用户名: 密码: 验证码:
基于静电感应和显微图像的油液磨粒监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油液磨粒监测是机械设备磨损状态监测的重要手段之一,可以为机械设备故障诊断和视情维修提供分析依据。本文在对现有油液磨粒监测技术深入分析的基础上,针对现有监测技术的不足,结合油液磨粒监测的实际要求,研究了基于静电感应和显微图像的油液磨粒监测方法。论文的主要工作及创新点如下:
     1.设计了一种油液磨粒在线监测静电传感器。给出了静电传感器的结构模型,采用有限元方法对传感器静电场进行了数值求解,得到了静电传感器的灵敏度空间分布,并对影响静电传感器灵敏度的主要因素进行了仿真研究;对静电传感器的频率响应特性进行了分析和实验研究;提出了静电传感器结构尺寸优化设计方法。
     2.研究了基于显微图像分析的油液磨粒在线监测方法。设计了基于显微图像的油液磨粒在线监测系统;分析了油液磨粒图像的特点,给出了磨粒目标提取的主要流程;分析了磨粒图像模糊退化机理,研究了磨粒图像模糊退化模型,提出了基于微分图像自相关的磨粒图像模糊尺度计算方法,在此基础上,研究了磨粒图像模糊恢复方法;提出了基于差值图像粗分割和Otsu算法相结合的磨粒图像分割方法;利用粗糙集理论对磨粒特征描述体系进行了优化处理;利用最小二乘支持向量机设计了磨粒综合分类器,并采用粒子群算法对支持向量机模型中的基本参数进行了优化选取。
     3.提出了一种数字摄像机和数码相机相结合的大磨粒显微图像检测方法。设计了大磨粒图像检测系统,给出了大磨粒图像采集与处理的方法和步骤;研究了基于彩色空间转换和小波分析的磨粒多聚焦图像融合方法;研究了基于相位相关配准和小波融合的磨粒图像拼接方法;利用最小二乘支持向量机设计了铁磁性磨粒分类器。
     4.构建了油液磨粒静电监测实验平台,进行了初步的磨损静电监测实验研究;构建和开发了基于显微图像的油液磨粒在线监测系统,并对系统性能进行了验证;构建和开发了大磨粒图像检测系统;给出了基于静电感应和显微图像的油液磨粒集成监测方法。
Oil wear particle monitoring is one of the important means for condition monitoring of mechanical equipments, which can provide analysis basis for fault diagnosis and condition based maintenance of mechanical equipments. Based on the study of the current technologies for oil wear particle monitoring, for the shortage of the current oil wear particle monitoring technologies and the demand of oil wear particle monitoring, a new oil wear particle monitoring method based on electrostatic sensor and microscopical image analysis is proposed. The main contents are listed as follows.
     1. An electrostatic sensor with ring-shaped electrode is designed for wear particle on-line monitoring. The structural model of the electrostatic sensor is given. The analysis method for electrostatic field based on finite element method is studied. Numerical solution of the sensor electrostatic field is carried out by using the finite element analysis software ANSYS. The spatial sensitivity of the sensor is derived. The effect factors of the sensor sensitivity are researched in detail. The frequency response characteristic of the electrostatic sensor and its effect factors are investigated theoretically and experimentally. The optimal method on structural dimension design of the electrostatic sensor is proposed.
     2. An on-line oil wear particle monitoring system based on microscopical image analysis is designed. The main procedure of wear particle object extraction is given according to the image characteristic. The degrading mechanism of the blurred wear particle image is analyzed. The degradation model of the blurred wear particle image is derived. The method on the blur parameters calculation of the blurred wear particle image based on difference and autocorrelation is proposed. On this basis, the restoration method of the blurred wear particle image is studied. The wear particle image segmentation method based on oil background image and Otsu is proposed. The characteristic parameter system of wear particle is optimized based on rough sets. The classifier for two kinds of wear particle is designed based on the least squares support vector machines, and the parameters of this model are optimized by particle swarm optimization algorithm. Based on this classifier, the integrative wear particle classifier is designed according to the wear particle recognition system.
     3. The detection method for large wear particle based on the digital video recorder and common camera is proposed. A large wear particle detection system based on microscopical image is designed .The image fusion method based on color space conversion and wavelet analysis is studied. Image mosaic method based on phase correlation and wavelet fusion is researched. The classifier for ferromagnetic wear particle is designed using the least squares support vector machine.
     4. The experiment platform for wear electrostatic monitoring is established, and the preliminary experiment research is carried out. An on-line oil wear particle monitoring system based on microfluidic chip and microscopical image is developed, and the system’s performance is tested by the particle counter and the ferrography technology. A large wear particle detection system based on microscopical image fusion and mosaic is developed. The integrated monitoring method based on electrostatic sensor and microscopical image analysis is studied.
引文
[1]夏志新.液压系统污染控制.北京:机械工业出版社, 1992.
    [2]李生华,金元生.以设备诊断为目的的油液分析理论及其实现(一).设备管理与维修, 1997, 6: 24-6.
    [3] Barwell F T. The contribution of particle analysis to the study of wear metals. Wear, 1983, 90(1): 167-181.
    [4] Xu K, Luxmoore A R. An integrated system for automatic wear particle analysis. Wear, 1997, 208(1): 184-193.
    [5]张鄂.铁谱技术及其工业应用.西安:西安交通大学出版社, 2001.
    [6]李生华,金元生,陈大融.基于油液诊断与预报的机敏机器系统的概念与技术.国外分析仪器, 2002, 3:1-9.
    [7]毛美娟,朱子新,王峰.机械装备油液监控技术与应用.北京:国防工业出版社, 2006.
    [8]王坚,张英堂.油液分析技术及其在状态监测中的应用.润滑与密封, 2002, (4):77-78.
    [9] Ricardo Q A, Roseli M S, Reinaldo C C. The determination of trace metals in lubricating oils by atomic spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(9): 952-961.
    [10]Yaroshchyk P, Richard J S M, Body D, et al. Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single and double pulse LIBS. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(11): 1482-1485.
    [11]Yaroshchyk P, Richard J S M, Body D, et al. Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: A comparison between liquid jets and static liquids. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(7): 986-992.
    [12]Kolkul V S. Why a proactive maintenance program for hydraulic oil is part of statistical process control. Lubrication Engineering. 1997, 53(4): 10-14.
    [13]Federico E L. Method for decreasing and monitoring the level of contamination of residual fuel used for diesel engines and gas turbines. Condition Monitoring'97: 158-161. [14 ]James C F, Bents S. Applying satellite communication technology to condition-based maintenance for mobile equipment. Condition Monitoring'94: 129-140.
    [15]Anderon D P著.金元生,杨其明译.磨粒图谱.北京:机械工业出版社, 1987.
    [16]萧汉梁.铁谱技术及其在机械监测诊断中的应用.北京:人民交通出版社, 1993.
    [17]Tzafestas S G., Konstantinidis N I. ENGEXP—an integrated environment for the development and application of expert systems in equipment and engine fault diagnosis and repair. Advances in Engineering Software, 1992, 14(1): 3-14.
    [18]Yeung K K, Mckenzie A J, Liew D. Development of computer-aided image analysis for filter debris analysis. Lubrication Engineering, 1994, 50(5): 293-299.
    [19]Raadnui S, Roylance B J. Wear debris examination-An essential tool for maintenance engineer. Research and Development Journal of the Engineering Institute of Thailand, 1994, 4(1): 1-16.
    [20]Kirk T B, Stachowiak G W, Batchelor A W. Fractal parameters and computer image analysis applied to wear particles isolated by ferrography. Wear, 1991, 145(2): 347-365.
    [21]Thomas A D H, Davies T, Luxmoore A R. Computer image analysis for identification of wear particles, Wear, 1991, 142 (2): 213-226.
    [22]Roylance B J, Albidewi I A, Luxmoore A R, et al. The development of a computer-aided systematic particle analysis procedure-CASPA, Lubrication Engineering, 1992, 48(12): 940-946.
    [23]Roylance B J, Raadnui S. The morphological attributes of wear particles-their role in identifying wear mechanisms. Wear, 1994, 175(2): 115-121.
    [24]Roylance B J, Albidewi I A, Laghari M S, et al. Computer-aided vision engineering (CAVE)—quantification of wear particle morphology. Lubrication Engineering, 1994, 50(2): 111-116.
    [25]Peng Z, Kirk T B, Xu Z L. The development of three-dimensional imaging techniques of wear particle analysis. Wear, 1997, 203: 418-424.
    [26]Peng Z, Kirk T B. Computer image analysis of wear particles in three-dimensions for machine condition monitoring. Wear, 1998, 223(2): 157-166.
    [27]Peng Z, Kirk T B. Wear particle classification in a fuzzy grey system. Wear, 1999, 225: 1238-1247.
    [28]Podsiadlo P, Stachowiak G W. Scale-invariant analysis of wear particle surface morphology. Wear, 2000, 242(2): 180-188.
    [29]Laghari M S, Memon Q A, Khuwaja G A. Knowledge based wear particle analysis. International Journal of Information Technology, 2004, 1(3): 91-95.
    [30]谢友柏,张鄂.铁谱技术及其工业应用研究.煤矿机械, 1987, (4): 11-17.
    [31]程志红,杨志伊,魏任之.在线铁谱仪的研制.中国矿业大学学报, 1997, 16(3): 95-98.
    [32]吕植勇,严新平,彭雅芳等.磨损磨粒的主成分聚类方法分析.摩擦学学报, 2008, 28(5): 453-456.
    [33]潘汉玉,陈大融,孔宪梅.铁谱图像分析技术的应用研究.摩擦学学报, 1992, 12(4):362-368.
    [34]徐启圣,李柱国.基于层次分析法的油液诊断特征属性的选择.上海交通大学学报, 2006, 40(8): 1354-1359.
    [35]吴振锋,左洪福,孙有朝.磨粒分析技术及其在发动机故障诊断中的应用.航空动力学报, 2001, 16(4): 316-322.
    [36]顾大强,周利霞,王静.基于支持向量机的铁谱磨粒模式识别.中国机械工程, 2006, 17(13): 1391-1394.
    [37]黄鹏,贾民平,钟秉林等.磨损磨粒显微形态分析与自动识别技术.东南大学学报(自然科学版), 2006, 36(3): 411-416.
    [38]李岳,温熙森,吕克洪.基于核主成分分析的铁谱磨粒特征提取方法研究.国防科技大学学报, 2007, 29(2): 113-116.
    [39]李峰,徐诚,任国全.基于数学形态学的铁谱磨粒图像分割研究.南京理工大学学报(自然科学版), 2005, 29(1): 70-72.
    [40]胡财彬,钟新辉,费逸伟.铁谱磨粒识别技术研究.润滑油, 2007, 22(4): 41-43.
    [41]杨其明,严新平,贺石中.油液监测分析现场实用技术.北京:机械工业出版社, 2006.
    [42]Mills G N. Measuring the debris. Industrial Lubrication and Tribology. 1985, 37(5): 176-179.
    [43]Irina N. Compact high performance XFS instrument for on-line real-time metal analysis of lubricating oils. JOAP International Condition Monitoring Conference. Mobile, Alabama, 2000: 99-108.
    [44]Bary W W, Norman H H, Chester L S, et al. Development of a modular in-situ oil analysis prognostic system. International Society of Logistics (SOLE) 1999 Symposium. Las Vegas, Nevada, 1999: 201-207.
    [45]Raadnui S. Wear particle analysis—utilization of quantitative computer image analysis: A review. Tribology International, 2005, 38(10): 871-878.
    [46]万耀青,马彪.滚动轴承的损伤机理与大颗粒磨损金属的状态监测.机械强度, 2000, 22(3): 161-163.
    [47]黎琼炜.新型油液在线监控技术.测控技术, 2005, 24(4): 6-10.
    [48]David C S, Carl S B. Advances in real time oil analysis. Practicing Oil Analysis Magazine, 2000, 11: 28-34.
    [49]Thomas T, Dag J. Experience with the electronic oil debris monitoring system of the general electric GE90 gas turbine engine on the Boeing777 aircraft. In: JOAP International Condition Monitoring Conference , Mobile, Alabama, 2000: 78-85.
    [50]Allison M T, Cassidy K. Filter debris analysis for aircraft engine and gearbox health management. Journal of Failure Analysis and Prevention, 2008, 8: 183-187.
    [51]Tasbaz O D, Wood R J K, Browne M, et al. Electrostatic monitoring of oil lubricated sliding point contacts for early detection of scuffing. Wear, 1999, 230: 86-97.
    [52]Wood R J K, Harvey T J, Morris S, et al. Electrostatic monitoring of boundary and mixed lubrication. Tribology Series, 2002, 40: 83-92.
    [53]Harvey T J, Wood R J K, Denuault G, et al. Investigation of electrostatic charging mechanisms in oil lubricated tribo-contacts. Tribology International, 2002, 35(9): 605-614.
    [54]Harvey T J, Wood R J K, Powrie H. Electrostatic wear monitoring of rolling element bearings. Wear, 2007, 263(7): 1492-1501.
    [55]Powrie H E G, Wood R J K, Harvey T J, et al. Electrostatic charge generation associated with machinery component deterioration. 2002 IEEE Aerospace Conference Proceedings, ISBN 0-7803-7232-8.
    [56]Powrie H E G. Use of electrostatic technology for aero engine oil system monitoring. 2000 IEEE Aerospace Conference.2000, 6: 57-72.
    [57]赵方,刘岩,谢友柏. OLF-4在线铁谱仪的采样数据及其特征提取的研究.机械科学与技术, 2000, 19(2): 310-312.
    [58]殷勇辉,严新平,萧汉梁.电感式磨粒监测传感器的磁场均匀性研究.摩擦学学报, 2001, 21(3): 228-231.
    [59]伍昕,刘岩,吕晓军,等.在线图像铁谱仪的硬件系统设计.清华大学学报(自然科学版), 2004, 44(11): 1475-1481.
    [60]武通海,邱辉鹏,吴教义.图像可视在线铁谱传感器的图像数字化处理技术.机械工程学报, 2008, 44(9): 83-87.
    [61]张艳彬,左洪福,涂群章.实用化图像式油液污染实时检测系统研究.南京航空航天大学学报, 2006, 38(5): 649-654.
    [62]张艳彬,左洪福,涂群章.基于显微图像的油液实时分析系统中颗粒识别技术研究.机械科学与技术, 2006, 25(10): 1187-1190.
    [63]牛云波,陈桂明.在线磨粒监测传感技术的研究现状与发展趋势.传感器世界, 2008: 5-10.
    [64]Kauffman R E, Ameye J. Development and seeded fault engine test evaluation of on-line oil condition monitoring sensors for the joint strike fighter. JOAP International Condition Monitoring Conference, Mobile, Alabama, USA, 2002: 147-156.
    [65]Postnikov S N. Electrophysical and electrochemical phenomena in friction, cutting andlubrication. New York: Van Nostrand Reinhold, 1978.
    [66]Nakagama K. Tribophysical phenomena and tribochemical reaction. Tribology, 1997, 42(9): 712-717.
    [67]Morris S, Wood R, Harvey T, et al. Use of electrostatic charge monitoring for early detection of adhesive wear in oil lubricated contacts. Journal of Tribology, 2002, 124: 288-296.
    [68]Fisher C, Chandlers F. Data and Information Fusion for Gas Path Debris Monitoring. Proceedings of IEEE Aerospace Conference. Montana, USA: IEEE, 2001: 3017-3022.
    [69]Powrie H E G, Fisher C E. Engine health monitoring: towards total prognostics. Proceedings of IEEE Aerospace Conference. CA, USA: IEEE, 1999, (3): 11-20.
    [70]Gajewski J B. Dynamic effect of charged particles on the measuring probe potential. Journal of electrostatics, 1997, 40: 437-442.
    [71]Gajewski J B. Mathematical model of non-contact measurements of charges while moving. Journal of electrostatics, 1984, 15: 81-92.
    [72]Yan Y. Mass flow measurement of pneumatically conveyed solids. Ph.D. thesis, University of Teesside, U.K., 1992.
    [73]许传龙,汤光华,黄健等.基于静电传感器空间滤波效应的颗粒速度测量.化工学报, 2007, 58(1): 67-74.
    [74]张朴,孔力,刘文中等.气固两相流静电传感器特性的研究.华中科技大学学报(自然科学版), 2004, 32(2): 32-34.
    [75]田裕鹏,姚恩涛,李开宇.传感器原理.北京:科学出版社, 2007.
    [76]张祖寿.导体达到静电平衡所需要时间的数量级估计.物理与工程,2003, 12(2): 20-21.
    [77]金建铭.电磁场有限元方法.西安:西安电子科技大学出版社, 1998.
    [78]王家青.静电涂油机中油液荷电雾化机理及其关键技术研究, [博士学位论文].武汉:武汉科技大学, 2007.
    [79]管用时.电荷平面任意分布时二维静电场的有限元法.邵阳学院学报, 2004, 1(2):14-16.
    [80]孔明礼,胡仁喜,崔海蓉. ANSYS10.0电磁学有限元分析实例指导教程.北京:机械工业出版社, 2007.
    [81]许传龙,王式明,孔明等.静电传感器空间灵敏度特性研究.计量学报, 2006, 27(4):335-338.
    [82]龚曙光. ANSYS工程应用实例解析.北京:机械工业出版社, 2003.
    [83]Yan Y, Byrne B, Woodhead S et al. Velocity measurement of pneumatically conveyed solids using electrodynamic sensors. Meas. Sci. Technol., 1995,6:515-537.
    [84]Bigas M, Cabruja E, Forest J, et al. Review of CMOS image sensors. Microelectronics Journal,2006, 37(5): 433-451.
    [85]Gottardi M. A CMOS/CCD image sensor for 2D real time motion estimation. Sensors and Actuator, 1995, 46(3): 251-256.
    [86]Magnan P. Detection of visible photons in CCD and CMOS: A comparative view. Detectors and Associated Equipment, 2003, 504(3): 199-212.
    [87]晏磊,赵红颖,罗妙宣.数字成像基础及系统技术.北京:电子工业出版社, 2007.
    [88]王庆友.图像传感器应用技术.北京:电子工业出版社, 2003.
    [89]陈强,李刚,潘爱平.玻璃微流控芯片廉价快速制作方法的研究.化学学报, 2007, 65(17): 1863-1868.
    [90]David C D, McDonald J C, Olivier J A, et al. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem, 1998, 70: 4974-4984.
    [91]Fan Z H, Harrison D J. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem. 1994, (66): 177-184.
    [92]方肇伦.微流控分析芯片的制作及应用.北京:化学工业出版社, 2005.
    [93]刘大友.二相流体力学.北京:高等教育出版社, 1993.
    [94]邸慧,于起峰.基于自相关的匀速运动模糊尺度参数识别.国防科技大学学报, 2006, 28(5): 123-125.
    [95]Yitzhaky Y, Kopeika N S. Identification of motion blur for image restoration. Graphical Models and Image Processing, 1997, 59(5): 310-320.
    [96]Yitzhaky Y, Kopeika N S. Identification of the blur extent from motion blurred images. SPIE, 1998, 2470: 2-11.
    [97]Chang M M, Tekalp A M, Erdem A T. Blur identification using the bispectrum. IEEE Trans. on Signal Processing, 1991, 39(10): 2323-2325.
    [98]William T F, Edward H A. The design and use of steerable filters. IEEE Trans. on PAMI, 1991, 13(9): 891-906.
    [99]Lokhande R, Arya K V, Gupta P. Identification of Parameters and Restoration of Motion Blurred Images. Proc. of the ACM Symp. on Applied Computing (SAC 2006), Dijon: ACM Press, 2006: 301-305.
    [100]Pavlovic G, Tekalp A M. Maximum likelihood parametric blur identification based on a continuous spatial domain model.IEEE Trans. on Image Process, 1992, 1(10): 496-504.
    [101]邹谋炎.反卷积和信号复原.北京:国防工业出版社, 2001.
    [102]赵琳,金伟其,陈翼男等.基于微分图像自相关的离焦模糊图像盲复原.光学学报, 2008,28(9): 1703-1709.
    [103]Otsu N. A threshold selection method from gray-level histogram. IEEE Trans on Systems, Man and Cybernetic, 1979, 9(1): 62-66.
    [104]Lee S U,Chung S Y, A comparative performance study of several global thresholding techniques for segmentation. Computer Vision, Graphics and Image Processing, 1990, 52: 171-190
    [105]左洪福.发动机磨损状态监测与故障诊断技术.北京:航空工业出版, 1996.
    [106]吴振锋.基于磨粒分析与信息融合的发动机磨损故障诊断技术研究, [博士学位论文].南京:南京航空航天大学, 2001.
    [107]Pawlak Z. Rough sets. International Journal of Computer and Information Science, 1982, 11(5): 341-356.
    [108]陈恬,孙健国.粗糙集与神经网络在航空发动机气路故障诊断中的应用.航空动力学报, 2006, 21(1): 207-212.
    [109]Pawlak Z, Skowron A. Rough sets and boolean reasoning. Information Science. 2007, 177 (1): 41-73.
    [110]Nguyen H S. Discretization of real value attributes: a boolean reasoning approach. Warsaw, Poland: Warsaw University, 1997.
    [111]Nguyen H S, Skowron A. Quantization of real values attributes, rough set and boolean reasoningapproaches. Proceeding of the 2nd Joint Annual Conference on Information Science, Wrightsville Beach, Nc, 1995: 34-37.
    [112]Nguyen S H, Nguyen H S. Some efficient algorithms for rough set methods. In: Proc. Fifth conference on information processing and management of uncertainty in knowledge-based Systems. Granada, Spain, 1996: 1451-1456.
    [113]Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1995.
    [114]Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans on Geoscience Remote Sensing, 2004, 42(8): 1778-1790.
    [115]Sebald D J, Bucklew J A. Support vector machine techniques for nonlinear equalization. IEEE Trans on Signal Processing, 2000, 48(11): 3217-3226.
    [103]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing letters, 1999, 9(3): 293-300.
    [117]Suykens J A K, Gestel T V, Brabanter J, et al. Least squares support vector machines. Singapore: World Scientific, 2002.
    [118]Eberhart R C, Shi Y. Comparison between genetic algorithms and particle swarm optimization.evolutionary programming VII, Lecture Notes in Computer Science 1447, Springer, 1998: 611-616.
    [119]Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources. In: The 2001 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2001: 81-86.
    [120]朱子新,陈栋,张晶等.航空发动机大颗粒金属磨屑监控技术.航空维修与工程, 2006, (3): 30-32.
    [121]那彦,杨万海,方凯.一种新的可见光图像融合方法.电路与系统学报, 2004, 9(2):146-148.
    [122]Piella G. A general framework for multiresolution image fusion: from pixels to regions. Information fusion, 2003, 4(4): 259-280.
    [123]Lallier E. Farooq M. A real time pixel-level based image fusion via adaptive weight averaging. Proceedings of international conference on information fusion. 2000, 3-13.
    [124]Jia Y H. Fusion of landsat TM and SAR images based on principle component analysis. Remote sensing technology and application, 1998, 13(1):46-49.
    [125]Zhao W, Mao S Y. Pixel-based image fusion with false color mapping. Proceedings of SPIE, 2003, 4898: 140-149.
    [126]Xia Y, Leung H. Eloi B. Neural data fusion algorithms based on a linearly constrained least square method. IEEE transactions on neural networks, 2002, 13(2): 320-329.
    [127]Liu J. Smoothing filter-based intensity modulation: a spectral preserve image fusion technology for improving spatial details. International Journal of Remote Sensing, 2000, 21(18): 3461-3472.
    [128]Li S T, James T k, Yaonan Wang. Multifocus image fusion using artificial neural networks. Pattern Recognition Letters, 2002, (23): 985-997.
    [129]Matsopoulos G K, Marshall S. Application of morphological pyramids: fusion of MR and CT phantoms. Journal of Visual Communication and Image Representation, 1995, 6(2): 196- 207.
    [130]Jiang X, Zhou L, Gao Z. Multispectral image fusion using wavelet transform. In: Proceedings of SPIE, 1996, 2898. 35-42.
    [131]Li H, Manjunath B S, Mitra S K. Multi-sensor image fusion using the wavelet transform. Graphical Models and Image Processing, 1995, 57(3): 235-245
    [132]毛士艺,赵巍.多传感器图像融合技术综述.北京航空航天大学学报, 2002, 28(5): 512-515.
    [133]李玲玲.像素级图像融合方法研究与应用, [博士学位论文].武汉:华中科技大学, 2005.
    [134]Hankerson D, Harris G A, Johnson P D. Introduction to information theory and data compression. New York: CRC Press, 1997.
    [135]Pal N R, Pal S K. Entropy: a new definition and its applications. IEEE Transactions on Systems,Man, and Cybernetics, 1991, 21(5): 1260-1270.
    [136]王文杰,唐娉,朱重光.一种基于小波变换的图像融合算法.中国图像图形学报A, 2001, 6(11): 1130-1136.
    [137]Qu G, Zhang D, Yan P. Information measurement for performance of image fusion. Electronics Letters, 2002, 38(7): 313-315.
    [138]张国华,张文娟,薛鹏翔.小波分析与应用基础.西安:西北工业大学出版社, 2006 .
    [139]孙巍.像素级多聚焦图像融合算法研究, [博士学位论文].长春:吉林大学, 2008.
    [140]汪强,尹峰,刘钢钦.基于小波的彩色图像融合技术.计算机仿真, 2005, 22(11): 201-204.
    [141]Russ J C. The image processing handbook. Boca Raton: CRC Press, 1995.
    [142]Zhang Z, Blum R S. A categorization of multiscale-decomposition-based image fusion schemes with a peformance study for a digital camera application. Proc.of IEEE, 1999, 87(8): 1315-1326.
    [143]王婷,李杰,赵呜.基于小波包变换的图像融合技术的应用.同济大学学报(自然科学版), 2006, 34(9): 1137-1141.
    [144]Brown L G. A survey of image registration technology. ACM Computing Surveys, 1992, 24(4): 325-376.
    [145]Hoge W S. A subspace identification extension to the phase correlation method. IEEE Transactions on Medical Imaging, 2003, 22(2): 277-280.
    [146]Wolberg G, Zokai S. Robust image registration using log-polar transform. Proceedings of the IEEE international conference on image processing. 2000, 1: 493-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700