用户名: 密码: 验证码:
多粘类芽孢杆菌(Paenibacillus polymyxa)SC2 fus基因簇的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多粘类芽孢杆菌(Paenibacillus polymyxa)SC2是一株从辣椒根际分离筛选的根际促生细菌,该菌株抗菌谱广,对辣椒根腐病原菌( Fusarium solani)、黄瓜枯萎病原菌(Fusarium oxysporum f. sp. cucumerinum)、黄瓜霜霉病原菌(Pseudoperonospora cubensis)、芹菜灰霉病原菌(Botrytis cinerea Pers)以及西红柿灰霉病原菌(Botrytis cinerea)等具有良好的拮抗效果。
     用已报道的检测非核糖体肽合成酶(non-ribosomal peptide synthetases, NRPSs)基因保守区的兼并引物TGD和LGG为引物,以多粘类芽孢杆菌(P. polymyxa )SC2的基因组DNA为模板进行PCR扩增,获得一段长度为497bp的NRPS基因保守区序列。采用热不对称交错PCR(TAIL-PCR)方法,以SC2菌株基因组DNA为模板,根据NRPS基因保守区序列,分别向两侧设计特异性引物,扩增该已知序列的两侧序列。随后,通过多次特异性引物设计,进行TAIL-PCR。同时,根据枯草芽孢杆菌(Bacillus subtilis)bamC、mycC、ituC和解淀粉芽孢杆菌(Bacillus amyloliquefaciens)FZB42 bmyC的同源序列,设计兼并引物进行PCR扩增,将得到的所有序列拼接,得到长度为19844bp的DNA序列。
     经BLAST比对发现,此DNA序列与P. polymyxa PKB1中fus基因簇具有很高的相似性,因此,根据P. polymyxa PKB1中fusA基因簇与本试验获得的DNA序列的同源区域设计一系列兼并引物,进行特异性扩增,最终得到一条32680bp的DNA序列。
     将得到的总长为32680bp的DNA序列提交GenBank,获得序列号为EU431181,该序列包含8个ORF,即fus基因簇,这8个ORF分别为fusG,fusF,fusE,fusD,fusC,fusB,fusA,fusTE,其核苷酸序列与多粘类芽孢杆菌(P. polymyxa) PKB1中对应的fusG,fusF,fusE,fusD,fusC,fusB,fusA,fusTE的相似性分别为90.61%,93.42%,91.75%,85.54%,83.29%,89.95%,88.97%,82.88%;其衍生氨基酸序列与多粘类芽孢杆菌(P. polymyxa)PKB1中对应的FusG,FusF,FusE,FusD,FusC,FusB,FusA,FusTE的相似性分别98.77%,99.15%,98.28%,90.64%,96.31%,97.78%,96.81%,和76.35%。另外,通过NCBI-BLAST,对fus基因簇的每个ORF进行了初步的功能分析。
     fusA为一个完整的23727bp的ORF,编码7908个氨基酸,对其多肽序列进行结构域分析,结果表明,该多肽序列包含六个模块,分别为C-A-T、C-A-T-E、C-A-T、C-A-T-E、C-A-T-E和C-A-T;六个模块中的前五个模块的A结构域的特异性底物分别为L-Thr,D-Val,L-Tyr,D-Thr和D-Asn,但是第六个模块中特异性底物尚不能完全确定,通过构建系统发育树可以推测得到,多粘类芽孢杆菌(P. polymyxa)SC2的FusA-A6的结构域的特异性底物为D-Ala。预测的氨基酸残基组成、顺序与多粘芽孢杆菌(Bacillus polymyxa )KT-8产生的fusaricidin C和多粘芽孢杆菌(Bacillus polymyxa )L-1129产生的LI-F03a的第1、2、3、4、5、6位上氨基酸残基组成和顺序完全一致,因此,可以初步判断P. polymyxa SC2可能产生具有抗真菌活性的fusaricidin C。多粘类芽孢杆菌(P. polymyxa)SC2的FusA的六个A结构域的氨基酸序列与多粘类芽孢杆菌(P. poly- myxa)PKB1的FusA的A1、A2、A3、A4、A5和? A6结构域的相似性分别为94.13%、94.82%、91.52%、94.55%、95.34%和96.73%;其对应的核苷酸序列同源性分别为86.95%、89.00%、82.18%、89.38%、87.31%和89.49%。
Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacteria (PGPR) had significantly antagonistic to many soil-borne plant pathogenic fungi such as Phytophthora capsici. This has a broad-spectrum antimicrobial activity and can antagonize Fusarium solani, Fusarium oxysporum f. sp. cucumerinum, Pseudoperonospora cubensis, Botrytis cinerea Pers and Botrytis cinerea.
     In the present study, We obtained a 497bp conserved DNA fragment of NRPSs gene, with the primers TGD and LGG detecting non-ribosomal peptide synthetases concerved domain, with genomic DNA of P. polymyxa SC2 as template. According to the conserved DNA sequence, we designed specific primers of TAIL-PCR, amplified the DNA sequences flanking on the conserved DNA fragment by the method of TAIL-PCR with genomic DNA of P. polymyxa SC2 as template. Subsequently, the TAIL-PCR of upstream or downstream DNA sequences of the last amplified DNA fragments were continually carried out for several times. Alternatively, depending on the identity of the NRPS gene to bamC, mycC, ituC sequences of Bacillus subtilis strains and bmyC of Bacillus amyloliquefaciens FZB42, degenerate primers were designed to amplify the aimed DNA fragments. Then, we obtained a resulting DNA sequence with the length of 19844bp by assembling all amplified DNA fragments.
     BLAST analysis revealed the ORF is identical to the homologous fus gene cluster sequence of P. polymyxa PKB1, so, depending on the identity of the DNA fragments has obtained to fus gene cluster of P. polymyxa PKB1, degenerate primers were designed to amplify the aimed DNA fragments. Finally, we obtained a resulting DNA sequence with the length of 32680bp by assembling all amplified DNA fragments.
     Finally, the fus gene cluster was cloned and sequenced (the accession number of GenBank is EU431181), and it spans 32680 bp, including 8 open reading frames (the fus gene cluster), they are fusG, fusF, fusE, fusD, fusC, fusB, fusA, fusTE. Similarity of the 8 ORFs in the fusaricidin biosynthetic gene cluster of P. polymyxa SC2 to the corresponding gene fusG, fusF, fusE, fusD, fusC, fusB, fusA, fusTE of the P. polymyxa PKB1 is 90.61%, 93.42%, 91.75%, 85.54%, 83.29%, 89.95%, 88.97%, 82.88%, and similarity of the deduced amino acid sequences to FusG, FusF, FusE, FusD, FusC, FusB, FusA, FusTE of the strain P. polymyxa PKB1 is 98.77%, 99.15%, 98.28%, 90.64%, 96.31%, 97.78%, 96.81%, and 76.35%, respectively. Then,wo do the primary analysis to the fus gene cluster by NCBI-BLAST.
     The fusA is 23727 bp, encoding a six-module nonribosomal peptide synthetase. The domain organization for these six modules are C-A-T, C-A-T-E, C-A-T, C-A-T-E, C-A-T-E and C-A-T-TE, respectively. The predicted substrate specificities of the top five A domains within FusA were consistent with the five amino acids, L-Thr, D-Val, L-Tyr, D-Thr and D-Asn. The amino acid substrate for FusA-A6 could not be predicted because its signature sequence shows no similarity to A domains with assigned specificities, including those activating L- and D-Ala. We have build up the phylogenetic tree of FusA-A6 of the P. polymyxa SC2 using the MEGA4 software. Finally, we have predicted that the amino acid substrate for FusA-A6 may be D-Ala. The predicted amino acid composition and sequence of the P. polymyxa SC2 was exactly consistent with the fusaricidin C produced by Bacillus polymyxa KT-8 and LI-F03a produced by Bacillus polymyxa L-1129. Accordingly, P. polymyxa SC2 may be responsible for the synthesis of fusaricidin C (LI-F03a) which has the antifungal activity. Similarity of the six A domains to the corresponding domain A1, A2, A3, A4, A5 and A6 of FusA of P. polymyxa PKB1 are 94.13%, 94.82%, 91.52%, 94.55%, 95.34% and 96.73%, respectively. Accordingly, identity of their DNA sequences are 86.95%, 89.00%, 82.18%, 89.38%, 87.31% and 89.49%. We deduce that fusA is a key gene involved in biosynthesis of nonribosomal peptide fusaricidin C from P. polymyxa SC2.
引文
陈志谊,高太东,严大富等.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验.中国生物防治.1997,13(2):75-78.
    戴晓燕,关桂兰.中国生物防治,1999,15(2):81-84.
    高学文,姚仕义. Huong Pham等.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析,中国生物防治, 2003, 19(4):175-179.
    高克祥,王淑红,刘晓光等.木霉菌株T88对7种病原真菌的拮抗作用.河北林果研究.1999,14(2):59-62.
    高向阳,陈念,林壁润等.短杆菌肽S的研究进展.生命科学研究, 2004, 8(2): 76-79.
    何青芳,陈卫良,马志超.枯草芽孢杆菌A30菌株产生的拮抗肽的分离纯化与理化性质研究.中国水稻科学, 2002, 16(4): 361-365.
    何红,蔡学清,关雄等.内生菌BS-2菌株的抗菌蛋白及其防病作用.植物病理学报, 2003, 33(4): 373-378.
    孔建,王文夕,赵白鸽,申效诚.枯草芽孢杆菌B-903菌株的研究以及对植物病原菌的抑制作用和防治试验.中国生物防治, 1999, 15(4): 157-161.
    赖翼,刘成君,李晖,陈金瑞.青稞散黑穗病拮抗菌LN-176的分离鉴定、发酵条件及发酵产物的研究.植物保护,2005, 31(3): 31-34.
    李越中.药物微生物技术.北京:化学工业出版社, 2004, 191.
    刘静,王军,姚建铭等.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化.微生物学报, 2004, 44(4): 511-514.
    刘颖,徐庆,陈章良.抗真菌肽LP-1的分离纯化及特性分析.微生物学报, 1999, 39(5): 441-447.
    峁振川.木霉菌培养液对苹果腐烂病菌的拮抗作用.河北果树.2000, 3:15-16.
    罗丽娟,施季森.一种DNA侧翼序列分离技术-TAIL-PCR.南京林业大学学报, 2003, 27(4): 87-90.
    马卫明,佘锐萍.抗菌肤的免疫机理及应用前景.世界农业. 2003, 10:41-43.
    梅汝鸿.增产菌.技术与市场,1997,7(l):15-15.
    明镇寰,潘建伟,朱睦元.非核糖体多肽合成酶研究进展.生物化学与生物物理进展, 2002, 29(5): 667-669.
    裴炎,李先碧,彭红卫,等.抗真菌多肽APS-1的分离纯化与特性.微生物学报, 1999, 39(4): 344-349.
    Sambrook J., and Russell D. W.分子克隆实验指南(第三版).黄培堂等译. 北京:科学出版社, 2002.
    宋从凤,黄迎春,潘小玫,王金生.植物病害的系统获得抗性.世界农业, 1998, 12 (总226): 36-37.
    石志琦,胡梁斌,于淑池,徐朗莱,范永坚.细菌P-FS08的鉴定及其对几种植物病原真菌的拮抗作用.南京农业大学学报, 2005, 28(3): 48-52.
    童蕴慧,纪兆林,徐敬友,陈夕军.灰葡萄孢拮抗细菌在番茄植物体表的定殖.中国生物防治, 2003, 19(2): 78-81.
    童蕴慧,郭桂萍,徐敬友,纪兆林,陈夕军.拮抗细菌对番茄植株抗灰霉病的诱导.中国生物防治, 2004, 20(3): 187-189.
    王革,周晓罡,李天飞等.木霉拮抗烟草赤星病菌菌株的筛选及拮抗机制.烟草科技.2000,3:45-47.
    王玉菊,祁红英,郭建华.植物土传病害的微生物防治研究进展.世界农业.1995,1:37-39.
    王金生.细菌素在植物细菌病害生防中的应用.生物防治通报, 1985, 1(2): 36-40.
    王未名,陈建爱,孙永唐等.六种土传病原真菌被木霉抑制作用机理的初步研究.中国生物防治.1999,15(3):142-143.
    王益民,唐文华.几丁质酶基因和B21,32葡聚糖酶基因的克隆及双价基因在枯草芽孢杆菌B2908中的表达.北京,中国农业大学, 1997.
    王智文,刘训理.芽孢杆菌非核糖体肽的研究进展.蚕业科学, 2006,32(3): 392-398.
    王智文,刘训理等.多粘类芽抱杆菌(paenibaeillus polymyxa)Cp-S316抗真菌物质的发酵、分离纯化与性质研究.山东农业大学硕士论文, 2007.
    谢晶,葛绍荣,陶勇,高平,刘昆,刘世贵.多粘类芽孢杆菌BS04拮抗成分分离纯化及其特性.化学研究与应用, 2004, 16(6): 775-777.
    徐玲,王伟,魏鸿刚,沈国敏,李元广.多粘类芽孢杆菌HY96-2对番茄青枯病的防治作用.中国生物防治, 2006, 22(3): 216-220.
    姚乌兰,王云山,韩继刚,李潞滨,宋未.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆.遗传学报, 2004, 31(9): 878-887.
    张桂英,廖咏梅,张君成.甘蔗黑穗病菌拮抗性芽孢杆菌的抗菌作用与伊枯草菌素A的产生有关.广西科学. 2004, 11 ( 3) :272-296.
    周与良,邢来君.真菌学.北京:高等教育出版社, 1986.
    朱昌雄,宋渊.我国农用抗生素的现状与发展趋势探讨.中围农业科技导报,2006 ,8 (6) : 1 7-1 9.
    朱辉等.辣椒根腐病拮抗细菌的筛选及其生物学特性研究.生物技术通报, 2008,1:156-159.
    宗兆锋,乔宏萍,何杞真. 2株重寄生菌的分离和对靶标菌的抑制作用.西北农业学报. 2002,11(4):1-3.
    Abo-el-Dahab M. K., and el-Goorani M. A. Antagonism among strains of Pseudomonas solanacearum. Phytopathol, 1969, 59(7): 1005-1007.
    Asaka O., and Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol, 1996, 62(11): 4081-4085.
    Ash C, Priest FC, Collins MD. Molecular identification of rRNA group 3 bacilli using a PCR probe test. Antonie Van Leeuwenhoek, 1994, 64: 253?260.
    Ali G. S., and Reddy A. S. N. Inhibition of fungal and bacterial plant pathogens by synthetic peptides: in vitro growth inhibition, interaction between peptides, and inhibition of disease progression. Mol. Plant-Microbe Interact, 2000, 13: 847- 859.
    Alstrim S.Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads.J.Gen.Appl. Microbiol.1991,37:495–501.
    Beatty P. H., and Jensen S. E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol, 2002, 48(2): 159-169.
    Bernheimer A. W., Avigad L. S. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J. Gen. Microbiol, 1970, 61(3): 361-369.
    Briat J.-F., Iron assimilation and storage in prokaryotes. Gen.Microbiol. 1992,138:2475–2483.
    Bruner S D, Weber T, Kohli R M,et al. Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesteras domain SrfTE. Structure, 2002,10(3): 301~310.
    Cane D.E.,Khosla C.,and Walsh C.1998.Harnessing the biosynthetic code:combinations,permutations,and mutations.Science.,282:63-68.
    Castignetti D.,J.Smarrelli,Jr.Siderophores,the iron nutrition of plants,and nitrate reductase.FEBS Lett.1986,209:147–151.
    Choi S. K., Park S. Y., Kim R., Lee C. H., Kim J. F., Park S. H. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem. Biophys. Res. Commun, 2008, 365(1): 89-95.
    Choi S. K., Park S. Y., Kim R., Lee C. H., Kim J. F., Park S. H. Identification of a Polymyxin Synthetase Gene Cluster of Paenibacillus polymyxa and Heterologous Expression of the Gene in Bacillus subtilis. J.Bacteriol. 2009 May;191(10):3350-3358.
    Choong-Min Ryu, Jinwoo Kim, Okhee Choi, et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control, 2006, 39(3): 282?289.
    Cook R.J.,Thomashow L.S.,Weller D.M.et al.Molecular mechanisms for biological control of plant pathogens.Phytopathology.1995,31:53-80.
    Cosmina P.,Rodriguez F.,de Ferra F.,Grandi G.,Perego M.,Venema G.,and van Sinderen D. Sequence and analysis of the genetic locus responsiblefor surfactin synthesis in Bacillus subtilis. Mol. Microbiol, 1993, 8(5): 821-831.
    Crosa J. H., and Walsh C. T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev, 2002, 66(2): 223-249.
    Cuppels D., Hanson R. S., and Kelman A. Isolation and characterization of a bacteriocin produced by Pseudomonas solanacearum. J. Gen. Microbiol, 1978, 109(2): 295-303.
    Dijksterhuis J.,Sanders M.,Gorris L. G.,and Smid E. J. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol, 1999, 86(1): 13-21.
    Dilfuza Egamberdiyeva. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology, 2007, 36(2-3): 184?189.
    Doekel S., and Marahiel M.A. Biosynthesis of natural products on modular peptide synthetases. Metab. Eng, 2001, 3(1): 64-77.
    Duitman E. H., Hamoen L. W., Rembold M., Venema G., Seitz H., Saenger W.,
    Bernhard F., Reinhardt R., Schmidt M., Ullrich C., Stein T., Leenders F., and Vater J. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid. Proc. Natl. Acad. Sci, 1999, 96(23): 13294-13299.
    DurrantW E, Dong X N. Systemic acquired resistance. Annual Review of Phytopathol ogy, 2004, 42: 185 - 209.
    Echandi E., and Moyer J. W. Production, properties and morphology of bacteriocins from Erwinia chrysanthemi. Phytopathol, 1979, 69(10): 1204-1207.
    EemanM, Pegadob L, Dufrêne Y F, et al. Influence of environmental conditions on the interfacial organisation of fengycin, a bioactive lipopep tide produced by Bacillus subtilis. Journal of Colloid and InterfaceScience. 2009 (329) : 253– 264.
    Ellis.J.G.A.,Van Momagn M.et al.Agrobat genetic studies on agrocin 84 production and biological control of crown gall.Physiological palnt pathology,1979,15:311-319.
    Feigenier C, Bess on F, Hoet P, et al. I nduction of Bacill omcin D- specific Antibodies and Comparis on Of Their Specificity for Different Iturinic Antibi otics fr om Bacillus Subtilis1 Biotechnology Techniques. 1993, 7 (6) : 423-428.
    Fujiu M., Sawairi S., Shimada H., Takaya H., Aoki Y., Okuda T., and Yokose K. Azoxybacilin, a novel antifungalagent produced by Bacillus cereus NR2991. J. Antibiot, 1994, 47(7): 833-835.
    Guemori-Athmani S., Berge O., Bourrain M., Mavingui P., Thiery J. M., Bhatnagar T., and Heulin T. Diversity of Paenibacillus polymyxa populations in the rhizosphere of wheat (Triticum durum) in Algerian soils. Eur. J. Soil. Biol, 2000, 36: 149-159.
    Goodman,R.N.Protection of apple stemtissue against Erwinia amylovora infection by avirulent strains and three other bacterial species. Phytopathology,1967,57:22-24.
    Grau A, Ortiz A, De Godos A, et al. A Biophysical Study of the Interacti on of the Lipopep tide Antibiotic Iturin A with Aqueous Phospholipid Bilayers1 Archives of Bi ochemistry and Biophysics. 2000,377 (2) : 315-323.
    Hartman A,Schmid M,Wenzel W, Hinsinger Ph. Rhizosphere: Perspectives and Challenges-A Tribute to Lorenz Hiltner. Munich, Germany:GSF-National Research Center for Environment and Health, 2005.
    Hill D.S.,Stein J.I.,Torkewitz N.R.et al.cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomnas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ.Microbiol,1994,60:78–85.
    Hosono K., and Suzuki H. Acylpeptides, the inhibitors of cyclic adenosine 3',5'-monophosphate phosphodiesterase. III. Inhibition of cyclic AMP phosphodiesterase. J. Antibiot, 1983, 36: 679-683.
    Howie W.J.,Suslow T.V.Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens.Molec.Plant-Microbe Interact,1991,4:393-399.
    Ito M., and Koyama, Y. Jolipeptin, a new peptide antibiotic. IsolationⅠ, physico-chemical and biological characteristics. J. Antibiot, 1972a, 25(5): 304-308.
    Ito M., and Koyama Y. Jolipeptin, a new peptide antibioticⅡ. The mode of action of jolipeptin. J. Antibiot, 1972b, 25(5): 309-314.75.
    Isogai A., Takayama S., Murakoshi S., and Suzuki A. Structures of beta -amino acids in antibiotics iturin A. Tetrahedron Lett. 1982, 23(30): 3065-3068.
    Jones J. D. G., Grady K. L., Suslow T. V., and Bedbrook J. R. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO. J, 1986, 5(3): 467-473.
    Kajimura Y., and Kaneda M. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot, 1996, 49(2): 129-135.
    Kajimura Y., and Kaneda M. Fusaricidins B, C, and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8. Isolation, structure elucidation and biological activity. J. Antibiot, 1997, 50(3): 220-228.
    Kameda Y., Matsu K., Kato H., Yamada T., and Sagai H. Antitumor activity of Bacillus natto, III. Isolation and characterization of a cytolytic substance on Ehrlich ascites carcinoma cells in the culture medium of Bacillus natto KMD1126. Chem. Pharm. Bull, 1972, 20(7): 1551-1557.
    Katz E., and Demain A. L. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev, 1977, 41(2): 449-474.
    Keating T.,and Walsh C. Initiation,elongation,and termination strategies inpolyketide and polypeptide antibiotic biosynthesis.Curr. Opin.Chem.Biol., 1999,3:598-606.
    Keating T.,Ehmann D.E.,Kohli R.M.,Marshall C.G.,Trauger J.,and Walsh C. Chain termination steps in nonribosomal peptide synthetase assembly lines:directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis.Chem.Biochem., 2001,2:101-109.
    KenjiTsuge, TakashiAno, Makoto Shoda. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1and surfactin inBacillus subtilisYB8. Arch Microbiol,1996, 165: 243-251.
    Kim K., Jung S. Y., Lee D. K., Jung J. K., Park J. K., Kim D. K., and Lee C. H. Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem. Pharmacol, 1998, 55(7): 975-985.
    Kloepper J. W., and Schroth M. N. Plant growth-promoting rhizobacteria on radishes. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, 1978, 2: 879-882.
    Kloepper J. W., Leong J., Teintze M., and Schroyh M. Enhanced plant growth by siderphones produced by plant growth-promoting rhizobacteria. Nature. Lett. 1980, 286: 885-886.
    Kloepper J.W.,Lifshitz R.,Schroth M.N.Psuedomonas inoculants to benefit plant production.ISI Atlas Sci.:Anim.Plant Sci.1988.p.60–64.
    Kloepper J. W., Lifshitz R., and Zablotowicz R. M. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol, 1989, 7(2): 39-44.
    Konz D., Doekel S., and Marahiel M. A. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J. Bacteriol, 1999, 181(1): 133-140.
    Koumoutsi A., Chen X.H., Henne A., Liesegang H., Hitzeroth G., Franke P., Vater J., and Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptidesin Bacillus amyloliquefaciens strain FZB42. J. Bacteriol, 2004, 186(4): 1084-1096.
    Kracht M., Rokos H., Ozel M., Kowall M., Pauli G., and Vater J. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J. Antibiot, 1999, 52(7): 613-619.
    Kuroda J., Fukai T., Konishi M., Uno J., Kurusu K., and Nomura T. LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles, 2000, 53(7): 1533-1549.
    Kurusu K., Ohba K., Arai T., and Fukushima K. New peptide antibiotics LI-F03, F04, F05, F07 and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J. Antibiot, 1987, 40(11): 1506-1514.
    Lambalot R.H.,Gehring A.M.,Flugel R.S.,Zuber P.,Lacelle M., Marahiel M.A.,Reid R.,Khosla C.,and Walsh C. A new enzyme superfamily:the phosphopantetheinyl transferases.Chem.Biol., 1996, 3: 923-936.
    Li J., Beatty P. K., Shah S., and Jensen S. E. Use of PCR-targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl. Environ. Microbiol, 2007, 73(11): 3480-3489.
    Li J., and Jensen S.E. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid. Chem. Biol, 2008, 15(2): 118-127.
    Liu L.,Kloepper J.W.And Tuzun S.Induction of systemic resistance in cucumber against bacterial angualar leaf spot by plant growth-promoting rhizobacteria. Phytopathol. 1995, 85: 843–847.
    López-García B., González-Candelas L., Pérez-PayáE., and Marcos J. F. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Molecular Plant-Microbe Interactions, 2000, 13(8): 837-846.
    Lourekovich,L.,G.L.Farkas.Induced protection against wildfire disease in tobacco lesves with heat-killed bacteria.Nature(London).1965,20:823-824.
    Marahiel M. A., Stachelhaus T., and Mootz H. D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev, 1997, 97(7): 2651-2674.
    Martin D. F., Priest F. G., Todd C., and Goodfellow M. Distribution of beta-glucanases within the genus Bacillus. Appl. Environ. Microbiol, 1980, 40 (6): 1136-1138.
    Mauch F., Mauch-Mani B., and Boller T. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase andβ-l, 3-glucanase. J. Plant. Physiol, 1988, 88(3): 936-942.
    McDowell R.,and Morris H.R. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates.J.Biol.Chem., 1996,271:15428-15435.
    Moyne A. L., Shelby R., Cleveland T. E., and Tuzun S. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J. Appl. Microbiol, 2001, 90(4): 622-629.
    Moyne A. L., Cleveland T. E., and Tuzun S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett, 2004, 234(1): 43-49.
    Nakajima N., Chihara S., and Koyama Y. A new antibiotic, gatavalin. I. Isolation and characterization. J. Antibiot, 1972, 25(4): 243-247.
    Nakano M. M., and Zuber P. Molecular biology of antibiotic production in Bacillus. Crit. Rev. Biotechnol, 1990, 10(3): 223-240.
    Neilands J.B.,Leong S.A.Siderophores in relation to plant growth and disease.Ann.Rev.Plant Physiol.1986,37:187-208.
    Nishikiori T., Naganawa H., Muraoka Y., Aoyagi T., and Umezawa H. Plipastatins: New inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III. Structure elucidations of Plipastatins. J. Antibiot, 1986, 39(6): 755-761.
    Oppenheim A. B., and Chet I. Cloned chitinases in fungal plant-pathogen control strategies. Trends. Biotech, 1992, 10: 392-394.
    Ordentlich A., Elad Y., and Chet I. The role of chitinase of Serratiamarcescens in biocontrol of Sclerotium rolfsii. Phytopathol, 1988, 78(l): 84-88.
    Osman M., Hoiland H., Holmsen H., and Ishigami Y. Tuning micelles of a bioactive heptapeptide biosurfactant via extrinsically induced conformational transition of surfactin assembly. J. Peptide. Sci, 1999, 4(7): 449-458.
    O'Sullivan and O'Gara,1992.O'Sullivan and F.O'Gara,Traits of fluorescent Pseudomonas spp.involved in suppression of plant root pathogens. Microbiol.Rev.1992,56:662-676.
    Partha Patra, Natarajan KA. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa. Journal of Colloid and Interface Science, 2006, 298(2): 720-729.
    Parvesh Wadhwan,i Sergii Afonin, Marco Ieronimo. Optimized protocol for synthesis of cyclic gramicidin S: starting amino acid is key to high yield[J]. JOrgChem, 2006, 71: 55-61.
    Pegadob L, Dufrêne Y F, et al1 I nfluence of environmental conditions on the interfacial organisation of fengycin, a bioactive lipopep tide p roduced byBacillus subtilis1 Journal of Colloid and Interface Science. 2009 (329) : 253-264.
    Peypoux F., Pommier M. T., Das B. C., Besson F., Delcambe L., and Michel G. Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J. Antibiot, 1984, 37(12): 1600-1604.
    Peypoux F., Bonmatin J. M., and Wallach J. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol, 1999, 51(5): 553-563.
    Pichard B., Larue J-P., and Thouvenot D. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol. Lett, 1995, 133(3): 215-218.
    Piuri M., Sanchez-Rivas C., and Ruzal S. M. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages.Lett. Appl. Microbiol, 1998, 27(1): 9-13.
    Rajasekaran K., Stromberg K. D., Carry J. W., and Cleveland T. E. Broad spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J. Agric. Food Chem, 2001, 49(6): 2799-2803.
    Regine M. D., and Peypoux F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 1994, 87(13): 151-174.
    Ridout C. J., Coley-Smith J. R., and Lynch J. M. Enzyme activity and electrophoretic profile of extracellular protein induced in Trichoderma spp. By cell walls of Rhizoctonia solani. J. Gen. Microbiol, 1986, 132(8): 2345-2352.
    Robbins P. W., Albright C., and Benfield. Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J. Biol. Chem, 1988, 263(l): 443-447.
    Ross A F. Locaiized acquired resistance to plant virus infection in hypersensitive hosts. Virology, 1961,14:239-339.
    Ross A F.Systemic quired resistance induced by localized virus infection in plants. Virology, 1961,14:340-358.
    Rusnak F.,Sakaitani M.,Drueckhamme D.,Reichert J.,and Walsh C.T. Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene,expression and purification of EntF,and analysis of covalent phosphopantetheinet.Biochemistry., 1991,30:2916-2927.
    Schippers B., Bakker AW., and Bakker P. A. H. M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol, 1987, 25: 339-358.
    Schwecke T.,Gottling K.,Durek P.,Duenas I.,Kaufer N.F.,Zock-Emmenthal S.,Staub E.,Neuhof T.,Dieckmann R.,and von Dohren H.Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. Chembiochem, 2006,7(4):612-622.
    Sela-Buurlage M. B., Ponstein A. S., Bres-Vloemans S. A., Melchers L. S., Van Den Elzen P. J. M., and Cornelissen B. J. C. Only specific tobacco (nicotiana tabacum) chitinases and beta-1, 3-glucanases exhibit antifungal activity. Plant. Physiol, 1993, 101: 857-863.
    Seldin L., de Azevedo F. S., Alviano D. S., Alviano C. S., and de Freire Bastos M. C. Inhibitory activity of Paenibacillus polymyxa SCE2 against human pathogenic microorganisms. Lett. Appl. Microbiol, 1999, 28(6): 423-427.
    Sheppard J. D., Jumarie C., Cooper D. G., and Laprade R. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta, 1991, 1064(1): 13-23.
    StachelhausT, MootzHD, BergendahlV,etal. Peptide bond formation in nonribosomal peptide biosynthesis. J Biol Chem, 1998, 273(35): 22773.
    Steller S., Vollenbroich D., Leenders F., Stein T., Conrad B., Hofemeister J., Jacques P., Thonart P., and Vater J. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem. Biol, 1999, 6(1): 31-34.
    Stein T., Vater J., Kruft V., Otto A., Wittmann-Liebold B., Franke P., Panico M., McDowell R., and Morris H. R. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J. Biol. Chem, 1996, 271(26): 15428-15435.
    Shoji J. I., Hinoo H., Wakisaka Y., Koizumi K., Mayama M., and Matsuura S. Isolation of two new polymyxin group antibiotics (Studies on antibiotics from the genus Bacillus. XX). J. Antibiot, 1977, 30(12): 1029-1034.
    Silo-Suh L. A., Lethbridge B. J., Raffel S. J., He H., Clardy J., and Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol, 1994, 60(6): 2023-2030.
    Sogn J. A. Structure of the peptide antibiotic polypeptin. J. Med. Chem, 1976, 19(10): 1228-1231.
    Steller S, Vollenbroich D, Leenders F. Structural and functional organizationofthe fengycin synthetasemultienzyme system fromBacillus subtilisb213 andA1/3.Chem Bio,l 1999, 6(1): 31-41.
    Thomashow L.S.et al.Current concepts in the use of introduced bacteria for biological disease control:mechanisms and antifungal metabolites. In:Plant Microbe Interactions 1. Eds.Stacey G and Keen N T.1996. 187-235, Chapman&Hall,London.
    Timmusk S. Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. Comprehensive summaries of Uppsala Dissertations from the Faculty of Science and Technology. Uppsala: Acta Universitatis Upsaliensiensis PhD Thesis. Uppsala University, Uppsala. 2003.
    Trüper H. G. The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int. J. Syst. Evol. Microbiol, 2005, 55: 513.
    Tsuge K., Akiyama T., and Shoda M. Cloning, sequencing, and characterization of the Iturin A operon. J. Bacteriol, 2001, 183(21): 6265-6273.
    Tsukagoshi N., Tamura G., and Arima K. A novel protoplast-bursting factor (surfactin) obtained from Bacillus subtilis IAM 1213. II. The interaction of surfactin with bacterial membranes and lipids. Biochim. Biophys. Acta, 1970, 196(2): 211-214.
    Van Di jk KV,and Nelson EB.Fatty acids uptake and beta-oxdation by Enterbacter cloacae for seed rot suppression of Pythiumultimum. Phytopathology.1997a,87:100-102.
    Van Dijk KV,and Nelson EB. Inactivation of seed exudates stimulants of Pythiumultimum sporangium germination by biocontrol strain of Enterobacter cloacae and other seed-associated bacteria.Soil Bio and Biochem.1997b,29:31-355.
    Vanloon LC,Bakker and Pieterse CMJ.Systemic resistance induced by Rhizosphere bacteria.Ann.Rev.Phytopathol.1998,36:453-483.
    Vanittanakom N., Loeffler W., Koch U., and Jung G. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot, 1986, 39(7): 888-901.
    Vollenbroich D., Ozel M., Vater J., Kamp R. M., and Pauli G. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals, 1997a, 25(3): 289-297.
    Vollenbroich D., Pauli G., Ozel M., and Vater J. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol, 1997b, 63(1): 44-49.
    Von Dühren H., Keller U., Vater J., and Zocher R. Multifunctional peptide synthetases. Chem. Rev, 1997, 97: 2675-2705.
    Walsh C. T., Gehring A. M., Weinreb P. H., Quadri L., and Flugel R. S. Post-translational modification of polyketide and nonribosomal peptide syntheses. Curr. Opin. Chem. Biol, 1997, 1(3): 309-315.
    Watanabe T., Yahata N., Nakamura Y., Muramoto Y., Suzuki K., Kamimiya S., and Tanaka H. Expression in Escherichia coli of the Bacillus circulans WL-12 structural gene forβ-l, 3-glucanase A. Agri. Biol. Chem, 1989, 53(7): 1759-1767.
    Weber T, Marahiel M A. Exploring the domain structure of modular nonribosomal peptide synthetases. Structure, 2001,9(1): R3-R9.
    Wei G,Kloepper J.W.,Tuzun S.Induction of systemic resistance of cucumber to Colletotrichum obiculare by selected strains of plant growth-promoting rhizobacteria. Phytopathology.1991,81:1508-1512.
    Welch T.J.,Chai S.,and Crosa J.H. The overlapping angB and angG genes are encoding within the trans-acting factor region of the virulence plasmid pJM1 in Vibrio anguillarum:essential role in anguibactin biosynthesis. J.Bacteriol., 2000,182:6762-6773.
    Weller D.M.Biological control of soilborne plant pathogens in the rhizosphere with bacteria.Annu Rev Phytopathol,1988,26:379-407.
    Wilkinson,S.,and L.A.Lowe. Structures of the polymyxins A and the questionof identity with the polymyxins M.Nature, 1966.212:311.
    Wortman A. T., Somerville C. C., and Colwell R. R. Chitinase determinants of Vibrio vulnificus: gene cloning and applications of a chitinase probe. Appl. Environ. Microbiol, 1986, 52(l): 142-145.
    Zhu Q., Maher E. A., Masoud S., Dixon R. A., and Lamb C. J. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Biotechnology, 1994, 12: 807-812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700