用户名: 密码: 验证码:
Ag-Sn合金内氧化界面微观结构、热力学与动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为最重要的含镉触头替代材料,Ag-SnO2触头材料的复合界面结构对其电接触稳定性具有重要影响。但是直到目前,Ag-SnO2材料的界面结构特征及其相关性质仍没有得到深入系统的研究。因此,认识并建立这种材料的界面结构特征与化学成分、制备工艺和性能之间的联系对材料的结构设计、工艺改进及性能预测都具有重要意义。
     本文采用金相(OM)、X射线衍射(XRD)、电子探针(EPMA)、常规透射电子显微镜(TEM)等分析手段,系统研究了Ag-3Sn-(In, Bi, La)合金内氧化过程中的组织演变规律、相结构特征,探讨了合金元素对Ag-Sn合金内氧化行为的影响机理;以内氧化Ag-3Sn合金为例,对Ag/SnO2界面的结构特征、界面取向关系等进行了详细地表征和分析;采用第一性原理热力学计算方法研究了金属(Ag)和氧化物(SnO25RuO2)的表面性质以及Ag/SnO2界面的界面性质;综合界面微观结构表征、界面第一性原理热力学计算及内氧化扩散动力学分析几方面研究结果,建立了Ag-Sn合金内氧化界面的热力学与动力学模型,并对Ag-Sn合金内氧化界面结构及性质进行了预测分析,得到了以下主要研究结论:(1)Ag-3Sn合金内氧化过程中,原位析出的SnO:颗粒多为长八面体状和长片状,并且与Ag基体间存在明显的界面择优生长关系:(111)Ag//(101)SnO2;内氧化Ag-3Sn-In合金中的相组成为Ag、SnO2和In203,其中In203颗粒容易与Sn02颗粒形成附着生长结构;内氧化Ag-3Sn-Bi合金中的相组成为Ag、SnO2和Bi2Sn207, SnO2和Bi2Sn2O7颗粒容易形成类似鸡蛋的包裹结构;内氧化Ag-3Sn-La合金中的相组成为Ag、SnO2和La2Sn207, La2Sn颗粒尺寸较大,主要在晶界处形成,并伴随有尺寸较大的SnO:颗粒,并在晶粒内部形成了非常细小弥散的Sn02颗粒,尺寸约为10nm。(2)结合Ag-3Sn-(Bi, La)合金内氧化微观结构表征结果,探讨了合金内氧化机理。Ag-3Sn合金内氧化过程中,氧化带的形成受O、Sn原子浓度变化的动态平衡过程控制。提高合金中氧扩散能力或降低Sn原子的反向扩散能力是避免氧化带形成的有效途径。合金元素In抑制了Sn原子的反向扩散行为,同时In203优先形核促使Sn原子扩散至Ag/In2O3界面处发生氧化形核;合金元素Bi具有很好的细化晶粒作用,大量的晶界能有效促进氧原子扩散,加速内氧化过程,SnO2优先形核导致Bi原子容易扩散至Ag/SnO2界面处反应形成Bi2Sn2O7;合金元素La主要以弥散分布的共晶相La5Sn3存在,氧原子容易沿相界扩散,并与La5Sn3优先反应形成La2Sn2O7相,然后才向晶粒内部扩散形成细小弥散的SnO2颗粒。
     (3)结合TEM、HRTEM.SAED等分析手段对内氧化Ag-Sn合金中的Ag//SnO2界面的晶体学位向关系、晶格畸变进行了详细表征分析。进一步证实了SnO2颗粒与Ag基体间的界面择优生长关系:(111)Ag//(101)SnO2,<110>Ag//<010>SnO2;采用矩阵计算和极图方法确定了SnO2颗粒与Ag基体间的三种不同晶体学位向关系:Type Ⅰ:[110]Ag//[010]SnO2,(111)Ag//(101)SnO2Type Ⅱ:[112]Ag//[010]SnO2,(111)Ag//(101)SnO2TypeⅢ:[110]Ag//[001]SnO2,(111)Ag//(110)SnO2
     (4)采用第一性原理热力学计算方法研究了面心立方金属Ag和金红石结构氧化物(Sn02,Ru02)的低指数表面稳定性。结果表明:Ag低指数表面表面能大小顺序为:(111)<(100)<(110);SnO2低指数表面表面能大小顺序为:(110)<(100)<(101)<(001);RuO2低指数表面表面能大小顺序为:(110)<(101)<(100)<(001)。
     (5)结合第一性原理计算和表面反应热力学,建立了氧化物(Sn02. RuO2)表面能随温度、氧分压变化的函数关系,绘制了两种氧化物的表面结构稳定性热力学相图,并结合Gibbs-Wulff晶体平衡形态理论,预测了SnO2和RuO2两种氧化物在不同生长条件下的晶体平衡形态及其环境选择性生长行为,探讨了氧化物晶体的环境选择性生长机理。
     (6)基于Ag//SnO2界面结构表征结果,采用第一性原理热力学计算方法研究了Ag(111)/SnO2(101)界面的原子弛豫、电子结构特征,并采用界面分离功(Wsep)和界面粘附功(Wad)评价了该界面的润湿性和结合强度。结合第一性原理计算和界面反应热力学,建立了Ag(111)/SnO2(101)界面的界面能随温度、氧分压变化的函数关系,并在此基础上首次绘制了Ag(111)/SnO2(101)界面的界面结构稳定性热力学相图。
     (7)通过对Ag-Sn合金内氧化动力学过程和氧在银合金中溶解热力学过程进行分析,建立了合金内氧化区内“原位氧分压”与环境氧分压、合金成分、内氧化温度、氧化时间、内氧化层距离之间的函数关系,实现不同内氧化工艺条件下合金内氧化区内“原位氧分压”的预测。
     (8)综合界面结构表征、界面稳定性和界面性质的第一性原理热力学计算,以及内氧化扩散动力学分析等方面研究结果,提出了Ag-Sn合金内氧化界面热力学与动力学模型,定量描述了Ag-Sn合金内氧化过程中的合金成分(Sn含量)—内氧化工艺(内氧化温度、氧分压、时间)—界面结构—界面性能(界面润湿性,结合强度)四者间的相互关系,并对Ag-3Sn合金在空气气氛,1023K和823K条件下的内氧化界面结构特征进行了预测。
As the most important substitute for the replacing of conventional toxic Ag-CdO contact material, the electric contact stability of Ag-SnO2was highly affected by its interface structure. However, the interface structure and its properties have not been deeply and comprehensively investigated till now. It is important for us to insight the interrelationship between the interface structure, chemical composition, processing parameters and its properties, which was helpful to the improvement of this material, including the structure optimization, processing improvment and properties prediction.
     Based on the investigation of microstructure characterization by a combination of metallographical microscope (OM), X-ray diffraction (XRD), Electron probe microanalysis (EPMA) and transmission electron microscope (TEM), the internal oxidation mechanism of Ag-3Sn-(In, Bi, La) alloy were disscussed in details; The interfacial structures and crystallographic orientation relationships of the Ag/SnO2interface in-situ formed in internal oxidized Ag-3Sn alloy were characterized; With the first principle thermodynamic calculation, the surface properties of cubic metal (Ag) and rutile-type oxide (SnO2, RuO2), and the interface properties of Ag/SnO2interface were assessed. Combined with interface structure characterization, interfacial properties thermodynamic assessment and the internal oxidation diffusion kinetics, a modeling of the thermodynamic and kinetics of internal oxidized interface in Ag-Sn alloy was proposed, by which the interrelationship between composition, interface microstructure, processing parameters and properties of internal oxidized interface in Ag-Sn alloy was analyzed quantitatively. The main conclusions were presented as follows:
     (1) The SnO2particles formed in-situ in the internal oxidized Ag-3Sn alloy are mainly constituted by elongated octahedral shaped and plate shaped particles, with highly preferred interface orientation relationship of (111)Ag//(101)SnO2.The phase compositions of Ag-3Sn-In alloy are Ag, SnO2, In2O3. The In2O3and SnO2particles are always precipitate together. The phase compositions of Ag-3Sn-Bi alloy are Ag, SnO2and The SnO2and Bi2Sn2O7particles formed as wrapping structure. The phase compositions of Ag-3Sn-La alloy are Ag, SnO2and La2Sn2O7. The La2Sn207particles with large size formed at grain boundary, with small quantity of large SnO2particles. Large quantity of small SnO2particles with size of about~10nm formed and dispersed uniformly inside the grains.
     (2) The formation of oxidation band in Ag-3Sn alloy was controlled by a dynamic equilibrium between the concentration changes of oxygen and Sn atoms during the internal oxidation process. Enhence the diffusivity of oxygen or reduce the back-diffusion behaviour of Sn atoms is an alternative method to prevent the formation of oxidation band. With the addition of In, the back-diffusion behavour of Sn atoms was restained effectively by the priority nucleation of In2O3, which promote the precipitation of SnO2at the Ag/In2O3interface. The grains were refined markedly by the addition of Bi element and resulted in a large quantity of grain boundaries. Oxygen diffused quickly along the grain boundaries and fully internal oxidation was processed. The diffusion of Bi atoms to Ag/SnO2interface was promoted by the priority nucleation of SnO2and reacted with SnO2to form Bi2Sn2O7particles. The oxygen in Ag-3Sn-La alloy is easily diffused along the phase boundary of Ag and eutectic La5Sn3, and reacts with La5Sn3to form La2Sn2O7. The dispersed SnO2particles with nano size were formed by the diffusion of oxygen from grain boundaries to the inside of grains.
     (3) The Ag/SnO2interface structure in internal oxidized Ag-3Sn alloy was characterized by a combination of TEM, HRTEM, and SAED. The in-situ formed SnO2precipitates highly preferred growing with interfacial orientation of (111)Ag//(101)SnO2,<110>//<010>SnO2Three kinds of orientation relatioships (ORs) between Ag matrix and SnO2precipitates were identified in the internal oxidized Ag-3at.%Sn alloy by using the matrix method and stereographic projection method: Type Ⅰ:[110]Ag//[010]SnO2,(111)Ag//(101)SnO2TypeⅡ:[112]Ag//[010]SnO2,(111),Ag//SnO2TypeⅢ:[110],//[001]SnO2,(111)Ag//SnO2,
     (4) The surface stabilities of low-index surfaces of cubic metal (Ag) and rutile-type oxide (SnO2, RuO2) were investigated by first-principles calculations. It was found that the ordering of Ag surface energies is:(111)<(100)<(110); the ordering of SnO2surface energies is:(110)<(100)<(101)<(001); the ordering of RuO2surface energies is:(110)<(101)<(100)<(001).
     (5) Combined the first principle calculation and surface thermodynamic analysis, the surface stabilities of these two oxides were evaluated as functions of oxygen partial pressure and temperature. And the "surface phase diagram" of these two oxides was constructed, which corresponds well with the experimental observations. The environment-dependent surface stabilities assessment of these oxides was look forward to the prediction of crystal morphology, by utilizing the Gibbs-WulfF theorem of equilibrium crystal shape (ECS). The ECS as well as the preferred growth morphology of these oxides was predicted.
     (6) Based on the experimentally characterization of Ag/SnO2interface structure, the interfacial properties, including the interface atoms relaxation and interfacial electronic structure, of Ag(111)/SnO2(101) interface were investigated by first principle calculations. The interfacial bonding strength of Ag(111)/SnO2(101) interface were assessed by the work of separation (Wsep) and the work of adhesion (Wad).The Ag(111)/SnO2(101) interface energy was presented as a function of temperature and oxygen partial pressure. With the combination of first principle calculation and thermodynamic analysis, a "interface phase diagram" of the Ag(111)/SnO2(101) interface was constructed firstly.
     (7) With the analysis of the internal oxidation kinetics of Ag-Sn alloy and the thermodynamics process of oxygen dissolved in silver alloy, the local oxygen partial pressure in internal oxidation region was expressed as a complex function of the environmental oxygen partial pressure, alloy composition, temperature, time and distance from the surface to the internal oxidation zone, by which the local oxygen pressure inside internal oxidized region was predicted.
     (8) Combined with interface structure characterization, interfacial properties thermodynamic assessment and the internal oxidation diffusion kinetics, a modeling of the thermodynamic and kinetics of internal oxidized interface in Ag-Sn alloy was proposed, by which the interrelationship between composition, interface microstructure, internal oxidation parameters and properties of internal oxidized interface in Ag-Sn alloy was analyzed quantitatively. The prediction of internal oxidized Ag/SnO2interface structure and the interfacial properties at any given conditions can be achieved. This modeling was implemented on the internal oxidation of Ag-3Sn alloy under air atmosphere, with oxidation temperature of1023K and823K, respectively.
引文
[1]荣命哲,电接触理论[M],北京:机械工业出版社,2004:24.
    [2]堵永国,张为军,鲍小恒,等,AgMeO触点材料成分与组织的优化设计理论[J],电工材料,2006,4:8-15.
    [3]李司山,黄福祥,汪振,等,电接触材料的研究进展[J],材料导报,2008,22:303-306.
    [4]吴春萍,陈敬超,周晓龙,等,银基电接触材料[J],云南冶金,2005,34(1):46-51.
    [5]杜作娟,杨天足,古映莹,等,AgSnO2电触点材料制备方法进展[J],材料导报,2005,19(2):39-42.
    [6]E. M. Jost, M. Kirk, Electrically conductive material and method for making[P], US Pat,5846288,1998.
    [7]E. M. Jost, M. Kirk, Electrically conductive material and method for making[P], US Pat,5963772,1999.
    [8]W. Roger, M. Mechthild, H. Frank, et al. Method for producing composite powders based on silver-tin oxidae, the composite powders so produced, and the use of such powders to produce electrical contact materials by powder metallurgy techniques[P], US Patent 0051102,2001.
    [9]V. Behrens, T. Honig, A. Kraus, et al. An advanced silver/tin oxide contact material [J], IEEE Components, Packaging, and Manufacturing Technology Society, Part A,1994,17(1):24-31.
    [10]王绍雄,新触头材料AgSnO2的发展和应用[J],低压电器,1992,1:15-20.
    [11]G. G. Lee, O. Toshiyuki, H. Koji, et al. Synthesis of silver alloy with tin dioxide dispersed by mechanical alloying[J], The Japan Society of Powder and Powder Metallurgy,1996,43(6):795.
    [12]简德湘,郑翼,李群英,等,高能球磨AgSnO2触头材料的研究[J],电工材料,2004,3:3-6.
    [13]H. Zoz, H. Ren, N. Spath, Improved Ag-SnO2 electrical contact material produced by mechanical alloying[J], Metall,1999,53(8):423-428.
    [14]N. Lorrain, L. Chaffron, C. Carry, et al. Kinetics and formation mechanisms of the nanocomposite powder AgSnO2 prepared by reactive milling[J], Materials Science Engineering A,2004,367:1-8.
    [15]马战红,贾江议,孙乐民,银金属氧化物(AgMeO)触头材料制备技术研究进展[J],材料开发与应用,2004,19(4):39-43.
    [16]J. W. Lee, H. C. Lee, Effects of tellurium addition on the internal oxidation of Ag-Sn alloys[J], Scripta materialia,2000,42:169-173.
    [17]A. Shibata, Silver metal oxide contact materials by internal oxidation process[C], IEEE, Proceedings of the 7th International Conference on Electrical Contacts. Pairs,1974:214-220.
    [18]张万胜,新工艺制备的AgSnO2系材料[J],电工合金,1997,2:15-19.
    [19]杨志远,银-氧化物系烧结触头材料及其制造方法[J],电工合金,1999,1:43-47.
    [20]A. Verma, T. R. Anantharaman. Internal oxidation of rapidly solidified silver-tin-indium alloy powders[J], Journal of materials of science,1992, (27): 5623-5628.
    [21]陈敬超,孙加林,杜焰,等,反应合成银氧化锡电接触材料导电性能研究[J],稀有金属材料与工程,2003,32(12):1053-1056.
    [22]C. Xu, D. Yi, C. Wu, et al, Microstructures and properties of silver-based contact material fabricated by hot extrusion of internal oxidized Ag-Sn-Sb alloy powders[J], Materials Science and Engineering A,2012,538:202-209.
    [23]http://www.umicore.com.
    [24]R. Michal, K. E. Saeger, Metallurgical aspects of silver-based contact materials for air-break switching devices for power engineering[J], IEEE Transaction on Components, Hybrids, and Manufacturing Technology,1989,12(1):71-81.
    [25]F. R. Hensel, Electric Contact Material[P], US2145690,1939.
    [26]张万胜,电触头材料国外基本情况[J],电工合金,1995,1:1-14.
    [27]J. C. Gustafson, H. J. Kim, R. C. Bevington. Arc-erosion studies of matrix-strengthened silver-cadmium oxid[J], IEEE Transaction on Components, Hybrids, and Manufacturing Technology,1983,6:122-129.
    [28]Y. S. Shen, L. Gould. A study on manufacturing silver metal oxide contacts from oxidized alloy powders [J], IEEE Transaction on Components, Hybrids, and Manufacturing Technology,1984,7:39-46.
    [29]C. Brecher, J. C. Gustafson. The effect of additive concentration on material erosion in matrix-strengthened silver-cadmium oxide [J], IEEE Transaction on Components, Hybrids, and Manufacturing Technology,1984,1:25-32.
    [30]H. J. Kim. Improvement of arc erosion resistance of AgCdO material with the matrix-strengthening additive[C], Proceedings of the 11th International Conference on Electric Contact Phenomena, Berlin:1982,212-216
    [31]M. Lindmayer, W. Bohm, Effect of alkali on the switching behavior of AgCdO[C], Proceedings of the 10th International Conference on Electric Contact Phenomena, Budapest 1980,849-862.
    [32]S. Kang, C. Brecher, Cracking mechanisms in Ag-SnO2 contact materials and their role in the erosion process[J], IEEE Transaction on Components, Hybrids, and Manufacturing Technology,1989,12(1):39-46.
    [33]C. Leung, E. Streicher, D. Fitzgerald, Welding behavior of Ag/SnO2 contact material with microstructure and additive modifications [J], Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, Seattle, WA,2004,64-69.
    [34]P. Braumann, A. Koffler, The influence of manufacturing process, metal oxide content, and additives on the switching behaviour of Ag/SnO2 in relays[J], Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, Seattle, WA,2004,90-97.
    [35]任俊杰,万江文,孙明,银基触头分断电弧侵蚀及其表面形貌特征研究[J],低压电器,1996,6:8-12.
    [36]张昆华,管伟明,孙加林,等,AgSnO2电接触材料的制备和直流电弧侵蚀形貌特征[J],稀有金属材料与工程,2005,34(6):924-927.
    [37]徐炯,朱丽慧,余海峰,银基触头材料电弧作用下的失效及其机理[J],材料科学与工程学报,2003,21(4):612-615.
    [38]李铁藩,金属高温氧化和热腐蚀[M],北京:化学工业出版社,2003:227.
    [39]李美栓,金属的高温腐蚀[M],北京:冶金工艺出版社,2001:164.
    [40]B. D. Bastow, D. P. Whittle, G. C. Wood, Alloy depletion profiles resulting from the rreferential removal of the less noble metal during alloy oxidation[J], Oxidation of Metals,1978,12(5):413-449.
    [41]R. A. Rapp, The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J], Acta Metallurgica,1961, 9:730-741.
    [42]R. A. Rapp, D. F. Frank, J. V. Armitage, The formation of passivating internal band in silver-indium alloys[J], Acta Metallurgica,1964,12:505-513.
    [43]R. A. Rapp, Kinetics, microstructure and mechanism of internal oxidation-its effect and prevention in high temperature alloy oxidation[J], Corrosion National Association of Corrosion Engineers,1965,21(11):382-401.
    [44]R. A. Rapp, H. Colson, The kinetics of simultaneous internal oxidation and external scales formation for binary alloys[J], Transactions of the Metallurgical Society of AIME,1966,236:1616-1618.
    [45]S. Guruswamy, S. M. Park, J. P. Hirth, et al, Internal oxidation of Ag-In alloys: stress relief and the influence of imposed strain[J], Oxidation of Metals,1986, 26(1/2):77-100.
    [46]G Wang, B. Glesson, D. L. Douglass, An extension of Wagner's analysis of competing scale formation[J], Oxidation of Metals,1991,35(3/4):317-332.
    [47]P. Bernard, R. A. Rapp, Role of interface structure and interfacial defects in oxide scales growth[J], Oxidation of Metals,1995,44(1/2):63-79.
    [48]马静,合金内外氧化转变机理及表面状态对外氧化的促进作用[D],北京科技大学,博士学位论文,2005.
    [49]H. Schreiner, Pulver-metallurgie elektrischer Kontakte, Springer Verlag, Berlin, Gottingen, Heidelberg,1964, pp166-165.
    [50]U. Harmsen, Din Inneroxidation Von AgCd,Legierungen Unter Saurtoff Druck, Metall,1977,pp133-137
    [51]D. Stockel, Werksto Fur Electrlsche Kontakte,Springer-Verlag,1980:95
    [52]T. Igarashi, M. Shibata, M. Osada, Precipitation behaviour of oxides during internal oxidation of Ag-Cd-Sn Alloys[J], Journal of the Japan Institute of Metals, 1980,44(11):1217-1223.
    [53]T. Igarashi, M. Osada, Internal oxidation kinetics of Ag-Cd-Sn alloys[J], Journal of the Japan Institute of Metals,1980,44(11):1224-1230.
    [54]V. A. van Rooijen, E. W. van Royen, J. V. S. Radelaar, On liesegang bands in internally oxidized AgCd-based ternary alloys[J], Acta Metallurgica,1975, 23(8):987-995.
    [55]Y. S. Shen, E. J. Zdanuk, R. H. Krock, The influence of additives on the formation of periodic precipitation (liesegang bands) in the Ag-Cd System[J], Metallurgical Transactions,1971,2(10):2839-2844.
    [56]Y. S. Shen, E. J. Zdanuk, R. H. Krock, Solute redistribution during internal oxidation of Ag-Cd alloys containing tin as an additive [J], Metallurgical Transactions,1971,2(10):2960-2962.
    [57]U. Murrle, H. E. Exner, Oxide particle densities in internally oxidized Ag-Cd alloys:Part 1 Effect of heterogeneous nucleation in alloys with high Cd content[J], Materials Science and Technology,1988,4(12):1141-1145.
    [58]U. Miirrle, H. E. Exner, D. Stockel, Oxide particle densities in internally oxidized Ag-Cd alloys:Part 2 Alloys with ternary additions[J], Materials Science and Technology,1988,4(12):1146-1151.
    [59]G. Necker, W. Mader, Characterization of Ag/CdO interfaces[J], Philosophical Magazine Letters,1988,58(4):205-212.
    [60]D. K. Chan, D. N. Seidman, K. L. Merkle, The chemistry and structure of{222} CdO/Ag heterophase interfaces on an atomic scale[J], Applied Surface Science, 1996,94/95:409-415.
    [61]D. A. Shashkov, D. A. Muller, D. N. Seidman, Atomic-scale structure and chemistry of ceramic/metal interfaces-II:Solute segregation at MgO/Cu(Ag) and CdO/Ag(Au) interfaces[J], Acta Materialia,1999,47(15/16):3953-3963.
    [62]吴春萍,Ag-Sn合金氧化机理与Ag-SnO2材料的高温塑性变形行为研究[D],中南大学,博士学位论文,2009.
    [63]M. Brunccko, I. Anzel, A. Kneissl, In-situ monitoring of internal oxidation of dilute alloys[J], Corrosion Science,2007,49(3):1228-1244.
    [64]邓忠明,吕贤勇,郑福前,等,某些金属元素对Ag-Sn合金内氧化速度的影响[J],贵金属,2001,22(1):8-11.
    [65]A. Verma, T. R. Anantharaman, Effect of indium concentration on the internal oxidation of a silver-tin alloy[J], Bulletin of Materials Science,1991,14(1):1-10.
    [66]J. W. Lee, H. C. Lee, Effect of Tellurium addition on the internal oxidation of Ag-Sn alloys[J], Scripta Materialia,2000,42(2):169-173.
    [67]G. Schimmel, M. Rettenmayr, B. Kempf, et al, Study on the Microstructure of Internally Oxidized Ag-Sn-In Alloys[J], Oxidation of Metals,2008, 70(1-2):25-38.
    [68]G. Schimmel, J. S. Muller, B. Kempf, M. Rettenmayr, On the mechanism of Ag exudation during internal oxidation[J], Acta Materialia,2010,58(6):2091-2102.
    [69]T. Igarashi, Y. Amano, Y. Kodama, Behavior of solute elements and oxygen during internal oxidation of Ag-In-Sn alloys[J]. Journal of the Japan Institute of Metals,1980,44(5):501-508.
    [70]T. Igarashi, Y. Amano, Y. Kodama, The precipitation behavior of oxides during internal oxidation of Ag-In-Sn alloys[J]. Journal of the Japan Institute of Metals, 1980,44(4):378-386.
    [71]A. Verma, T. R. Anantharaman, Internal oxidation of rapidly solidified silver-tin-indium alloy powders[J]. Journal of materials of science,1992, (27): 5623-5628.
    [72]C. P. Wu, D. Q. Yi, C. H. Xu, et al. Oxidation of Ag-Sn-La Alloy Powders[J], Oxidation of Metals,2008,70(3-4):121-136.
    [73]C. P. Wu, D. Q. Yi, S. Goto,et al. Oxidation of Ag-Sn-Sb alloy powders[J], Materials and Corrosion, In press.
    [74]江珍雅,陈敬超.AgSn合金粉末非抛物线性内氧化研究[J],贵金属,2006,27(2):22-26.
    [75]R. A. Rapp. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys[J], Acta Metallurgica,1961, 9(8):730-741.
    [76]S. Guruswamy, S. M. Park, J. P. Hirth, et al., Internal oxidation of Ag-in alloys: Stress relief and the influence of imposed strain[J], Oxidation of Metals,1986, 26(1-2):77-100.
    [77]R. A. Rapp, D. F. Frank, J. V. Armitage, The formation of passivating internal In2O3 bands in silver-indium alloys[J], Acta Metallurgica,1964,12(5):505-513.
    [78]D. Q. Yi, C. P. Wu, S. Goto, C. H. Xu, et al. Influence of ball-milling on the oxidation behavior of Ag-Zn alloy powders[J], Materials and Corrosion,2010, 60(7),590-598.
    [79]D. L. Douglass, B. Zhu, F. Gesmundo, Internal-Oxide-Band Formation During Oxidation of Ag-Mg Alloys[J], Oxidation of Metals,1992,38(5/6):365-384.
    [80]L. Charrin, A. Combe, J. Cabane, Oxide Particles in Ag-Mg Alloys Formed by Internal Oxidation[J], Oxidation of Metals,1992,37(1/2):65-80.
    [81]B. C. Prorok, K. C. Goretta, J. H. Park, et al. Oxygen diffusion and internal oxidation of Mg in Ag/1.12at.%Mg[J], Physica C,2002,370(1):31-38.
    [82]L. Charrin, P. Gergaud, G. Gonzalez, et al. First Stages of Internal Oxidation in Ag-0.29 and 2.89at.%Mg Single-Crystal Alloys[J],Oxidation of Metals,2006, 66(1/2):21-35.
    [83]M. J. Marcinkowski, D. F. Wriedt, The Effect of Internal Oxidation on the Plastic Deformation of Silver-Aluminum Single Crystals [J], Journal of the Electrochemical Society,1964, 111(1):92-100.
    [84]H. H. Podgurski, F. N. Davis, The Solubility of Oxygen in Silver and the Thermodynamics of the Internal Oxidation of a Silver-Copper Alloy [J], Transactions of the Metallurgical Society of AIME,1964,230:731-735.
    [85]Y. Niu, J. X. Song, F. Gesmundo, et al. High-Temperature Oxidation of Two-Phase Nanocrystalline Ag-Cr Alloys in 1 atm O2[J], Oxidation of Metals, 2001,55(3/4):291-305.
    [86]L. Kosec, J. Roth, M. Bizjak, Internal Oxidation of an Ag-1.3at.%Te Alloy[J], Oxidation of Metals,2001,56(5/6):395-414.
    [87]J. Roth, L. Kosec, P. Skraba, et al. Internal Oxidation of a Ag-1.3 at.% Se Alloy. Part Ⅰ:Composition and Appearance of Oxidation Products[J], Oxidation of Metals,2004,62(3/4):273-291.
    [88]J. Roth, L. Kosec, I. Anzel. Internal Oxidation of a Ag-1.3 at.% Se Alloy. Part II: Kinetics of Internal Oxidation[J], Oxidation of Metals,2004,62(3/4):293-308.
    [89]C. P. Wu, D. Q. Yi, J. C. Chen, et al. Internal oxidation thermodynamics and microstructures of Ag-Y alloy[J], Transaction of Nonferrous Metals Society of China,2007,17(2):262-266.
    [90]D. M. Herman, G. H. Cao, A. T. Becker, et al. Microstructure and properties of a silver-erbium oxide alloy[J], Journal of Alloys and Compounds,2008, 454(l-2):292-296.
    [91]A. Shibata. Silver metal oxide contact materials by internal oxidation process[C], Proceedings of the 7th International Conference on Electrical Contacts. Pairs: IEEE,1974:214-220.
    [92]F. Shehata, A. Fathy, M. Abdelhameed, et al. Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing[J], Materials and Design,2009,30(7):2756-2762.
    [93]S. S. R. Tousi, R. Y. Rad, E. Salahi, et al. Production of Al-20wt.%Al2O3 composite powders using high energy milling[J], Powder Technology,2009, 192:346-351.
    [94]D. R. Mumm. A. G. Evans. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition[J]. Acta Materialia, 2000,48(8):1815-1827.
    [95]M. Stengel, D. Vanderbilt, N. A. Spaldin, Enhancement of ferroelectricity at metal-oxide interfaces[J], Nature Materials,2009,8:392-397.
    [96]P. C. Stair, Metal-oxide interfaces:Where the action is[J], Nature Chemistry, 2011,3:345-346.
    [97]B. J. Kooi, H. B. Groen; J. Th. M. De Hosson, Atomic structure of interfaces between Mn3O4 precipitates and Ag studied with HRTEM[J], Acta Materialia, 1997,45(9):3587-3607.
    [98]W. P. Vellinga, J. Th. M. De Hosson, Atomic structure and orientation relations of interfaces between Ag and ZnO[J], Acta Materialia,1997,45(3):933-950.
    [99]B. J. Kooi, H. B. Groen, J. Th. M. De Hosson, Misfit dislocations at Ag/Mn3O4, Cu/MnO and Cu/Mn3O4 interfaces[J], Acta Materialia,1998,46(1):111-126.
    [100]B. J. Kooi, J. Th. M. De Hosson, Influence of misfit and interfacial binding energy on the shape of the oxide precipitates in metals:Interfaces between Mn3O4 precipitates and Pd studied with HRTEM[J], Acta Materialia,2000, 48(14):3687-3699.
    [101]S. Mogck, B. J. Kooi, J. Th. M. De Hosson Tailoring of misfit along interfaces between ZnxMn3-xO4 and Ag[J], Acta Materialia,2004,52(20):5845-5851.
    [102]G. Necker, W. Mader, Characterization of Ag/CdO interfaces[J], Philosophical magazine letters,1988,58(4):205-212.
    [103]E. Pippel, J. Woltersdorf, J. Gegner, et al. Evidence of oxygen segregation at Ag/MgO interfaces[J], Acta Materialia,2000,48(10):2571-2578.
    [104]M. B. Ricoult, L. Samet, M. F. Trichet, et al. Interfacial chemistry in internally oxidized (Cu,Mg)-alloys[J], Journal of Solid State Chemistry,2003, 173(1):172-188.
    [105]S. Cazottes, Z. L. Zhang, R. Daniel, et al. Structural characterization of a Cu/MgO(001) interface using Cs-corrected HRTEM[J], Thin Solid Films,2010, 519(5):1662-1667.
    [106]P. Luches, S. Benedetti, M. Liberati, et al. Absence of oxide formation at the Fe/MgO(001) interface[J], Surface Science,2005,583(2-3):191-198.
    [107]T. Sasaki, T. Mizoguchi, K. Matsunag, et al. HRTEM and EELS characterization of atomic and electronic structures in Cu/a-Al2O3 interfaces[J], Applied Surface Science,2005,241(1-2):87-90.
    [108]G. Renaud, P. Gue'nard, A. Barbier, Misfit dislocation network at the Ag/MgO(001) interface:A grazing-incidence x-ray-scattering study[J], Physical Review B,1998,58(11):7310-7318
    [109]H. Meltzman, D. Mordehai, W. D. Kaplan, Solid-solid interface reconstruction at equilibrated Ni-Al2O3 interfaces[J], Acta Materialia,2012,60(11):4359-4369.
    [110]C. Scheu, S. Klein, A. P. Tomsia, et al. Chemical reactions and morphological stability at the Cu/Al2O3 interface[J], Journal of Microscopy,2002, 208(1):11-17.
    [111]A. Hashibon, C. Elsasser, M. Ruhle, Structure at abrupt copper-alumina interfaces:An ab initio study[J], Acta Materialia,2005,53(20):5323-5332.
    [112]S. V. Eremeev, S. Schmauder, S. Hocker, et al. Investigation of the electronic structure of Me/Al2O3(0001) interfaces[J], Physica B,2009, 404(14-15):2065-2071.
    [113]S. Mogck, B. J. Kooi, J. Th. M. De Hosson, Ab initio transmission electron microscopy image simulations of coherent Ag-MgO interfaces [J], Physical Review B 2004,70(24):245427.
    [114]C. L. Phillips, P. D. Bristowe. First principles study of the adhesion asymmetry of a metal/oxide interface[J], Journal of Material Science,2008, 43(11):3960-3968.
    [115]Y. Jiang, Y. Wei, J. R. Smith, et al. First Principles Based Predictions of the Toughness of a Metal/Oxide Interface[J], International Journal of Materials Research,2010,101:1-8.
    [116]J. R. Smith, Y. Jiang, A. G. Evans. Adhesion of the y-Ni(Al)/a-A12O3 interface: a first-principles assessment[J], International Journal of Materials Research, 2007,98(12):1214-1221.
    [117]K. M. Carling, E. A. Carter, Effects of segregating elements on the adhesive strength and structure of the a-Al2O3-Ni(Al) interface[J], Acta Materialia,2007, 55(8):2791-2803.
    [118]L. Szabova, M. F. Camellone, M. Huang, et al. Thermodynamic, electronic and structural properties of Cu/CeO2 surfaces and interfaces from first-principles DFT+U calculations [J]. The Journal of Chemical Physics,2010, 133(23):234705.
    [119]D. Passerone, C. A. Pignedoli, F. Valenza, et al. Ab initio simulations of Ag(111)/Al2O3 interface at intermediate oxygen partial pressures[J], Journal of Material Science,2010,45(16):4265-4270.
    [120]W. Zhang, J. R. Smith, A. G. Evans, The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3[J], Acta Materialia,2002,50(15):3803-3816.
    [121]J. Feng,W. Zhang, W. Jiang, Ab initio study of Ag/Al2O3 and Au/Al2O3 interfaces[J], Physical Review B,2005,72(11):115423.
    [122]J. Ayache, L. Beaunier, J. Boumendil, et al, Sample Preparation Handbook for Transmission Electron Microscopy Techniques [M]. Springer, Springer New York Dordrecht Heidelberg, London,2010.
    [123]林文松,方宁象,林柄,Bi对Ag-Sn合金粉末内氧化机制的影响[J],粉末冶金技术,2002,20(4):200-204.
    [124]J. K. Kim, D. J. Jang, G. B. Kwon, et al. The Effects of Te and Misch Metal Additions on the Microstructure and Properties of Rapidly Solidified Ag-Sn-In Alloy for Electrical Contact Applications [J], Metals and Materials International, 2008,14(4):403-409.
    [125]C. P. Wu, D. Q. Yi, C. H. Xu, et al. Microstructure of internally oxidized layer in Ag-Sn-Cu alloy[J], Corrosion Science,2008,50(12):3508-3518.
    [126]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [127]D. Jeannot, J. Pinard, P. Ramoni, et al. Physical and chemical properties of metal oxide additions to Ag-SnO2 contact materials and predictions of electrical performance[J], IEEE Transaction on Components and Manufacturing Technology Part A,1994,17(1):17-23.
    [128]I. Karakaya, W. T. Thompson, The Ag-Sn (Silver-Tin) system[J], Journal of Phase Equilibria,1987,8(4):340-347.
    [129]H. Okamoto, Ag-In (Silver-Indium)[J], Journal of Phase Equilibria and Diffusion,2006,27(5):535-537.
    [130]I. Karakaya, The Ag-Bi (Silver-Bismuth) System[J], Journal of Phase Equilibria, 1993,14(4):525-530.
    [131]K. A. Gschneidner, F. W. Calderwood, The Ag-La (Silver-Lanthanum) system[J], Journal of Phase Equilibria,1983,4(4):370-374.
    [132]A. Palenzona, S. Cirafici, The La-Sn (lanthanum-tin) system[J], Journal of Phase Equilibria,1992,13(1):42-49.
    [133]G. Schimmel, B. Kempf, M. Rettenmayr, Exudation of Ag and Cu in internally oxidized Ag-Sn-In-(Cu) alloys[J], Materials Letters,2009,63(17):1521-1524.
    [134]S. Guruswamy, S. M. Park, J. P. Hirth, et al. Internal Oxidation of Ag-In Alloys: Stress Relief and the Influence of Imposed Strain[J], Oxidation of Metals,1986, 26(1/2):77-100.
    [135]C. Xu, W. Gao, Pilling-Bedworth ratio for oxidation of alloys[J], Material Research Innovations,2000,3(4):231-235.
    [136]G. Schimmel, J. S. Miiller, B. Kempf, et al. On the mechanism of Ag exudation during internal oxidation[J], Acta Materialia,2010,58(6):2091-2102.
    [137]H. Enoki, J. Echigoya, H. Suto, The intermediate compound in the In2O3-SnO2 system[J], Journal of Materials Science,1991,26(15):4110-4115.
    [138]Y. Shigesato, D. C. Paine. Study of the effect of Sn doping on the electronic transport properties of thin film indium oxide[J], Applied physics letters,1993, 62(11):1268-1270.
    [139]D. L. Douglass. A Critique of Internal Oxidation in Alloys During the Post-Wagner Era[J], Oxidation of Metals,1995,44(1/2):81-111.
    [140]L. Charrin, A. B. Gallissian, A. Combe, et al. Key Experimental Parameters for Internal-Band Formation:Relationship Between Stress and Oxidation Kinetics in Silver-Magnesium Alloys[J], Oxidation of Metals,2002,57(1/2):81-98.
    [141]D. L. Douglass, B. Zhu, F. Gesmundo, Internal-Oxide-Band Formation During Oxidation of Ag-Mg Alloys[J], Oxidation of Metals,1992,38(5/6):365-384.
    [142]师昌绪,李恒德,周廉,材料科学与工程手册[M],上卷,化学工业出版社,北京:2004.
    [143]荣命哲,银金属氧化物触头材料表面动力学特性的研究[J],中国电机工程学报,1993,13(6):271-277.
    [144]A. Kratzschmar, R. Herbst, T. Mtitzel, et al. Basic Investigations on the Behavior of Advanced Ag/SnO2 Materials for Contactor Applications [C], Proceedings of the 56th IEEE Holm Conference on Electrical Contacts (HOLM), Charleston, SC,2010,1-7.
    [145]W. P. Vellinga, J. Th. M. De Hosson, Atmoic structure and orientation relations of interfaces between Ag and ZnO[J], Acta Materialia,1997,45(3):933-950.
    [146]B. J. Kooi, H. B. Groen, J. Th. M. De Hosson, Misfit dislocations at Ag/Mn3O4, Cu/MnO and Cu/Mn3O4 interfaces [J], Acta Materialia,1998,46(1):111-126.
    [147]B. J. Kooi, H. B. Groen, J. Th. M. De Hosson, Atomic structure of interfaces between Mn3O4 precipitates and Ag studied with HRTEM[J], Acta Materialia, 1997,45(9):3587-3607.
    [148]S. Mogck, B. J. Kooi, J. Th. M. De Hosson, Tailoring of misfit along interfaces between ZnxMn3-xO4 and Ag[J], Acta Materialia,2004,52(20):5845-5851.
    [149]H. Zhang, L. L. He, H. Q. Ye. On orientation relationship of the Ti5Si3 precipitates in a TiAl alloy [J], Materials Science and Engineering A,2003, 360(1/2):415-419.
    [150]黄孝英,透射电子显微学[M],上海科技出版社,上海:1987.
    [151]S. Cazottes, Z. L. Zhang, R. Daniel, et al. Structural characterization of a CuMgO(001) interface using Cs-corrected HRTEM[J], Thin Solid Films,2010, 519(5):1662-1667.
    [152]张建民,吴喜军,黄育红,等,fcc金属层错能的EAM法计算[J],物理学报,2006,55(1):393-397.
    [153]L. Liu, W. A. Bassett, Compression of Ag and phase transformation of NaCl[J], Journal of Applied Physics,1973,44(4):1475-1479.
    [154]A. A. Bolzan, C. Fong, B. J. Kennedy, et al. Structural Studies of Rutile-Type Metal Dioxides[J], Acta Crystallographica Section B:Structural Science,1997, 53:373-380.
    [155]石德珂,材料科学基础[M],第二版,机械工业出版社,北京:2003.
    [156]E. F. Morris, Phase Transformations in Condensed Systems[M], Macmillan, New York,1964.
    [157]G. Bohm, M. Kahlweit, On internal oxidation of metallic alloys [J], Acta Metallurgica,1964,12(5):641-648.
    [158]D. L. Corn, D. L. Douglass, and C. A. Smith, The internal oxidation of Nb-Hf alloys[J], Oxidation of Metals,1991,35(1/2):139-173.
    [159]VASP Guide:http://cms.mpi.univie.ac.at/vasp.
    [160]D. M. Ceplerley, B.J. Alder, Exchange-correlation potential for LDA[J], Physical Review Letters,1980,45(7):566-569.
    [161]J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J], Physical Review B,1992,46(11):6671-6687.
    [162]J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple[J], Physical Review Letters,1996,77:38653868.
    [163]G. Kresse, J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method[J], Physical Review B,1999,59:1758-1775.
    [164]H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations[J], Physical Review B,1976,13(12):5188-5192.
    [165]F. D. Murnaghan, The compressibility of media under extreme pressures[C], Proceedings of the national academy of sciences, USA,1944,30(9):244-247.
    [166]李贵发,彭平,陈律,等,Ag表面性质的第一原理计算[J],贵金属,2006,27:5-13.
    [167]M. Batzill, U. Diebold, The surface and materials science of tin oxide[J], Progress in Surface Science,2005,79(2-4):47-154.
    [168]B. Thangaraju, Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor[J], Thin Solid Films,2002,402(1-2):71-78.
    [169]R. G. Gordon, Preparation and properties of transparent conductors[C], Material Research Society Proceedings,1996,426:419.
    [170]P. W. Park, H. H. Kung, D. W. Kim, et al. Characterization of SnO2/Al2O3 Lean NOx Catalysts[J], Journal of Catalysis,1999,184(2):440-454.
    [171]G. Croft, M. J. Fuller, Water-promoted oxidation of carbon monoxide over tin (IV) oxide-supported palladium[J], Nature,1977,269:585-586.
    [172]L. Zang, H. Kisch, Room Temperature Oxidation of Carbon Monoxide Catalyzed by Hydrous Ruthenium Dioxide[J], Angewandte Chemie International Edition,2000,39(21):3921-3922.
    [173]H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, et al. Influence of platinum interlayers on the electrical properties of Ru02/Pb(Zr0.53Ti0.47)03/Ru02 capacitor heterostructures[J], Applied Physics Letters,1995,66(2):239-241.
    [174]Y. Y. Chen, P. C. Chen, C. B. Tsai, et al. Low-Magnetoresistance RuO2-Al2O3 Thin-Film Thermometer and its Application[J], International Journal of thermophysics,2009,30(1):316-324.
    [175]J. Oviedo, M. J. Gillan. Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations [J], Surface Science,2000, 463(2):93-101.
    [176]F. R. Sensato, R. Custodio, M. Calatayud, et al. Periodic study on the structural and electronic properties of bulk, oxidized and reduced SnO2(110) surfaces and the interaction with O2[J], Surface Science,2002,511(1-3):408-420.
    [177]M. Meyer, G. Onida, M. Palummo, and L. Reining. Ab initio pseudopotential calculation of the equilibrium structure of tin monoxide[J], Physical Review B, 2001,64(4):045119.
    [178]V. Golovanov, M. Viitala, T. Kortelainen, et al. Stability of siloxane couplers on pure and fluorine doped SnO2(110) surface:A first principles study[J], Surface Science,2010,604(19-20):1784-1790.
    [179]A.V. Postnikov, P. Entel, P. Ordejon, SnO2:Bulk and surface simulations by an ab initio numerical local orbitals method[J], Phase Transitions,2002, 75(1-2):143-149.
    [180]K. Benyahia, Z. Nabi, A. Tadjer, et al. Ab initio study of the structural and electronic properties of the complex structures of RuO2[J], Physica B: Condensed Matter,2003,339(1):1-10.
    [181]J. S. Tse, D. D. Klug, K. Uehara, et al. Elastic properties of potential superhard phases of RuO2[J], Physical Review B,2000,61(15):10029-10034.
    [182]Z. J. Yang, Y. D. Guo, J. Li, et al. Electronic structure and optical properties of rutile RuO2 from first principles [J], Chinese Physics B,2010,19(7):077102.
    [183]M. E. Grillo, Stability of corundum-versus rutile-type structures of ruthenium and rhodium oxides [J], Physical Review B,2004,70(18):184115.
    [184]J. H. Xu, T. Jarlborg, A. J. Freeman, Self-consistent band structure of the rutile dioxides NbO2, RuO2, and IrO2[J], Physical Review B,1989,40(11):7939-7947.
    [185]C. Meade, R. Jeanloz, High precision powder x-ray diffraction measurements at high pressures[J], Review of Scientific Instruments,1990,61(10):2571-2580.
    [186]Y. Tsuchida, T. Yagi, A new, post-stishovite highpressure polymorph of silica[J], Nature,1989,340:217-220.
    [187]J. Haines, J. M. Leger, O. Schulte, et al. Neutron diffraction study of the ambient-pressure, rutile-type and the high-pressure, CaCl2-type phases of ruthenium dioxide[J], Acta Crystallographica Section B:Structural Science.1997, 53:880-884.
    [188]T. X. T. Sayle, S. C. Parker, C. R. A. Catlow, The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide[J], Surface Science,1994, 316(3):329-336.
    [189]石德珂,材料科学基础[M],机械工业出版社,北京,2003,128.
    [190]刘新厚,甄珍.贵金属新分析势能面及在金属表面计算机模拟中的应用[J].中国科学(B辑),1999,3:280-288.
    [191]Q. Jiang, H. M. Lu, M. Zhao, Modelling of surface energies of elemental crystals[J], Journal of Physics:Condensed Matter,2004,16(4):521-530.
    [192]W. R. Tyson, W. A. Miller. Surface free energies of solid metals:Estimation from liquid surface tension measurements[J], Surface Science,1977, 62(1):267-276.
    [193]F. R. DeBoer, R. Boom, W. C. M. Mattens, Cohesion in Metals[M], North-Holland, Amsterdam,1988.
    [194]Y. Jiang, J. B. Adams, M. V. Schilfgaarde, Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities[J], Journal of Chemical Physics,2005,123(1):064701.
    [195]D. R. Stull, H. Prophet, JANAF Thermochemical Tables,2nd ed. (U.S. National Bureau of Standards, Washington, DC 1971).
    [196]J. Goniakowski, J. M.Holender, L. N. Kantorovich, et al. Influence of gradient corrections on the bulk and surface properties of TiO2 and SnO2[J], Physical Review B,1996,53(1):957-960.
    [197]I. Manassidis, J. Goniakowski, L. N. Kantorovich, et al. The structure of the stoichiometric and reduced SnO2(110) surface[J], Surface Science,1995, 339(3):258-271.
    [198]W. Bergermayera, I. Tanaka, Reduced SnO2 surfaces by first-principles calculations[J], Applied Physics Letters,2004,84(6):909-911.
    [199]B. Slater, C. R. Catlow, D. H. Gay, et al. Study of Surface Segregation of Antimony on SnO2 Surfaces by Computer Simulation Techniques [J], The Journal of Physical Chemistry B,1999,103(48):10644-10650.
    [200]M. Batzill, K. Katsiev, J. M. Burst, et al. Gas-phase-dependent properties of SnO2(110), (100), and (101) single-crystal surfaces:Structure, composition, and electronic properties [J], Physical Review B,2005,72(16):165414.
    [201]H. Over, M. Knapp, E. Lundgren, et al. Visualization of Atomic Processes on Ruthenium Dioxide using Scanning Tunneling Microscopy[J], ChemPhysChem, 2004,5(2):167-174.
    [202]Y. D. Kim, S. Schwegmann, A. P. Seitsonen, et al. Epitaxial Growth of RuO2(100) on Ru(10-10):Surface Structure and Other Properties[J], The Journal of Physical and Chemistry B,2001,105(11):2205-2211.
    [203]K. Reuter, M. Scheffler, Composition and structure of the RuO2(110) surface in an O2 and CO environment:Implications for the catalytic formation of CO2[J], Physical Review B,2003,68(4):045407.
    [204]A. P. Seitsonen, H. Over, Ruthenium dioxide, a versatile oxidation catalyst:first principle analysis[C], High Performance Computing in Science and Engineering in Munich 2002, Springer-Verlag.171-180.
    [205]H. W. Kim, J. W. Lee, S. H. Shim, C. Lee, Controlled Growth of SnO2 Nanorods by Thermal Evaporation of Sn Powders[J], Journal of the Korean Physical Society,2007,51(1):198-203.
    [206]J. Liu, X. L. Chen, W. J. Wang, et al. Secondary Facet-Selective Nucleation and Growth:Highly Oriented Straight SnO2 Nanowire Arrays on Primary Microrods[J], Crystal Growth & Design,2009,9(4):1757-1761.
    [207]Z. R. Dai, Z. W. Pan, Z. L. Wang, Ultra-long single crystalline nanoribbons of tin oxide[J], Solid State Communications,2001,118(7):351-354.
    [208]Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides[J], Science,2001,291(5510):1947-1949.
    [209]K. Katsiev, A. Kolmakov, M. Fang, et al. Characterization of individual SnO2 nanobelts with STM[J], Surface Science,2008,602(14):L112-L114.
    [210]B. Thiel, R. Helbig, Growth of SnO2 single crystals by a vapour phase reaction method[J], Journal of Crystal Growth,1976,32(2):259-264.
    [211]S. Neupane, G. Kaganas, R. Valenzuela, et al. Synthesis and characterization of ruthenium dioxide nanostructures[J], Journal of Materials Science,2011,46(14): 4803-4811.
    [212]Y. L. Liu, Z. Y. Wu, K. J. Lin, et al. Growth of single-crystalline RuO2 nano wires with one-and two-nanocontact electrical characterizations [J], Applied Physics Letters,2007,90(1):013105.
    [213]J. Vetrone, C. M. Foster, G. R. Bai, et al. Growth, microstructure, and resistivity of RuO2 thin films grown by metal-organic chemical vapour deposition[J], Journal of Materials Research,1998,13(8):2281-2290.
    [214]C. C. Chen, R. S. Chen, T. Y. Tsai, et al. The growth and characterization of well aligned RuO2 nanorods on sapphire substrates [J], Journal of Physics: Condensed Matter,2004,16(47):8475-8484.
    [215]M. Rolssler, S. Gulnther, J. Wintterlin, Scanning tunneling microscopy of the RuO2 (110) surface at ambient oxygen pressure[J], Journal of Physical Chemistry C,2007,111(5):2242-2250.
    [216]H. Over, Y. D. Kim, A. P. Seitsonen, et al. Atomic-scale structure and catalytic reactivity of the RuO2 (110) surface[J], Science,2000,287(5457):1474-1476.
    [217]S. Wendt, A. P. Seitsonen, Y. D. Kim, et al. Complex redox chemistry on the RuO2(110) surface:experiment and theory[J], Surface Science,2002, 505:137-152.
    [218]G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflosung der Kristallflachen[J], Z. Kristallogr,1901,34:449-530.
    [219]C. Herring, Some theorems on the free energies of crystal surfaces[J], Physical Review,1951,82:87-93.
    [220]S. H. Zhang, Z. Y. Jiang, Z. X. Xie, et al. Growth of Silver Nanowires from Solutions:A Cyclic Penta-twinned-Crystal Growth Mechanism[J], The Journal of Physical Chemistry B,2005,109(19):9416-9421.
    [221]Y. Liu, J. Dong, M. Liu. Well-Aligned "Nano-box-beams"of SnO2[J], Advance Materials,2004,16(4):353-356.
    [222]A. S. Barnard, L. A. Curtiss, Computational nano-morphology:Modeling shape as well as size[J], Reviews on Advanced Materials Science,2005,10:105-109.
    [223]D. Chen, L. Gao, Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process [J], Chemical Physics Letters,2004, 398(1-3):201-206.
    [224]Z. Ying, Q. Wan, Z. T. Song, et al. SnO2 nanowhiskers and their ethanol sensing characteristics[J], Nanotechology,2004,15(11):1682-1684.
    [225]N. Lopez, J. G. Segura, R. P. Marin, Mechanism of HC1 oxidation (Deacon process) over RuO2[J], Journal of Catalysis,2008,255(1):29-39.
    [226]C. S. Hsieh, D. S. Tsai, R. S. Chen, et al. Preparation of ruthenium dioxide nanorods and their field emission characteristics[J], Applied Physics Letters, 2004,85(17):3860-3862.
    [227]Y. J. Gu, W. T. Wong, Synthesis and Characterization of Hyperbranched RuO2 Nanostructures[J], Journal of Cluster Science,2006,17(3):517-526.
    [228]Y. L. Chueh, C. H. Hsieh, M. T. Chang, et al. RuO2 nanowires and RuO2/TiO2 core/shell nanowires:From synthesis to mechanical, optical, electrical, and photoconductive properties[J], Advanced Materials,2007,19(1):143-149.
    [229]Y. Jiang, Y. Wei, J. R. Smith, et al. First principles based predictions of the toughness of a metal/oxide interface[J], International Journal of Materials Research,2010,101:1-8.
    [230]Y. Jiang, J. R. Smith, A. G. Evans. First principles assessment of metal/oxide interface adhesion[J], Applied Physics Letters,2008,92(14):141918.
    [231]J. R. Smith, Y. Jiang, A. G. Evans. Adhesion of the yNi (Al)/a-Al2O3 interface: a first-principles assessment[J], International journal of materials research,2007, 98:1214-1221.
    [232]W. Zhang, J. R. Smith, X. G. Wang, et al. Influence of sulfur on the adhesion of the nickel/alumina interface[J], Physical Review B,2003,67(24):245414.
    [233]G. Lan, Y. Jiang, D. Yi, S. Liu, Theoretical prediction of impurity effects on the internally oxidized metal/oxide interface:the case study of S on Cu/Al2O3[J], Physical Chemistry Chemical Physics,2012,14:11178-11184.
    [234]G. Gutekunst, J. Mayer, M. Ruhle. The niobium/sapphire interface:Structural studies by HREM[J], Scripta Metallurgica et Materialia,1994,31(8):1097-1102.
    [235]O. Toshiyuki, R. Kichkon, H. Koji. Ag-tin oxide-molybdenum trioxide electrical contact material excellent in deposition resistance and consumption resistance[P], JP9111364,1997.
    [236]L. Karakaya, W. T. Thompson, The Ag-O (silver-oxygen) system[J], Journal of Phase Equilibria,1992,13:137-142.
    [237]W. Eichenauer, G. Muller, Diffusion and Solubility of Oxygen in Silver[J], Z Metallkd.,1962,53:321-324.
    [238]F. H. Stott, G. C. Wood, Internal oxidation[J]. Materials Science and Technology,1988,4:1072-1078.
    [239]D. P. Whittle, Y. Shida, G. C. Wood, et al. Enhanced diffusion of oxygen during internal oxidation of nickel-base alloys [J], Philosophical Magazine A, 1982,46(6):931-949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700