用户名: 密码: 验证码:
图像目标三维几何不变量特征构造与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于图像的物体识别、目标跟踪技术是计算机视觉研究的重要方向,在社会生产、生活的各个领域有着广泛的应用。从图像中提取能够表征目标物体几何结构本质特征的三维射影不变量,不受成像角度、位置、光照条件、空间几何变换等因素的影响,将有效改善后续的识别、跟踪等高级应用。目前关于图像目标三维射影不变量研究中,可用于构造不变量的几何特征十分有限,仅限于图像点特征,适用范围也局限于可进行三维重建的图像几何结构,或者特殊几何结构,相关工作侧重于理论推导,在实践中仍面临着很多问题。本文正是在这一背景下对图像目标三维射影不变量的构造与计算工作进行了深入的研究。
     本文主要完成了以下几个方面的工作。
     提出了图像目标三维射影不变量构造与计算的一般方法。本文在基于图像点特征的目标三维射影不变量非齐次解法基础上,给出了齐次性解法,齐次解法可以改善不变量计算的稳定性和可靠性。在此基础上,本文将图像直线特征引入三维射影不变量计算,提高了图像目标三维射影不变量计算的稳定性和可靠性。更重要的是,直线特征的使用使得在已知信息不足以进行三维重建的情况下,仍然可以获取目标的部分三维信息,这对于识别、跟踪等后续应用有着重要的意义。本文给出了根据图像中点特征、直线特征计算三维射影不变量的一般方法,对如何利用图像特征、如何获取独立等式等问题进行了详细的论述。根据本文提出的方法,使用者可以自行构造与计算适用于特定应用的几何结构所具有的三维射影不变量,而不仅仅局限于已有文献中介绍的几何结构。
     提出了基于前景估计的图像检索方法。在参考了关于人类视觉注意机制的生理学研究与心理学研究,以及计算机视觉领域中关于图像显著性检测的研究后,本文归纳总结了确定图像前景的几条基本原则。根据这些基本原则定义了图像区域的前景权重,前景权重的确定一方面为图像目标三维射影不变量计算提供约束条件,提高了不变量计算的可靠性;另一方面可以为不变量计算提供可靠的图像信息。
     改进了谱匹配中邻接矩阵的构造方法。本文中使用的图像点特征均为具有明确几何意义的角点特征,但是角点特征没有成熟的特征描述方法,缺乏分辨能力,匹配一般仅利用角点之间的几何关系。本文在利用角点间几何关系构建邻接矩阵的基础上,充分利用角点周围邻域的颜色、纹理等特征进行匹配,取得了更好的匹配效果。
Image based object recognition and tracking are important research fields in computer vision, which are widely applicable in industry or daily lives. Extracted from images, the three dimensional invariants are characteristic representations of the object of interest and invariant to variations in viewpoints, position, illumination, transformations and so on. High level applications such as object recognition and tracking can further benefit from 3D invariants as well. Studies on three-dimensional projective invariants show that there are limited geometric features which 3D projective invariants can be constructed from, such as points. In recent works, the constructed invariants tend to be mainly used in 3D reconstruction and many practical problems remain unsolved. In the context, further researches have carried out in this thesis to the construction and calculation of 3D projective invariants.
     The main works are summed in follows:
     Firstly, Methodologies to construct and calculate 3D projective invariants are proposed. Based on the inhomogeneous solution from image point invariants, a homogeneous solution is deduced, which provides a more stable and reliable solution. Moreover, the line features are introduced into the construction of 3D invariants, by which the stability and reliability of constructed 3D invariants are further improved.
     In addition, extraction of 3D features is made possible even when 3D construction taking place with insufficient information, which profoundly contributes the following applications such as recognition and tracking. In this thesis, the method to construct 3D invariants from point and line invariants is given. Specifically, image features and the establishment of independent equations are described in detail. The proposed method provides a more flexible way to construct and calculate 3D invariants from specially designed geometric structures, instead of the structures introduced in the references.
     Secondly, image retrieval based on foreground prediction has been proposed. Principles for foreground prediction are established based well studied human attention mechanism and neuron psychology as well as previous image saliency research in computer vision. According to these principles, weights are assigned to image regions to form the most salient foreground. The foreground prediction can therefore constrain the calculation of 3D invariants and provide reliable image information as well.
     Thirdly, an improved affinity matrix is formed in spectral matching. In this thesis, corners which well defined geometric meaning are used to construct 3D invariants, but corners themselves are lack of discriminate descriptions, therefore the matching can only make use of the geometric relations between corners. We, on the other hand, take full advantage of the color, texture information in their neighboring areas besides geometry and further constrain the matching procedure by forming an informative affinity matrix. A better matching is presented.
引文
[1] Weiss, I. Geometric Invariants and Object Recognition [J]. International Journal of Computer Vision. 1993, 10(13): 207-231.
    [2] Forsyth, D., Mundy, J.L., Zisserman, A., Coelho, C., Heller, A. and Rothwell, C. Invariant Descriptors for 3-D Object Recognition and Pose [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991, 13(10): 971-991.
    [3] Song, B.S., Lee, K.M. and Lee, S.U. Model-based Object Recognition using Geometric Invariants of Points and Lines [J]. Computer Vision and Image Understanding. 2001, 84: 361-383.
    [4] Hartley, R.I. In defense of the eight-point algorithm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997, 19(6): 580-593.
    [5] Wu, F.C., Hu, Z.Y. and Duan, F.Q. 8-point algorithm revisited: factorized 8-point algorithm [C]. IEEE International Conference on Computer Vision. 17-20 October, 2005.
    [6] Lowe, D. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision. 2004, 60(2): 91-110.
    [7] Csurka, G. and Faugeras, O. Algebraic and Geometric Tools to Compute Projective and Permutation Invariants [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(1): 58-64.
    [8] Bayro-Corrochano, E. A Geometric Approach for the Theory and Applications of 3D Projective Invariants [J]. Journal of Mathematical Imaging and Vision. 2002, 16: 131-154.
    [9] Lasenby, J., Bayro-Corrochano, E., Lasenby, A.N. and Sommer, G. A New Framework for the Formation of Invariants and Multiple-view Constraints in Computer Vision [C]. IEEE International Conference on Image Processing, 16-19 September, 1996.
    [10] Begelfor, E. and Werman, M. Affine Invariance Revisited [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 17-22 June, 2006.
    [11] Moses, Y. and Ullman, S. Generalization to Novel Views: Universal, Class-Based and Model-Based Processing [J]. International Journal of Computer Vision. 1998, 29: 233-253.
    [12] Sung, W.L., Bum, J.Y. and Hager, G.D. Model-based 3-D Object Tracking using Projective Invariance [C]. IEEE International Conference on Robotics and Automation, 10-15 May, 1999.
    [13] Tico, M., Rusu, C. and Kuosmanen, P. A Geometric Invariant Representation for the Identification of Corresponding Points [C]. IEEE International Conference on Image Processing, 24-28 October, 1999.
    [14] Mohan, R., Weinshall, D. and Sarukkai, R. R. 3D Object Recognition by Indexing Structural Invariants from Multiple Views [C]. International Conference on Computer Vision, 11-14 May, 1993.
    [15] Quan, L. Invariants of Six Points and Projective Reconstruction from Three Uncalibrated Images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1995, 17(1): 34-46.
    [16] Tsui, H.T. and Zhang, Z.Y. Feature Tracking from an Image Sequence using Geometric Invariants [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 17-19 June, 1997.
    [17] Forsyth, D., Mundy, J.L., Zisserman, A., Coelho, C., Heller, A. and Rothwell, C. Invariant Descriptors for 3-D Object Recognition and Pose [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence. 1991, 13(10): 971-991.
    [18] Rothwell, C.A., Forsyth, D.A., Zisserman, A. and Mundy, J.L. Extracting Projective Structure from Single Perspective Views of 3D Point Sets [C]. International Conference on Computer Vision, 11-14 May, 1993.
    [19] Zhu, Y., Seneviratne, L.D., Earles, S.W.E. A New Structure of Invariant for 3D Point Sets from a Single View [C]. IEEE International Conference on Robotics and Automation, 21-27 May, 1995.
    [20] Zhu, Y., Seneviratne, L.D. and Earles, S.W.E. Three Dimensional Object Recognition using Invariants [C]. IEEE International Conference on Intelligent Robots and Systems, 5-9 August, 1995.
    [21] Kyoung S.R., Bume J.Y., and Kweon, I.S. 3-D Object Recognition using Projective Invariant Relationship by Single-view [C]. IEEE International Conference on Robotics and Automation, 16-20 May, 1998.
    [22] Sugimoto, A. Geometric Invariant of Non-coplanar Lines in a Single View [C]. IEEE International Conference on Pattern Recognition, 9-13 October, 1994.
    [23] Chen, Z. Extracting Projective Invariant of 3D Line Set from a Single View [C]. IEEE International Conference on Image Processing, 24-27 October, 2004.
    [24] Carlsson, S. Symmetry in Perspective [J]. Lecture Notes in Computer Science. 1998, 1406: 249-263.
    [25] Basri, R. and Moses, Y. When is it Possible to Identify 3D Objects from Single Images using Class Constraints [J]. International Journal of Computer Vision. 1999, 33(2): 95-116.
    [26] Hartley, R. Projective Reconstruction and Invariants from Multiple Images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1994, 16(10): 1036-1041.
    [27]张振花.基于内容图像检索的若干技术研究[博士论文].长春:吉林大学.2009.
    [28] Swain, M.J. and Ballard, D.H. Color Indexing [J]. International Journal of Computer Vision. 1991, 7(1): 11-32.
    [29] Pass, G., Zabih, R. and Miller, J. Comparing Images using Color Coherence Vectors [C]. ACM International Conference on Multimedia. November 18-22, 1996.
    [30] Huang, J., Ravi Kumar, S., Mitra, M., Zhu, W.J. and Zabih, R. Image Indexing using Color Correlograms [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 17-19, 1997.
    [31] Chang, P. and Krumm, J. Object Recognition with Color Cooccurrence Histograms [C]. IEEE International Conference on Computer Vision and Pattern Recognition, June 23-25, 1999.
    [32] Huang, J., Ravi Kumar, S., Mitra, M., Zhu, W.J. and Zabih, R. Spatial Color Indexing and Applications [J]. International Journal of Computer Vision, 35(3): 245-268, 1999.
    [33] Birchfield, S.T. and Rangarajan, S. Spatiograms Versus Histograms for Region-based Tracking [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 20-25, 2005.
    [34] Rao, A., Srihari, R.K. and Zhang, Z.F. Spatial Color Histograms for Content-Based Image Retrieval [C]. IEEE International Conference on Tools with Artificial Intelligence. November 9-11, 1999.
    [35] Li, J.G., Wu, W.X., Wang, T. and Zhang, Y.M. One Step Beyond Histograms: Image Representation using Markov Stationary Features [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 23-28, 2008.
    [36] Lin, H.C., Wang, L.L. and Yang, S.N. Color Image Retrieval based on Hidden Markov Models [J]. IEEE Transactions on Image Processing. 1997, 6(2): 332-339.
    [37] Li, J., Majmi, A. and Gray, R.M. Image Classification by a Two-Dimensional Hidden Markov Model [J]. IEEE Transactions on Signal Processing. 2000, 48(2): 517-533.
    [38] Zhong, D. and Defee, I. DCT Histogram Optimization for Image Database Retrieval [J]. Pattern Recognition Letters. 2005, 26: 2272–2281.
    [39] Nallaperumal, K., Banu, M.S., Callins, C. and Christiyana. Content based Image Indexing and Retrieval using Color Descriptor in Wavelet Domain [C]. International Conference on Computational Intelligence and Multimedia Applications. December 13-15, 2007.
    [40] Sawhney, H.S. and Hafner, J.L. Efficient Color Histogram Indexing [C]. IEEE International Conference on Image Processing. November 13-16, 1994.
    [41] Jou, F.D., Fan, K.C. and Chang, Y.L. Efficient Matching of Large-size Histograms [J]. Pattern Recognition Letters. 2004, 25: 277–286.
    [42] Han, J. and Ma, K.K. Fuzzy Color Histogram: An Efficient Color Feature for Image Indexing and Retrieval [C]. IEEE International Conference on Acoustics, Speech and Signal Processing. June 5-9, 2000.
    [43] Han, J. and Ma, K.K. Fuzzy Color Histogram and Its Use in Color Image Retrieval [J]. IEEE Transactions on Image Processing. 2002, 11(8): 944-952.
    [44] Mindru, F., Tuytelarrs, T., Gool, L.V. and Moons, T. Moment Invariants for Recognition under Changing Viewpoint and Illumination [J]. Computer Vision and Image Understanding. 2004, 94: 3-27.
    [45] Csurka, G., Faugeras, O., Route, P. and Cedex, S. Computing Three-dimensional Projective Invariants from a Pair of Images using the Grassmann-cayley Algebra [J]. Image and Vision Computing. 1998, 16(1): 3-12.
    [46] Lasenby, J. and Bayro-Corrochano, E. Computing 3D Projective Invariants from Points and Lines [J]. Lecture notes in computer science. 1997, 1296: 82-89.
    [47] Meer, P. Efficient Invariant Representations [J]. International Journal of Computer Vision. 1998, 26(2): 137-152.
    [48] Kuno, Y., Takae, O., Takahashi, T. and Shirai, Y. Object Recognition using Multiple View Invariance based on Complex Features [C]. IEEE Workshop on Applications of Computer Vision, 2-4 December, 1996.
    [49] Quan, L. Invariant of a Pair of Non-coplanar Conics in Space: Definition, Geometric Interpretation and Computation [C]. International Conference on Computer Vision, 20-23 June, 1995.
    [50] Wu, Y.H. and Hu, Z.Y. The Invariant Representations of a Quadric Cone and a Twisted Cubic [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003, 25(10): 1329-1332.
    [51] Weiss, I. and Ray, M. Model-based Recognition of 3D Objects from Single images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001, 23(2): 116-128.
    [52] Schaffalitzky, F., Zisserman, A., Hartley, R.I. and Torr, P.H.S. A Six Point Solution for Structure and Motion [J]. Lecture Notes in Computer Science. 2000, 1842: 632-648.
    [53] Xiong, Y., Peng, J.X., Ding, M.Y. and Xue, D.H. The Unique Solution of Projective Invariants of Six Points from Four Uncalibrated Images [J]. Pattern Recognition. 1997, 30(3): 513-517.
    [54] Wu, Y.H. and Hu, Z.Y. Detecting Critical Configuration of Six Points [J]. Lecture Notes inComputer Science. 2006, 3852: 447-456.
    [55] Maybank, S.J. and Shashua, A. Ambiguity in Reconstruction from Images of Six points [C]. International Conference of Computer Vision, 4-7 January, 1998.
    [56] Maybank, S.J. Relation between 3D Invariants and 2D Invariants [J]. Image and Vision Computing. 1998, 16: 13-20.
    [57] Carlsson, S. View Variation and Linear Invariants in 2-D and 3-D [R]. Technical Report, TRITA-NA-P 9522. December, 1995.
    [58] Shashua, A. On Geometric and Algebraic Aspects of 3D Affine and Projective Structures from Perspective 2D Views [R]. Technical Report, A.I. Memo No. 1405, C.B.C.L. No. 78. July, 1993.
    [59] Caetano, T.S. and Caelli, T. A Unified Formulation of Invariant Point Pattern Matching [C]. IEEE International Conference on Pattern Recognition, 20-24 August, 2006.
    [60] Triggs, B., McLauchlan, P., Hartley, R. and Fitzgibbon, A. Bundle Adjustment– A Modern Synthesis [J]. Lecture Notes in Computer Science. 1999, 1883: 298-372.
    [61] Hartley, R. and Zisserman, A. Multiple View Geometry in Computer Vision [M]. Cambridge University Press, 2003, 68-73, 153-177, 239-261.
    [62] http://vasc.ri.cmu.edu//idb/html/motion/house/index.html
    [63] Song, Y.J., Park, W.B., Kim, D.W. and Ahn, J.H. Content-based Image Retrieval using New Color Histogram [C]. IEEE International Symposium on Intelligent Signal Processing and Communication Systems. November 18-19, 2004.
    [64] Lee, W.T. and Chen, H.T. Histogram-based Interest Point Detectors [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 20-26, 2009.
    [65] Maron, O. and Lozano-Perez, T. A framework for Multiple-Instance Learning [C]. Annual Conference on Neural Information Processing Systems. December 1-3, 1998.
    [66] Maron, O. and Ratan, A. Multiple-Instance Learning for Natural Scene Classification [C]. International Conference on Machine Learning. July 24-27, 1998.
    [67] Wang, J., Li, J. and Weiderhold, G. SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2001, 23(9): 947-963.
    [68] Chen, Y.X. and Wang, J.Z. A Region-based Fuzzy Feature Matching Approach to Content-based Image Retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(9): 1252-1267.
    [69] Ke, Y. and Sukthankar, R. PCA-SIFT: A More Distinctive Representation for Local Image Descriptor [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 27 June-2 July, 2004.
    [70] Tian, Q., Sebe, N., Lew, M.S., Loupias, E. and Huang, T.S. Image Retrieval using Wavelet- based Salient Points [J]. Journal of Electronic Imaging. 2001, 10(4): 835-849
    [71] Wang, J., Zha, H. and Cipolla, R. Combining Interest Points and Edges for Content-based Image Retrieval [C]. IEEE International Conference on Image Processing. September 11-14, 2005.
    [72] Kadir, T., Zisserman, A. and Brady, M. An Affine Invariant Salient Region Detector [J]. Lecture Notes in Computer Science. 2004, 3021: 228-241.
    [73] Wolf, C., Jolion, J. M., Kropatsch, W. and Bischof, H. Content based Image Retrieval using Interest Points and Texture Features [C]. IEEE International Conference on Pattern Recognition. September 3-8, 2000.
    [74] Tian, Q., Wu, Y. and Huang, T. Combine User Defined Region-of-Interest and Spatial Layout for Image Retrieval [C]. IEEE International Conference on Image Processing. September 10-13, 2000.
    [75] Rahmani, R., Goldman, S.A., Zhang, H., Krettek, J. and Fritts, J. Localized Content based Image Retrieval [C]. ACM International Conference on Multimedia. November 6-11, 2005.
    [76] Rahmani, R., Goldman, S.A., Zhang, H., Cholleti, S.R. and Fritts, J.E. Localized Content-based Image Retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2008, 30(11): 1902-1912.
    [77] Li, W.J. and Yeung, D.Y. Localized Content-based Image Retrieval through Evidence Region Identification [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 20-26, 2009.
    [78] Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A. Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 23-28, 2008.
    [79] Chum, O., Philbin, J., Sivic, J., Isard, M. and Zisserman, A. Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval [C]. IEEE International Conference on Computer Vision. October 14-20, 2007.
    [80] Nister, D. and Stewenius, H. Scalable Recognition with a Vocabulary Tree [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 17-22, 2006.
    [81] Chen, Y.X., Wang, J.Z. and Krovetz, R. CLUE: Cluster-based Retrieval of Images by Unsupervised Learning [J]. IEEE Transactions on Image Processing. 2005, 14(8): 1187-1201.
    [82]刘伟.图像检索中若干问题的研究[博士论文].杭州:浙江大学.2007.
    [83] Tuytelaars, T. and Mikolajczyk, K. Local Invariant Feature Detectors: a Survey [J]. Computer Graphics and Vision. 2007, 3(3): 177-280.
    [84] Tuzel, O., Porikli, F. and Meer, P. Region Covariance: A Fast Descriptor for Detection and Classification [J]. Lecture Notes in Computer Science. 2006, 3952: 589-600.
    [85] Baf, F.E., Bouwmans, T. and Vachon, B. A Fuzzy Approach for Background Subtraction [C]. IEEE International Conference on Image Processing. October 12-15, 2008.
    [86] Patwardhan, K., Sapiro, G. and Morellas, V. Robust Foreground Detection in Video using Pixel Layers [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2008, 30(4): 746-751.
    [87] Huang, S.S., Fu, L.C. and Hsiao, P.Y. Region-level Motion-based Background Modeling and Subtraction using MRFs [J]. IEEE Transactions on Image Processing. 2007, 16(5): 1446-1456.
    [88] Li, L., Huang, W., Gu, I. and Tian, Q. Statistical Modeling of Complex Backgrounds for Foreground Object Detection [J]. IEEE Transactions on Image Processing. 2004, 13(11): 1459-1472.
    [89] Eng, H.L., Wang, J., Kam, A.H. and Yau, W.Y. A Bayesian Framework for Robust Human Detection and Occlusion Handling using Human Shape Model [C]. IEEE International Conference on Pattern Recognition. August 23-26, 2004.
    [90] Landabaso, J.L. and Pardas, M. A unified Framework for Consistent 2D/3D Foreground Object Detection [J]. IEEE Transactions on Circuits and Systems for Video Technology. 2008, 18(8): 1040-1051.
    [91] Benedek, C. and Sziranyi, T. Bayesian Foreground and Shadow Detection in Uncertain Frame Rate Surveillance Videos [J]. IEEE Transactions on Image Processing. 2008, 17(4): 608-621.
    [92] Baf, F., Bouwmans, T. and Vachon, B. Fuzzy Foreground Detection for Infrared Videos [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 23-28, 2008.
    [93] Saleemi, I., Shafique, K. and Shah, M. Probabilistic Modeling of Scene Dynamics for Applications in Visual Surveillance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009, 31(8): 1472-1485.
    [94] Matas, J., Chum, O., Urban, M. and Pajdla, T. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions [C]. British Machine Vision Conference. September 2-5, 2002.
    [95]杨俊.图像数据的视觉显著性检测技术及其应用. [博士论文].长沙:国防科学技术大学. 2007.
    [96] Bruce, N. and Tsotsos, J. Saliency based on Information Maximization [J]. Advances in Neural Information Processing Systems. 2006, 18: 155-162.
    [97] Guo, C., Ma, Q. and Zhang, L. Spatio-Temporal Saliency Detection using Phase Spectrum of Quaternion Fourier Transform [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 23-28, 2008.
    [98] Harel, J., Koch, C. and Perona, P. Graph-based Visual Saliency [J]. Advances in Neural Information Processing Systems. 2007, 19: 545-552.
    [99] Hou, X. and Zhang, L. Saliency Detection: A Spectral Residual Approach [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 23-28, 2008.
    [100] Itti, L., Koch, C. and Niebur, E. A Model of Saliency-based Visual Attention for Rapid Scene Analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998, 20(11): 1254-1259.
    [101] Itti, L. and Koch, C. Computational Modelling of Visual Attention [J]. Nature Reviews Neuroscience. 2001, 2(3): 194-204.
    [102] Meur, O.L., Callet, P.L., Barba, D. and Thoreau, D. A Coherent Computational Approach to Model Bottom-Up Visual Attention [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006, 28(5): 802-817.
    [103] Liu, T., Sun, J., Zheng, N., Tang, X. and Shum, H. Learning to Detect a Salient Object [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 18-23, 2007.
    [104] Rother, C., Kolmogorov, V. and Blake, A. GrabCut: Interactive Foreground Extraction using Iterated Graph Cuts [J]. ACM Transactions on Graphics. 2004, 23(3): 309-314.
    [105] Rutishauser, U., Walther, D., Koch, C. and Perona, P. Is Bottom-Up Attention Useful for Object Recognition [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 27- July 2, 2004.
    [106] Walther, D. and Koch, C. Modeling Attention to Salient Proto-Objects [J]. Neural Networks. 2006, 19(9): 1395-1407.
    [107] http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
    [108] http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html
    [109] http://wang.ist.psu.edu/docs/related/
    [110] http://www.cs.washington.edu/research/imagedatabase/groundtruth/
    [111]王东峰.多模态和大型图像配准技术研究. [博士论文].北京:中国科学院. 2002.
    [112]谭志国.点模式匹配及应用研究. [博士论文].长沙:国防科学技术大学. 2008.
    [113] Scott, G.L. and Longuet-Higgins, H.C. An Algorithm for Associating the Features of Two Images [J]. Proceedings of the Royal Society, Series B. 1991, 244(1309): 21-26.
    [114] Shapiro, L.S. and Brady, J.M. Feature-based Correspondence– an Eigenvector Approach [J].Image and Vision Computing. 1992, 10(5): 283-288.
    [115] Pilu, M. A Direct Method for Stereo Correspondence based on Singular Value Decomposi- tion [C]. IEEE International Conference on Computer Vision and Pattern Recognition. June 17-19, 1997.
    [116] Carcassoni, M and Hancock, E.R. Spectral Correspondence for Point Pattern Matching [J]. Pattern Recognition. 2003, 36(1): 193-204.
    [117] Leordeanu, M. and Hebert, M. A Spectral Technique for Correspondence Problems using Pairwise Constraints [C]. IEEE International Conference on Computer Vision. October 17-20, 2005.
    [118] Rosten, E., Porter, R. and Drummond, T. Faster and Better: A Machine Learning Approach to Corner Detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2010, 32(1): 105-119.
    [119] Ng, A.Y., Zheng, A.X. and Jordan, M.I. Link Analysis, Eigenvectors and Stability [C]. the International Joint Conference on Artifical Intelligence. August 4-10, 2001.
    [120] Stewart, G.W. and Sun, J.G. Matrix Perturbation Theory [M]. Academic Press, 1990, 165-174.
    [121] Sarkar, S. and Boyer, K.L. Quantitative Measures of Change based on Feature Origanization: Eigenvalues and Eigenvectors [J]. Computer Vision and Image Understanding. 1998, 71(1): 110-136.
    [122] http://www-cvr.ai.uiuc.edu/ponce_grp/data/
    [123] Alferez, R. and Wang, Y.F. Geometric and Illumination Invariants for Object Recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(6): 505-536.
    [124] Govindu, V. and Shekhar, C. Alignment using Distributions of Local Geometric Properties [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1999, 21(10): 1031-1043.
    [125] Tuytelaars, T., Turina, A. and Van Gool, L. Noncombinatorial Detection of Regular Repetitions under Perspective Skew [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003, 25(4): 418-432.
    [126] Ying, X.H. and Hu, Z.Y. Catadioptric Camera Calibration using Geometric Invariants [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004, 26(10): 1260-1271.
    [127] Barreto, J.P. and Araujo, H. Geometric Properties of Central Catadioptric Line Images and their Application in Calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005, 27(8): 1327-1333.
    [128] Diplaros, A., Gevers, T. and Patras, I. Combining Color and Shape Information for Illumination Viewpoint Invariant Object Recognition [J]. IEEE Transactions on Image Processing. 2006, 15(1): 1-11.
    [129] Foulonneau, A., Charbonnier, P. and Heitz, F. Affine Invariant Geometric Shape Priors for Region based Active Contours [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006, 28(8): 1352-1357.
    [130] Metari, S. and Deschenes, F. New Classes of Radiometric and Combined Radiometric Geometric Invariant Descriptors [J]. IEEE Transactions on Image Processing. 2008, 17(6): 991-1006.
    [131] Junejo, I., Dexter, E., Laptev, I. and Perez, P. View Independent Action Recognition from Temporal Self-Similarities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2010. Doi: 10.1109/TPAMI.2010.68.
    [132] Huang, A., Abugharbieh, R. and Tam, R. A Novel Rotationally Invariant Region based Hidden Markov Model for Efficient 3D Image Segmentation [J]. IEEE Transactions on Image Processing. 2010, 19(10): 2737-2748.
    [133] Quellec, G., Lamard, M., Cazuguel, G., Cochener, B. and Roux, C. Adaptive Nonseparable Wavelet Transform via Lifting and its Application to Content based Image Retrieval [J]. IEEE Transactions on Image Processing. 2010, 19(1): 25-35.
    [134] Chen, W.T., Liu, W.C. and Chen, M.S. Adaptive Color Feature Extraction based on Image Color Distributions [J]. IEEE Transactions on Image Processing. 2010, 19(8): 2005-2016.
    [135] Abbadeni, N. Computational Perceptual Features for Texture Representation and Retrieval [J]. IEEE Transactions on Image Processing. 2010. Doi: 10.1109/TIP.2010.2060345.
    [136] Aptoula, E. and Lefevre, S. Morphological Description of Color Images for Content based Image Retrieval [J]. IEEE Transactions on Image Processing. 2009, 18(11): 2505-2517.
    [137] Zhang, R.F. and Zhang, Z.F. Effective Image Retrieval based on Hidden Concept Discovery in Image Database [J]. IEEE Transactions on Image Processing. 2007, 16(2): 562-572.
    [138] Zhang, J. and Lei, Y. Content based Image Retrieval using Unclean Positive Examples [J]. IEEE Transactions on Image Processing. 2009, 18(10): 2370-2375.
    [139] Gosselin, P.H. and Cord, M. Active Learning Methods for Interactive Image Retrieval [J]. IEEE Transactions on Image Processing. 2008, 17(7): 1200-1211.
    [140] Carneiro, G., Chan, A.B., Moreno, P.J. and Vasconcelos, N. Supervised Learning of Semantic Classes for Image Annotation and Retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007, 29(3): 394-410.
    [141] Wei, B. and Tao, D.C. Biased Discriminant Euclidean Embedding for Content based Image Retrieval [J]. IEEE Transactions on Image Processing. 2010, 19(2): 545-554.
    [142] Azimi-Sadjadi, M.R., Salazar, J. and Srinivasan, S. An Adaptable Image Retrieval System with Relevance Feedback using Kernel Machines and Selective Sampling [J]. IEEE Transactions on Image Processing. 2009, 18(7): 1645-1659.
    [143] Cheng. E., Jing, F. and Zhang, L. A Unified Relevance Feedback Framework for Web Image Retrieval [J]. IEEE Transactions on Image Processing. 2009, 18(6): 1350-1357.
    [144] Wei, J., Guihua, E., Dai, Q.H. and Gu, J.W. Similarity based Online Feature Selection in Content based Image Retrieval [J]. IEEE Transactions on Image Processing. 2006, 15(3): 702-712.
    [145] Li, J., Allinson, N., Tao, D.C. and Li, X.L. Multitraining Support Vector Machine for Image Retrieval [J]. IEEE Transactions on Image Processing. 2006, 15(11): 3597-3601.
    [146] Kherfi, M.L. and Ziou, D. Relevance Feedback for CBIR: a New Approach based on Probabilistic Feature Weighting with Positive and Negative Examples [J]. IEEE Transactions on Image Processing. 2006, 15(4): 1017-1030.
    [147] Haralick, R.M., Shanmugan, K. and Dinstein, I.H. Textural Features for Image Classification [J]. IEEE Transactions on Systems, Man and Cybernetics. 1973, 3(6): 610-621.
    [148] Ojala, T., Pietikainen, M. and Maenpaa, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(7): 971-987.
    [149] Heikkila, M., Pietikainen, M. and Schmid, C. Description of Interest Regions with Local Binary Patterns [J]. Pattern Recognition. 2009, 42: 425-436.
    [150]马莉范影乐.纹理图像分析[M].科学出版社, 2009, 15-47.
    [151] Maver, J. Self-Similarity and Points of Interest [J]. IEEE Transactions on Pattern Analysisand Machine Intelligence. 2010, 32(7): 1211-1226.
    [152] Cheung, W. and Hamarneh, G. n-SIFT: n-Dimensional Scale Invariant Feature Transform [J]. IEEE Transactions on Image Processing. 2009, 18(9): 2012-2021.
    [153] Li, Q. Interest Points of General Imbalance [J]. IEEE Transactions on Image Processing. 2009, 18(11): 2536-2546.
    [154] Li, Q. and Xia, Z.H. Detecting Image Points of Diverse Imbalance [C]. IEEE International Conference on Image Processing, 12-15 October, 2008.
    [155] Winder, S.A.J. and Brown, M. Learning Local Image Descriptors [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 17-22 June, 2007.
    [156] Kelman, A., Sofka, M. and Stewart, C.V. Keypoint Descriptors for Matching across Multiple Image Modalities and Non-Linear Intensity Variations [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 17-22 June, 2007.
    [157] Mortensen, E.N., Deng, H.L. and Shapiro, L. A SIFT Descriptor with Global Context [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 20-25 June, 2005.
    [158] Gupta, R., Patil, H. and Mittal, A. Robust Order-based Methods for Feature Description [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 13-18 June, 2010.
    [159] Li, Q., Xia, Z.H. and Tao, D.C. A Global-to-Local Scheme for Imbalanced Point Matching [C]. IEEE International Conference on Image Processing, 7-10 November, 2009.
    [160] Kordelas, G. and Daras, P. Robust SIFT-based Feature Matching using Kendall's Rank Correlation Measure [C]. IEEE International Conference on Image Processing, 7-10 November, 2009.
    [161] Choi, O. and Kweon, I.S. Reducing Ambiguity in Feature Point Matching by Preserving Local Geometric Consistency [C]. IEEE International Conference on Image Processing, 12-15 October, 2008.
    [162] Rogers, M. and Graham, J. Robust and Accurate Registration of 2-D Electrophoresis Gels using Point-Matching [J]. IEEE Transactions on Image Processing, 2007, 16(3): 624-635.
    [163] Torki, M. and Elgammal, A. One-Shot Multi-Set Non-Rigid Feature-Spatial Matching [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 13-18 June 2010.
    [164] Cech, J., Matas, J. and Perdoch, M. Efficient Sequential Correspondence Selection by Cosegmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2010, 32(9): 1568-1581.
    [165] Egozi, A., Keller, Y. and Guterman, H. Improving Shape Retrieval by Spectral Matching and Meta Similarity [J]. IEEE Transactions on Image Processing. 2010, 19(5): 1319-1327.
    [166] Posse, A., Torres, J. and Menendez, J.M. Matching Points in Poor Edge Information Images [C]. IEEE International Conference on Image Processing, 7-10 November, 2009.
    [167] Caetano, T.S., McAuley, J.J., Li, C., Le, Q.V. and Smola, A.J. Learning Graph Matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6): 1048-1058.
    [168] Zaslavskiy, M., Bach, F. and Vert, J.P. A Path Following Algorithm for the Graph Matching Problem [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2227-2242.
    [169] McAuley, J.J., Caetano, T.S. and Barbosa, M.S. Graph Rigidity, Cyclic Belief Propagation, and Point Pattern Matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11) 2047-2054.
    [170] Bai, X. and Latecki, L.J. Path Similarity Skeleton Graph Matching [J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2008, 30(7):1282-1292.
    [171] Lin, L. Zhu, S.C. and Wang, Y.T. Layered Graph Match with Graph Editing [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 17-22 June, 2007.
    [172] Zheng, Y.F. and Doermann, D. Robust Point Matching for Nonrigid Shapes by Preserving Local Neighbourhood Structures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 643-649.
    [173] Ermis, E.B., Clarot, P., Jodoin, P.M. and Saligrama, V. Activity based Matching in Distributed Camera Networks [J]. IEEE Transactions on Image Processing. 2010, 19(10): 2595-2613.
    [174] Cao, Y.P. and McDonald, J. Robust Feature Correspondences from a Large Set of Unsorted Wide Baseline Images [C]. IEEE International Conference on Image Processing, 7-10 November, 2009.
    [175] Marques, M. and Costeira, J. Lamp: Linear Approach for Matching Points [C]. IEEE International Conference on Image Processing, 7-10 November, 2009.
    [176] Zhang, Z.M., Li, Z.N. and Drew, M. Feature Correspondence with Constrained Global Spatial Structures [C]. IEEE International Conference on Image Processing, 7-10 November, 2009.
    [177] Wang, H., Yan, S., Liu, J., Tang, X. and Huang, T.S. Correspondence Propagation with Weak Priors [J]. IEEE Transactions on Image Processing, 2009, 18(1): 140-150.
    [178] Pires, B.R., Moura, J.M.F. and Xavier, J. LASIC: A Model Invariant Framework for Correspondence [C]. IEEE International Conference on Image Processing, 12-15 October, 2008.
    [179] Buchanan, A. and Fitzgibbon, A. Combining Local and Global Motion Models for Feature Point Tracking [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 17-22 June, 2007.
    [180] Lepetit, V. and Fua, P. Keypoint Rcognition using Randomized Trees [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1465-1479.
    [181] Oliveira, R., Costeira, J. and Xavier, J. Optimal Point Correspondence through the use of Rank Constraints [C]. IEEE International Conference on Computer Vision and Pattern Recognition, 20-26 June, 2005.
    [182] Ulrike, L. A Tutorial on Spectral Clustering [J]. Statistics and Computing, 2007, 17(4): 395-416.
    [183]胡茂林.空间和变换[M].科学出版社, 2007, 32-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700