Wang X, Conway P L, Brown I L, et al. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria[J]. Applied and Environmental Microbiology.1999,65(11):4848-4854.
    [189]Crittenden R, Laitila A, Forssell P, et al. Adhesion of bifldobacteria to granular starch and its implications in probiotic technologies[J]. Applied and Environmental Microbiology.2001,67(8): 3469-3475.
    [190]AOAC. Official Methods of Association of Official Analytical Chemists[S]. AOAC Method, 2002.
    [191]Zhang L, Hu X, Xu X, et al. Slowly digestible starch prepared from rice starches by temperature-cycled retrogradation[J]. Carbohydrate Polymers.2011,84(3):970-974.
    [192]Marsh R D L, Blanshard J M V. The application of polymer crystal growth theory to the kinetics of formation of the B-amylose polymorph in a 50% wheat-starch gel[J]. Carbohydrate Polymers. 1988,9(4):301-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700