用户名: 密码: 验证码:
华北地区3个种源文冠果苗期水分利用特性及抗旱性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界能源枯竭、环境污染、粮食安全等问题已日益严重,作为一种可再生绿色能源---生物柴油备受关注,而阻碍其产业化的瓶颈则是原料供应及成本。因此,挖掘适宜非耕地种植的木本油料植物,发展生态能源林,丰富生物柴油原料的供应链,显得尤为重要。文冠果(Xanthocera sorbifolia Bunge)以其分布范围广、适应性强、种子含油率高、燃油品质优、开发利用价值高等特点,成为近年我国北方地区大力推广的生物柴油树种,具有巨大的开发和利用潜力。本文是在对我国文冠果资源的系统调查、分布区划分以及生物学特性等研究的基础上,开展文冠果集中分布的华北地区3个不同种源的室内盆栽控水试验,研究不同梯度水分胁迫对苗木生长、生理特性、水分利用效率、耗水规律以及其叶片形态解剖结构等方面的影响,进而探究不同种源文冠果对水分胁迫的响应机制;同时,开展文冠果抗旱节水综合评价指标体系的研建,并对不同种源文冠果抗旱性进行综合评价与筛选。主要研究结果如下:
     (1)在水分胁迫条件下,3个不同种源文冠果的苗高和地径生长量均表现出山西最高、河北居中、河南最差的趋势;而且在重度水分胁迫处理的后期,河北和河南种源文冠果出现叶片发黄及脱落现象,而山西种源苗木未出现;
     随着处理时间的增加,充足水分处理下的3个种源文冠果叶片的保水能力均逐渐降低、叶绿素含量并未出现明显差异,但山西种源保持相对较高的叶片保水能力;在重度水分胁迫条件下,3个种源文冠果叶片保水能力均有所增强、叶绿素含量明显降低,其中山西种源叶片保水力增大最多,且在复水后仍保持较高的叶片保水能力,并具有相对较低的蒸腾速率。山西种源不论其生长状况、抗旱能力均好于河北和河南两种源。
     (2)不同种源文冠果的碳稳定同位素分馏、水分利用效率和耗水量对水分胁迫响应程度存在一定差异。与河南及河北两种源相比,山西种源文冠果在各种梯度水分胁迫下均能保持相对较高的碳同位素比率(δ13C)值、水分利用效率(WUE)值以及较低的耗水量,表明山西种源文冠果在水分胁迫下对水分亏缺响应较为敏感,能通过短期内迅速减少耗水量来适应水分胁迫环境,这也是山西种源文冠果具有较高抗旱能力的体现。
     (3)不同种源文冠果的叶片形态结构对水分胁迫响应程度存在一定差异,与河南及河北两种源相比,山西种源文冠果在各种胁迫时期具有较高的比叶重与较厚的各组织结构,且能形成较多的晶体以及小而多的导管等,结合耗水量最少的实验结果,表明山西种源文冠果更趋向于旱生结构。
     (4)与河南及河北两种源相比,山西种源文冠果在各种梯度胁迫时期均能保持相对较高的水分利用效率和叶片保水能力以及较低的蒸腾速率、叶绿素含量和耗水量,表明山西种源文冠果具有较高的抗旱能力,是形态及解剖构造和水分生理生态特性对干旱环境适应性响应的结果。
     (5)在不同梯度水分胁迫对文冠果苗木生长及生理特性和叶片形态解剖结构的分析研究的基础上,应用主成分分析和多维空间坐标综合评定值累加方法,建立文冠果抗旱节水综合评价指标体系,并对3种源文冠果苗木的抗旱性进行综合比较评价。结果发现,山西种源文冠果的抗旱性最强、河北种源次之、河南种源最差,这与线性回归模型验证结果以及水分胁迫下的叶片形态解剖结构和细胞水分利用特性的研究结果相一致。
     以上研究结果表明,不同种源文冠果苗木生长、叶片的形态解剖结构以及生理特性对水分胁迫的响应程度存在一定差异,并表现出相应的适应性改变,进而导致其抗旱性生理功能的差异;对不同种源文冠果抗旱性进行综合评价,筛选出山西种源文冠果为抗旱性最强种源。这些研究结果可为我国干旱地区文冠果栽培以及优良种源筛选提供理论依据,具有重大的现实意义。
Problems of fossil energy depletion, environmental pollution and food security, have gonefrom bad to worse all over the world in recent years. Considerable attention has been paid tothe bio-diesel as renewable green energy. However, the provision and high cost of bio-dieselraw materials are the major barriers for its commercialization. Therefore, implementation ofthe bio-diesel industry must get a plentiful supply of raw materials. Use of woody bio-dieselfeedstock can reduce bio-diesel production cost and increase the supply. The investigation ofwoody oil plants suitable for non-arable land cultivation, development of bio-energy forest,and improvement of bio-diesel feedstock supply chain, is particularly important. Xanthocerasorbifolia Bunge has many advantages, including its wide distribution area, wide ecologicalamplitude, high seed oil, excellent fuel property, development and utilization of high value,and others. It was bio-diesel species promoted in northern China, and has enormous potentialfor development and utilization in recent years. In this paper, indoor potted water control testof3different X. sorbifolia Bunge provenances was worked out on the basis of systematicinvestigation, categorization of the resources distribution and biological characteristics research.We studied different gradients of drought stress on seedling growth, physiologicalcharacteristics, water use efficiency, water consumption law and its morphological anatomicalstructure of leaves, etc., and then explored X. sorbifolia of different provenances responsemechanism on water stress; Simultaneously, the X.sorbifolia resisting drought and saving watercomprehensive evaluation index system has been build, and the drought resistance of X.sorbifolia of different provenances was been comprehensive evaluated and screened. Theresults are as follows:
     (1)The height and diameter growth of X. sorbifolia of three different provenancesshowed the trends which the growth of Shanxi provenance is the highest and the Henan is theworst under water stress conditions; the X. sorbifolia leaves of Hebei and Henan provenances appear yellow or fall off, and Shanxi provenance seedlings did not appear in the severe waterstress treatment.
     With increasing the treatment time, water retention capacity of3provenances X.sorbifolia leaves was gradually reduced, and the chlorophyll content did not show significantdifferences. However, the X. sorbifolia leaves of Shanxi provenance maintained at a relativelyhigh water retention capacity; Water retention capacity of3provenances X. sorbifolia leaveshas been strengthened, and the chlorophyll content decreased under severe water stressconditions. Among them, water retention capacity of Shanxi provenance X. sorbifolia leaveshas the largest increases, remained higher after re-water, and has a relatively low transpirationrate. Regardless of their growing conditions or drought resistance, the X. sorbifolia Shanxiprovenances of was better than Henan and Hebei.
     (2)The X. sorbifolia of different provenances response degree of stable carbon isotopefractionation, water use efficiency and water consumption on water stress exists a certaindifferences. Compared with the henan and hebei provenance, relatively high carbon isotoperatio value, water use efficiency and low water consumption of shanxi provenance X. sorbifoliacould maintain in all sorts of gradient water stress. This indicates the response of Shanxiprovenance is more sensitive to water deficit under drought stress, and to adapt to droughtstress environment by rapidly reducing water consumption in the short term, which was alsothe high drought tolerance expression of Shanxi provenance X. sorbifolia.
     (3)There are some differences to water stress responsiveness among morphology ofleaves of different provenances X. sorbifolia. Compared with the Henan and Hebeiprovenances, X. sorbifolia of Shanxi provenances has higher specific leaf weight (SLW)andthicker organizations structures in various stress period, and can form more crystal sand vesselsof small and many and etc. Combined with experimental results of least water usage, X.sorbifolia of Shanxi provenances tend to xeromorphism.
     (4)Compared with the Henan and Hebei provenances, X. sorbifolia of Shanxiprovenances can maintain a relatively higher water use efficiency (WUE), water-holding capacity and lower transpiration rate of leaf, chlorophyll content and water consumption invarious kinds of stress gradients period. These indicate X. sorbifolia of Shanxi provenances hashigher drought resistance capacity. That was the result of morphological and anatomicalstructure and water physiological ecology in response to drought environmental adaptability.
     (5)On the basis of different gradients of water stress on seedling growth andphysiological property of X. sorbifolia and analysis of leaf morphological and anatomicalstructure, the drought resistance system of comprehensive evaluation of X. sorbifolia has beencreated by principal component analysis and comprehensive assessment of the value ofmulti-dimensional spatial coordinates accumulation method. And3X.sorbifolia provenanceshave been evaluated. It was found that X. sorbifolia of Shanxi provenances has strongestdrought resistance, followed Hebei’s, and Henan’s worst, consisting with the results of linearregression model validation and leaves morphological and anatomical structure under droughtstress and property of cell water-using.
     The above findings suggest that there are some differences about seedling growth, leafmorphological and anatomical structures and physiological property of X. sorbifolia ofdifferent provenances in the response to drought stress, and exhibit appropriate adaptivechanges, leading to differences in their physiological functions of drought resistance.Comprehensively evaluating drought resistance of X.sorbifolia of different provenances, X.sorbifolia of Shanxi provenance has been screened as the provenances of strongest droughtresistance. These findings may provide a theoretical basis for X. sorbifolia cultivation in aridregions of China and excellent provenance screening. It is of great practical significance.
引文
Abbate P E, Dardanelli J L, Cantarero M G, et al. Climatic and water availability effects on water-useefficiency in Wheat. Crop Science,2004,44(2):474-484
    Anyia A O, Slaski J J, Nyachiro J M, et al. Relationship of carbon isotope discrimination to water useefficiency and productivity of barley under field and greenhouse conditions. Journal of Agronomy andCrop Science2007,193(5):313-323.
    Barbour M M, Farquhar G D. Relative humidity-and ABA-induced variation in carbon and oxygen isotoperatios of cotton leaves. Plant, Cell and Environment,2000,23(5):473-685
    Barlow D J, Thomton J M. Journal of Molecular Biology,1983,168:867-885.
    Bohn B A, Kershner J L. Establishing aquatic restoration priorities using a watershed approach. Journal ofEnvironmental Management,2002,64(4):355-363
    Bolger T P, Turner N C. Transpiration effciency of three Mediterranean annual pasture species andwheat.Oecologia1998,115:32-38
    Boyer J S. Plant physiology.1970(46):233-235
    Chen J, Chang S X, Anyia A O. The physiology and stability of leaf carbon isotope discrimination as ameasure of water-use efficiency in barley on the Canadian prairies. Journal of Agronomy and CropScience,2011,197(1):1-11
    Condon A G, Richards R A, Rebetzke G J, et al.. Improving intrinsic water-use efficiency and cropyield.Crop Science,2002,42:122-131
    Damesin C S, Rambal S, Joffre R. Between tree variations in leaf δ13C of Quercu silex among Mediterraneanhabitats with different water availability. Oecologia,1997,111:26-35
    Fahn A. Plant anatomy (3rd edition), England pergamon press,1982.
    Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. AnnualReview of Plant Physiology and Plant Molecular Biology,1989,40(1):503-537
    Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. AnnualReview of Plant Physiology and Plant Molecular Biology,1989,40:503-537.
    Farquhar G D, Oleary M H, Berry J A. On the relationship between carbon isotope discrimination and theintercellular carbon dioxide concent ration in leaves [J]. Australian Journal of Plant Physiology,1982,9:121-137.
    Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and theintercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology,1982,9(2):121-137
    Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency ofwheat genotypes. Australian Journal of Plant Physiology,1984,11(6):539-552
    Fisher J B, Tan H T W, Toh L P L. Xylem of rattans: vessel dimensions in climbing palms. American Journalof Botany,2002,89(2):196-202.
    Grassi G, Colom M R, Minotta G. Effect of nutrient supply on photosynthetic acclimation and photoinhibition of one-year-old foliage of Picea abies. Physiol Plant,2001,111:245-254.
    Green D S, Kruger E L. Light-mediated constraints on leaf function correlate with leaf s tructure amongdeciduous and evergreen trees pecies. Tree Physiology,2001,21:1341-1346.
    Green D, Skkpuger E L. Light mediated constraints on leaf function correlate with leaf structure amongdeciduous and evergreen tree species. Tree Physiology,2001,21:1341-1346.
    Herrero A, Zamora R. Plant resposes to extreme climatic events: a field test of resilience capacity at thesouthern range edge. Plos one.2014,9(1):1-13.
    Jackson L W R. Effect of shade on leaf structure of deciduous tree species. Ecology,1967,48:498-499.
    Johnson R C, Yangyang L. Water relations, forage production, and photosynthesis in tall Fescue divergentlyselected for carbon isotope discrimination. Crop Science,1999,39:1663-1670.
    Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodieselproduction[J]. Bioresource Technology,2010,101(19):7201-7210.
    Kozlowski T T, Pallardy S G. Physiology of woody plants,2nd edn. Academic Press, San Diego,1997.
    Kramer P J, Kozlowski T T. Physiology of Woody Plants. London: Academic Press,1979.
    Kramer P T. Water Relations of Plants. New York and London:Academic Press,1983
    Larcher W. Phsilogical Plant Ecology. New York: Spinger-verlag,1980,303-304.
    Lee D W, Bone R A, Tersis S, et al. Correlates of leaf optical properties in tropical forest sun andextreme-shade plants. American Journal of Botany,1990,77:370-380.
    Li AD, Lu YF, Wei XL, et al. Studies on the regime of soil moisture under different microhabitats inHuajiang karst valley.2008,27(1):56-62.
    Li J Y, Blake T J. Effect of repeated cycles of dehydration-rehydration on gas exchange and water useefficiency in jack pine and black spruce. Journal of Beijing Forestry University,(English Edition),1996.5(2):78-87
    Liu C C, Liu Y G, Guo K, et al. Comparative ecophysiological responses to drought of two shrub and fourtree species from karst habitats of southwestern China. Trees.2011,25(3):537-549.
    Mahoney J M, Rood S B. Response of a hybrid poplar to water table decline in different substrates. ForestEcology and Management,1992,54(1-4):141–156.
    Martinez G J, Lloret VF. Carbon reserves and canopy defoliation determine the recovery of scots pine4yrafter a drought episode. New Phytologist.2011,190(3):750-759
    Mazzoleni S and Dickmann D I. Differential physiological and morphological responses of two hybridPopulus clones to water stress. Tree Physiology,1988,4(1):61-70.
    Myers B J. Water stress integral—a link between short-term stress and long-term growth. TreePhysiology,1988,4(4):315-323.
    O`Leary M H. Carbon isotope fractionation in plants. Phyto-chemistry,1981,20:553-567
    Penuelas J, Filella I, Llusia J, et al. Comparative field st udy of spring and summer leaf gas exchange andphotobiology of the mediterranean trees quercusilex and phillyrealati folia. Journal of ExperimentBotany,1998,49(319):229-238.
    Rao N R C, Wright G C. Stability of the relationship between specific leaf area and carbon isotopediscrimination across environment in peanut. Crop Science1994,34:98-103.
    Rosati A, Esparza G D, Ejong T M, et al. Influence of canopy light environment and nitrogen availability onleaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarinetrees. Tree Physiology,1999,19:173-180.
    Sala A, Piper F, Hoch G. Physiological mechanisms of drought-induced tree mortality are far from beingresolved. New Phytologist.2010,186(2),274-281.
    Sanford WG. Pineapple croplay-concept and development. Better Crop Plant,1962,46:32-43.
    Saurer M, Siegenthaler U, Schweingruber F. The climate-carbon isotope relationship in tree rings and thesignificance of site conditions.Tellus,1995,47:320-330
    Sun Z J, Livington N J, Guy R D, et al. Stable carbon isotope as indicators of increased water use efficiencyand productivity in white spruce (Picea glauca Voss) seedlings. Plant Cell and Environment,1996,19:887-894.
    Tomas M, Medrano H, Pou A, et al. Water-use efficiency in grapevine cultivars grown under controlledconditions: effects of water stress at the leaf and whole-plant level. Australian Journal of Grape andWine Research.2012,18(2):164-172
    Vincent G. Leaf photosynthetic capacity and nitrogen content adjustment to canopy openness in tropicalforest tree seedlings. Jounal of Tropical Ecology,2001,17,495-509
    Wang R, Hanna MA, Zhou W, et al. Production and selected fuel properties of biodiesel from promisingnon-edible oils: Euphorbia lathyris L., Sapium sebiferum L. and Jatropha curcas L.. Bioresour Technol,2011,102:1194-1199.
    Warren C R, Adams M A. Water availability and branch length determine δ13C in foliage of Pinus pinaster.Tree Physiology,2000,20:637-643.
    Winter K, Holtum J A M, Edwards G E, et al. Effect of low relative humidity on δ13C value in two C3grasses and in Panicummilioides, a C3-C4intermediates species. Journal of Experimental Botany,1982,132:88-91.
    白晋华,郭红彦,张明,等.4种经济林树种气孔的分布于比较.山西农业科学,2011,39(7):657-658.
    蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖特征的比较.植物生态学报,2001,25(1):90-98.
    常燕虹,武威,刘建朝,等.干旱胁迫对文冠果树苗某些生理特征的影响.干旱地区农业研究,2012,30(1):170-175.
    陈绍光,李燕南,王沙生.空气和土壤干旱对不同杨树种类无性系生长及光合的影响.北京林业大学学报,1996,18(3):35-41.
    崔秀萍,刘果厚,张瑞麟.浑善达克沙地不同生境下黄柳叶片解剖结构的比较.生态学报,2006,26(6):1842-1847.
    单长卷.土壤干旱对刺槐幼苗水分生理的影响.安徽农业科学,2005,33(10):1852-1853.
    董宝娣,张正斌,刘孟雨,等.水分亏缺下作物的补偿效应研究进展.西农业学报,2004,13(3):31-34.
    董学军,陈仲新,阿拉腾宝,等.毛乌素沙地沙地柏(Sabina vulgaris)的水分生态初步研究.植物生态学报,1999,23(4):311-319.
    方精云,费松林,樊拥军,等.贵州梵净山亮叶水青冈解剖特征的生态格局及主导因子分析.植物学报,2000,42(6):636-642.
    冯朝红,李凯荣,张鹏文,等.干旱胁迫下油菜素内酯对文冠果苗木抗氧化酶活性和抗氧化剂含量的影响.干旱地区农业研究,2008,26(4):152-155.
    冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应.生态学报,2002,22(6):901-910.
    富举,李丹丹,蔡剑.干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响.应用生态学报,2012,23(3):724-730.
    管西伟,陈志成,张永涛,等.黄连木与文冠果对土壤持续干旱胁迫的生理响应.山东林业科技,2012,6:1-3,53
    何春霞,李吉跃,孟平,等.4种高大树木的叶片性状及WUE随树高的变化.生态学报,2013,33(18):5644-5654.
    何明珠,王辉,陈智平.荒漠植物持水力研究.中国沙漠,2006,26(3):403-408.
    何茜.毛白杨抗旱节水优良无性系评价与筛选.博士毕业论文.北京林业大学.2008.
    红雨,王林和.臭柏群落在不同演替阶段叶片含水量、叶绿素含量变化的研究.内蒙古师范大学学报(自然科学汉文版),2008,37(01):94-97.
    胡根海.短期水分亏缺对百棉1号叶绿素含量的影响.安徽农业科学,2010,38(6):2914-2915.
    贾万利,苗海霞,孙明高,等.6种苗木抗旱性评价指标分析.山东农业大学学报(自然科学版),2007.38(2):163-168
    蒋高明.植物生理生态学.北京:高等教育出版社,2004.
    金梦阳,段先琴,危文亮.续随子苗期抗旱性综合评价.中国油料作物学报,2009,31(4):465-469
    孔艳菊,孙明高,魏海霞等.土壤盐分及干旱胁迫对皂角幼苗生长和叶片保水力的影响.河北农业大学学报.2007,30(1):39-44
    黎祜琛,邱治军.树木抗旱性及抗旱造林技术研究综述.世界林业研究,2003,(4):17-22.
    李博.当代生态学导论.北京:科学出版社,1992.
    李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应.植物学通报,2005,22(增刊):118-127.
    李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响.生态学报,2002,b22(9):1380-1386.
    李吉跃.太行山区主要造林树种耐旱特性的研究.北京:北京林业大学,1990.
    李禄军,蒋志荣,李正平,等.3树种抗旱性的综合评价及其抗旱指标的选取.水土保持研究,2006,13(6):253-254,259
    李清河,王寒宵,徐军,等.几种沙生灌木的抗旱性综合评价.中国农学通报,2012,28(13):103-108
    李树斌,丁国昌,曹光球,等.不同杉木五性系模拟胁迫下抗旱性综合评价.福建农林大学学报(自然科学版),2012,42(5):491-496
    李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响.西北植物学报.2006,26(2):266-275.
    李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响.西北植物学报,2006,26(2):266-275.
    李雪华,蒋德明,阿拉木萨,等.科尔沁沙地4种植物抗旱性的比较研究.应用生态学报,2002,13(1):1385-1388.
    李彦慧,周怀军,杨敏生,等.廊坊杨苗期的抗旱性研究.两北林学院学报,2004,19(1):27-3
    林杰斌,林川雄,刘明德. SPSS统计建模与应用实务.北京:中国铁道出版社,2006.
    林水富,沈芸.发展木本油料生物柴油产业的思考.林业经济问题,2010,30(2):131-135.
    刘滨,彭励,郑丽萍,等.宁夏10种观赏罐木叶片解剖结构及其抗旱性综合评价.西北植物学报,2013,33(9):1808-1816
    楼狄明,沈航泉,胡志远,等.基于不同原料生物柴油混合燃料的发动机性能研究.内燃机工程,2011,32(1):40-41.
    陆德彪,童启庆,络耀平,等.茶树种质资源抗旱性的综合评价.浙江农业大学学报,1995,21(5):447-450
    罗献瑞.文冠果属Xanthoceras Bunge.中国树木志(4卷).北京:中国林业出版社,2004:4191-4192.
    马晔,刘锦春. δ13C在植物生态学研究中的应用.西北植物学报,2013,33(7):1492-1500.
    马小芬,王兴芳,李强,等.不同种源地文冠果叶片解剖结构比较及抗旱性分析.干旱区资源与环境,2013,27(6):92-96
    毛培利,曹帮华,张明如.干旱胁迫下刺槐保护酶活性的研究.内蒙古农业大学学报,2004,25(1):106-108.
    牟洪香,于海燕,侯新村.木本能源植物文冠果在我国的分布规律研究.安徽农业科学,2008,36(9):3626-3628.
    潘瑞炽.植物生理学[M].北京:高等教育出版社,2010.
    上官周平.小麦δ13C分辨率和水分利用效率对氮素和水分的响应.植物营养与肥料学报,2000,6(3):345-348.
    史刚荣,邢海涛.淮北相山8个树种叶片的生态解剖特征.林业科学,2007,43(3):28-33.
    苏波,韩兴国,李凌浩,等.中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应.植物生态学报,2000,24:648-655.
    苏培玺,严巧嫡,陈怀顺.荒漠植物叶片或同化枝δ13C值及水分利用效率研究.西北植物学报,2005,25(4):727-732
    孙国荣,张睿,姜丽芬,等.干旱胁迫下白桦实生苗叶片的水分代谢与部分渗透调节物质的变化.植物研究,2001,21(3):413-415.
    田英,倪细炉,于海宁,等.6种抗旱灌木叶片形态解剖学特征,中国农学通报,2010,26(22):113-117.
    田胄.黄土高原三种优势种的耗水规律及抗旱性研究[D].西北农林科技大学,2011.
    万群芳.文冠果种群生殖生态学及生存策略研究.西北农林科技大学,硕士学位论文,2010
    王丁,张丽琴,薛建辉.苗木抗旱性综合评价研究-以6种喀斯特造林树种苗木为例.中国农学通报,2011,27(25):5-12.
    王丁.喀斯特地区六种苗木水分生理与抗旱性研究.南京林业大学,2009.
    王国富,李连国,李晓燕,等.沙棘叶片表面形态特征与抗旱性的关系.园艺学报,2006,33(6):1310-1312.
    王红斗,韦业成,郭煜,等.文冠果种仁及其油的化学成分.植物学报,1981,23(4):331-333
    王建林,杨新民,房全孝.不同尺度农田水分利用效率测定方法评述.中国农学通报,2010,26(6):77-80
    王霞.水分胁迫对怪柳组织含水量和膜透性的影响.干旱区研究,1999,16(2):12-15.
    王雪峰,平藤雅之.文冠果苗木生长与土壤含水量间关系建模(英文).林业科学,2013,49(4):70-76
    王怡.三种抗旱植物叶片解剖结构的对比观察.四川林业科技,2003,24(1):64-67
    王勇.黄土高原菊科蒿属四种植物的耗水规律及抗旱特性研究[D].西北农林科技大学,2010.
    王玉佳,毕玉芬,姜华,等.干热胁迫对紫花苜蓿叶片生理特性的影响.草业科学,2011,28(6):1014-1018.
    吴伟光,李怒云.我国林业生物柴油的发展目标、现状及面临的挑战.林业科学,2009,45(11):141-147.
    席万鹏,王有科,孙飞达.利用隶属函数值法综合评价花椒的抗旱性.甘肃林业科技,2004,29(1):5-6
    谢志玉,张文辉,刘新成.干旱胁迫对文冠果幼苗生长和生理生化特征的影响.西北植物学报,2010,30(5):948-954
    熊伟,王彦辉,于澎涛.树木水分利用效率研究综述.生态学杂志,2005,24(4):417-421
    徐炳成,山仑,黄占斌.草坪草对干旱胁迫的反应及适应性研究进展.中国草地,2001,3:55-61.
    许大全.毛竹叶光合作用的气孔限制研究.植物生理学报,1987,13(2):154-160.
    严昌荣,韩兴国,陈灵芝.六种木本植物水分利用效率和其小生境关系研究.生态学报,2001,21(11):1952-1956.
    严昌荣,韩兴国,陈灵芝,等.暖温带落叶阔叶林主要植物叶片中δ13C值的种间差异及时空变化.植物学报,1998,40(9):853-859.
    杨竞,童祯恭,刘玉哲. SPSS软件对饮用水水质进行主成分分析评价的运用.环境科学与技术,2011,34(7):171-174.
    姚允聪,高遐虹,程继鸿.苹果种质资源抗旱性鉴定研究Ⅶ:干旱条件下苹果幼树生长与叶片形态特征变化.北京农学院学报,2001,16(2):16-21.
    尹春英,李春阳.杨树抗旱性研究进展.应用与环境生物学报,2003,9(6):662-668.
    于海燕,牟洪香.生物柴油木本植物原料—文冠果.化学工业(增刊),2007:266-273
    于海燕,周绍箕.文冠果油制备生物柴油的研究.中国油脂,2009,34(3):43-45
    袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术.北京:化学工业出版社,2006,11-12
    张海娜,苏培玺,李善家,等.荒漠区植物光合器官解剖结构对水分利用效率的指示作用.生态学报,2013,33(16):4909-4918
    张力君,王林和,易津.驼绒藜等8种耐寒灌木持水力分析.干旱区资源与环境,2003,3:122-127
    张正斌.生物节水研究前景展望. http://www.cas.cn/,2006
    招礼军,李吉跃,于界芬,等.干旱胁迫对苗木蒸腾耗水日变化的影响.北京林业大学学报,2003,25(3):42-47
    赵凤君,高荣孚,沈应柏,等.水分胁迫下美洲黑杨不同无性系间叶片δ13C和水分利用效率的研究.林业科学,2005,41(1):36-41
    赵兰,邢新婷,聂庆娟,等.4种地被观赏竹抗旱性综合评价研究.西北林学院学报,2011,26(1):18-21
    赵丽英,邓西平,山仑.水分亏缺下作物补偿效应类型及机制研究概述.应用生态学报,2004,15(3):523-526.
    赵荣慧,刘子凤.辽西地区树种叶片水分状况及生理特点的研究.沈阳农业大学学报,1993,24(4):274-279
    周桂玲,达利夏提,安争夕等.新疆滨黎属植物叶表皮微形态学及叶的比较解剖学研究.干旱区研究,1995,12(3):34-37.
    周玲,王乃江.干旱胁迫下文冠果幼苗叶片的生理响应.西北林学院学报,2012,27(3):7-11.
    邹琪.植物生理实验指导.北京:中国农业出版社,2000,159-164.
    邹春静,韩士杰,徐文铎,等.沙地云杉生态型对干旱胁迫的生理生态响应.应用生态学报,2003,14(9):1446-1450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700