用户名: 密码: 验证码:
摩擦自激振动系统的非线性动力学特征与分岔控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦自激振动现象广泛存在于工程领域和日常生活中,由其引起的机械部件的磨损、表面的破坏、疲劳破坏和产生噪声,对工业生产和人们的生活环境造成了不小的影响,越来越引起人们的重视。目前摩擦自激振动等滞后非光滑动力学机理还未被深入认识,关于摩擦自激振动的理论研究缺乏系统性,难以总结参数影响的规律,工程实际情况中常见的参数非定常性、多自由度内共振等影响因素往往被忽略。另外,针对摩擦自激振动的非线性主动控制策略研究还刚刚开始。本文以机械系统中的摩擦自激振动为研究对象,对摩擦自激振动系统的非线性动力学特性和分岔控制进行了深入细致的研究,主要工作及创造性成果如下:
     通过对机床摩擦颤振、钻杆颤振、汽车驱动系统颤振和制动系统啸叫等摩擦自激振动系统的结构特性研究,建立了一类具有代表性的双质体—传输带摩擦自激系统动力学模型。为深入探讨摩擦自激振动的非线性动力学机理及摩擦自激振动的分岔控制等研究奠定了基础。
     利用李亚普诺夫理论对摩擦自激振动系统的稳定性进行分析,求出系统运动的平衡点,对平衡点稳定性进行判断,确定系统的临界失稳速度。利用平均法求得摩擦自激振动系统的近似解析定常解。分析可知随着传输带速度减小,系统静平衡状态失稳,出现纯滑动和粘滑形式的摩擦自激振动。分析系统参数变化与系统振动的关系,发现正压力比值的变化对自激振动有较大影响。
     考虑了内共振因素对摩擦自激振动的影响,利用数值方法分析非内共振、1:2内共振和1:3内共振三种情况下,摩擦自激振动系统的非线性动力学特性。设计了摩擦自激振动实验平台,并进行实验研究。结果发现内共振状态对摩擦自激系统的非线性动力学特性有重要影响。
     针对摩擦自激振动的非线性特点,提出Washout滤波器方法对摩擦自激振动进行分岔控制。控制在临近分岔点处引入,通过Washout滤波器方法确定非线性控制器的线性增益,应用规范型直接法计算其非线性增益,将系统亚临界Hopf分岔控制为超临界Hopf分岔,使受控系统的自激振动幅值大大降低。理论分析和数值仿真表明该控制方法的有效性。
     研究开发了基于虚拟仪器技术的振动信号采集分析系统,实现了变步长随机共振和经验模式分解算法,增强了提取微弱振动信号特征和捕捉非稳定信号的能力,弥补了传统信号分析系统的不足。
Self-excited vibrations induced by friction widely exist in fields of engineering and dailylife. Usually, the unwanted self-excited vibrations cause an early wear of the contacting parts of machines. It seems that up to now not all the possible nonlinear phenomena have been properly understood. Especially such conditions as parameter change and internal resonance have seldom been considered in a multiple-degree-of-freedom system. And study on nonlinear active control strategy is just started. The aim of this paper is to deeply investigate nonlinear characteristics and bifurcation control of self-excited vibration, which results in the following conclusions.
     Based on extensive studies on various self-excited systems with friction, a typical“mass-on-moving-belt”model is derived and established for describing friction-induced vibration. The dynamical model lays the foundation for deep studies on nonlinear characteristics and bifurcation control of self-excited vibration.
     Then the stability of the established system is analyzed analytically using Lyapunov theories. After calculating equilibrium points of the system and analyzing the stability of them, crucial velocity at which the system becomes unstable is obtained eventually. And the approximate analytical solutions of the system are derived by means of KBM method. By analyzing relationship between parameters and vibrations of the system, it is found that normal pressure ratio plays an important role in self-excited vibration.
     Considered important effect of internal resonance, nonlinear dynamical behaviors of the system under non-internal resonance, 1:2 internal resonance and 1:3 internal resonance conditions are numerically investigated respectively. An experimental bench for testing frictional self-excited vibrations is designed and built up. Analytical and experimental results show that internal resonance condition plays an important role in the friction-induced self-excited vibration.
     The Washout filter technique is used to control self-excited vibration caused by friction. The point at which Hopf bifurcation to be introduced is analyzed and determined. Then the linear control gain of Washout filer controller is calculated according to Hopf bifurcation condition. The nonlinear control gain is obtained based on the rule transferring sub-critical Hopf bifurcation to super-critical one. The analytical and numerical results show that the vibration amplitude of controlled system is greatly reduced comparing to the uncontrolled one and washout filter method is an effective way in control on self-excited vibration.
     A portable vibration signal measurement and analysis system based on virtual instrument technology is developed after implementing such signal processing algorithms as Step-changed Stochastic Resonance and Empirical Mode Decomposition. These abundant functions enhance the ability of feature extraction from weak and unstable vibration signals.
引文
[1]王太勇,机械噪声的测试分析与减振降噪技术,北京:机械工业出版社,1995
    [2]季文美,方同,陈松淇,机械振动,北京:科学出版社,1985
    [3]陈予恕,非线性振动,天津:天津科技出版社,1983
    [4]郑兆昌,丁奎元,机械振动:中册,北京:机械工业出版社,1996
    [5]刘延柱,陈立群,非线性振动,北京:高等教育出版社,2001
    [6] Y. Altintasa, M. Weckb, Chatter stability of metal cutting and grinding, CIRP Annals - Manufacturing Technology, 2004, 53(2): 619-642
    [7] Thomas Richard,Self-excited stick-slip oscillations of drag bits, Doctoral Thesis, University of Minnesota, 2001
    [8] Okan Bilkay, Omer Anlagan, Computer simulation of stick-slip motion in machine tool slideways, Tribology International, 2004, 37(4): 347-351
    [9]管迪华,宿新东,制动振动噪声研究的回顾、发展与评述,工程力学,2004,21(4):150-155
    [10] Lisle Bruce Hagler, Friction induced vibration in disk brake systems, Doctoral Thesis, University of Washington, 1998
    [11] Nathan Michael Kinkaid, On the nonlinear dynamics of disc brake squeal, Doctoral Thesis, University of California at Berkeley, 2004
    [12]陈予恕,曹登庆,吴志强,非线性动力学理论及其在机械系统中应用的若干进展,宇航学报,2007,28(4):794-804
    [13] A. Nayebi, G. Mauvoisin, H. Vaghefpour, Modeling of twist drills wear by a temperature-dependent friction law, Journal of Materials Processing Technology, 2006, 207(1-3): 98-106
    [14] Nicolas Guibert, Henri Paris, Jo?l Rech, A numerical simulator to predict the dynamical behavior of the self-vibratory drilling head, International Journal of Machine Tools and Manufacture, 2008, 48(6): 644-655
    [15] Metrikin V S, Nagayev R F, Stepanova V V, et al. Periodic and stochastic self-excited oscillations in a system with hereditary-type dry friction. J. Appl. Maths Mechs, 1996, 60(5): 845-850
    [16] McMillan A J. A non-linear friction model for self-excited vibration. Journal ofSound and Vibration, 1997, 205(3): 323-335
    [17] Jon Juel Thomsen, Alexander Fidlin. Analytical approximations for stick–slip vibration amplitudes. International Journal of Non-Linear Mechanics, 2003, 38(3): 389-403
    [18] Awrejcewicz J, Yuriy Pyryev. Dynamics of a two-degrees-of-freedom system with friction and heat generation. Communications in Nonlinear Science and Numerical Simulation, 2006, 11: 635-645
    [19] Kunze M, Küpper T. Qualitative bifurcation analysis of a non-smooth friction-oscillator model. Z. Angew. Math. Phys, 1997, 48: 87-101
    [20] Leine, R. I., et al., Stick-slip vibrations induced by alternate friction models. Nonlinear Dynamics, 1998, 16: 41-54
    [21] Pontes, B.R., Oliveira, V.A. & Balthazar, J.M., On friction-driven vibrations in a mass block-belt-motor system with a limited power supply. J Sound Vib, 2000, 234(4): 713-723
    [22] Vielsack, P., 2001. Stick-slip instability of decelerative sliding. Intl J Nonli Mech, 36: 237-247
    [23] Awrjceicz J, Olejnik P. Friction pair modeling by a 2-DOF system numerical and experimental investigations. International Journal of Bifurcation and Chaos, 2005, 15(6): 1931-1944
    [24] Hinrichs, N., Oestreich, M. & Popp, K., Dynamics of oscillators with impact and friction. Chaos, Solutions & Fractals, 1997, 8 (4): 535-558
    [25] J. Awrejcewicz and P. Olejnik, Friction pair modeling by a 2-dof system: numerical and experimental investigations, International Journal of Bifurcation and Chaos, 2005, 15(6): 1931-1944
    [26] Q. Ding, Leung, A.Y.T. & Cooper, J. E., Dynamic analysis of a self-excited hysteretic system. J Sound Vib, 2001, 245(1): 151-164
    [27]白鸿柏,黄协清,干摩擦振动系统响应计算方法研究,振动工程学报,1998,11(4):472-476
    [28] R. Masiani , D. Capecchib , F. Vestroni, Resonant and coupled response of hysteretic two-dof systems using harmonic balance method, International Journal of Non-Linear Mechanics, 2002, 37: 1421-1434
    [29] W.J. Kim, N.C. Perkins, Harmonic balance/Galerkin method for non-smooth dynamic systems, J Sound Vib, 2003, 261: 213-224
    [30] Li Yong, Z. C. Feng, Bifurcation and chaos in friction-induced vibration,Communications in Nonlinear Science and Numerical Simulation, 2004, 9(6): 633-647
    [31] A.J. McMillan, A nonlinear friction model for self-excited vibration, Journal of Sound and Vibration, 1997, 205(3): 323-335
    [32] B. L. van de Vrande, D. H. van Campen, A. de Kraker, An Approximate Analysis of Dry-Friction-Induced Stick-Slip Vibrations by a Smoothing Procedure, Nonlinear Dynamics, 1999, 19(2): 159-171
    [33] F. A. Bender, W. Symens, Characterization of frictional hysteresis in ball-bearing guideways, Wear, 2005, 258: 1630-1642
    [34]徐伟,雷盛开,机械加工自激振动的研究,机械研究与应用,2004,17(3):23-24
    [35]裴旭明,张东初,李菊丽等,数控机床进给系统摩擦自激振动研究,郑州轻工业学院学报(自然科学版),2003,18(3):5-7
    [36] Chengwu Duan, Rajendra Singh, Super-harmonics in a torsional system with dry friction path subject to harmonic excitation under a mean torque, J Sound Vib, 2005, 285: 803–834
    [37] T. C. Kim, T. E. Rook, R. Singh, Super- and sub-harmonic response calculations for a torsional system with clearance non-linearity using the harmonic balance method, J Sound Vib, 2005, 281: 965-993
    [38]赵文清,湿式多盘制动器制动噪声机理研究,中国公路学报,2002, 15(4): 118-120
    [39] A. Papinniemia, Brake squeal: a literature review, Applied Acoustics, 2002, 63: 391–400
    [40] N.M. Kinkaid, O.M. O’Reilly, P. Papadopoulos, Automotive disc brake squeal, J Sound Vib, 2003, 267: 105-166
    [41] M. Krivtsov, M. Wiercigroch, Penetration rate prediction for percussive drilling via dry friction model, Chaos, Solitons and Fractals, 2000, 11: 2479-2485
    [42]吴南星,孙庆鸿,冯景华,机床进给伺服系统非线性摩擦特性及控制补偿研究,东南大学学报(自然科学版),2004, 34(6), 771-774
    [43] F. Al-Bender, Dynamic characterization of hysteresis elements in mechanical systems, I. Theoretical analysis, Chaos, 2005, 15, 013105
    [44] W. Symens, F. Al-Bender, Dynamic characterization of hysteresis elements in mechanical systems, II. Experimental validation, Chaos, 2005, 15, 013106
    [45] J. J. Choi, S. I. Han, J. S. Kim, Development of a novel dynamic friction modeland precise tracking control using adaptive back-stepping sliding mode controller, Mechatronics, 2006, 16: 97-104
    [46] R. H. A. Hensen, M.J.G. van de Molengraft, M.Steinbuch, Friction induced hunting limit cycles: A comparison between the LuGre and switch friction model, Automatica, 2003, 39(12): 2131-2137
    [47] S. S. Ge, T. H. Lee, J. Wang, Adaptive NN control of dynamic systems with unknown dynamic friction, Proceedings of the 39th IEEE Conference on Decision & Control, Sydney, Australia, 2000, IEEE, 1760-1765
    [48] G. L. Wang, Y. F. Li, X. D. Bi, Support vector machine networks for friction modeling, Proceedings of the American Control Conference, Denver, USA, 2003, 4: 2833-2838
    [49] U. Galvanetto, Flexible control of chaotic stick-slip mechanical systems, Computer Methods in Applied Mechanics and Engineering, 2001, 190(46): 6075-6087
    [50] P. Vedagarbha, D. M. Dawson, M. Feemster, Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects, IEEE Transactions on Control Systems Technology, 1999, 7(4): 446-456
    [51] H. G. Kwatny, C. Teolisb, M. Matticec, Variable structure control of systems with uncertain nonlinear friction, Automatica, 2002, 38(7): 1251-1256
    [52] S. Suraneni, I. N. Kar, O. V. Ramana Murthy, Adaptive stick–slip friction and backlash compensation using dynamic fuzzy logic system, Applied Soft Computing, 2005, 6(1): 26-37
    [53]赵东,新型摩擦阻尼器的研究及其在建筑结构振动控制中的应用,工业建筑,2006, 36(2), 1-5
    [54] E. H. Abed, J. H. Fu, Local feedback stabilization and bifurcation control, I: Hopf bifurcation [J], Sys. Contr. Lett, 1986, 7(1): 11-17
    [55] E. H. Abed, J. H. Fu, Local feedback stabilization and bifurcation control, II: Stationary bifurcation [J], Sys. Contr. Lett, 1987, 8: 467-473
    [56] E. H. Abed, H. O. Wang, R. C. Chen, Stabilization of period doubling bifurcations and implications for control of chaos [J], Physica D, 1994, 70: 154-164
    [57] H. O. Wang, E. H. Abed, Robust control of period doubling bifurcations and implications for control of chaos, Proc. of 33rd IEEE Conf. on Decision and Control, Orlando, 1994, 3287-3292
    [58] H. O. Wang, E. H. Abed, Bifurcation control of a chaotic system[J], Automatica, 1995, 31: 1213-1226
    [59] W. Kang, Bifurcation and normal form of nonlinear control systems[J], SIAM J. of Contr. Optim, 1998, 36: 193-232
    [60] M. J. Laufenberg, M. A. Pai, K. R. Padiyar, Hopf bifurcation control in power systems with static compensator[J], Int. J. of Elect. Power Energy Sys, 1997, 19: 339-347
    [61] D. M. Littleboy, P. R. Smith, Using bifurcation methods to aid nonlinear dynamic inversion control law design[J], J. of Guidance, Control and Dynamics, 1998, 21: 632-638
    [62] A. H. Nayfeh, A. M. Harb, Bifurcations in a power system model[J], Int. J. of Bifur. Chaos, 1996, 6: 497-512
    [63] Senjyu T, Uezato K, Stability analysis and suppression control of rotor oscillation for stepping motors by Lyapunov direct method[J], IEEE Trans. on Power Electr, 1995, 10:333 - 339
    [64] Tesi A, Abed E H, Genesio R, Wang H O, Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics[J], Automatica, 1996, 32: 1255 - 1271
    [65] Chen G, Dong X. From chaos to order: methodologies, perspectives and applications[M]. Singapore: World Scientific Pub. Co., 1998
    [66] Moiola J L, Chen G. Hopf bifurcation analysis: a frequency domain approach [M]. Singapore: World Scientific Pub. Co., 1996
    [67] Abed E H. Bifurcation theoretic issues in the control of voltage collapse[A]. Proc. of IMA Workshop on Systems and Control Theory for Power Sys., New York: Springer, 1995, 1 - 21
    [68] Abed E H, Wang H O. Feedback control of bifurcation and chaos in dynamical systems [A]. Nonlinear Dynamics and Stochastic Mechanics. Boca Raton, CRC Press, 1995, 153 - 173
    [69] Abed E H , Wang H O, Tesi A. Control of bifurcation and chaos[A]. The Control Handbook. Boca Raton, FL: CRC Press, 1995, 951 - 966
    [70] Chen G, Fang J Q, Hong Y. Controlling Hopf bifurcations: the continuous case [J]. Acta Physica of China, 1999, 8: 416- 422
    [71] Chen G, Fang J Q, Hong Y. Controlling Hopf bifurcations: discrete time systems[J]. Discrete Dynamics in Nature and Society, 2000, 5: 29 - 33
    [72] Chen G, Moiola J L. An overview of bifurcation, chaos and nonlinear dynamics in control systems[J]. J. of the Franklin Institute, 1994, 331B: 819 - 858
    [73] Chen D, Wang H O, Chen G. Anti-control of Hopf bifurcations through washout filters[A]. Proc. 37th IEEE Conf. on Decis. Contr. Tampa, FL, 1998, 3040 - 3045
    [74] Chen G, Lu J, Yap K C. Controlling Hopf bifurcations[A]. Proc. of Int. Symp. on Circ. Sys., Monterey, CA, 1998, 639 - 642
    [75] Calandrini G, Paolini E, Moiola J L. Controlling limit cycles and bifurcations [A]. Boca Raton, FL: CRC Press, 1999, 200 - 227
    [76] Berns D W, Moiola J L, Chen G. Feedback control of limit cycle amplitudes from a frequency domain approach[J]. Automatica, 1998, 34: 1567 - 1573
    [77] Berns D W, Moiola J L, Chen G. Predicting period-doubling bifurcations and multiple oscillations in nonlinear time-delayed feed back systems[J]. IEEE Trans. on Circ. Sys. (I), 1998, 45: 759 -763 [78 ] Moiola J L, Berns D W, Chen G. Feedback control of limit cycle amplitudes [A]. Proc. of IEEE Conf. on Decis. Contr. San Diego, CA, 1997, 1479 - 1485
    [79] Moiola J L, Chen G. Controlling the multiplicity of limit cycles[A]. Proc. of IEEE Conf. on Decis. Contr. Florida, FL, 1998, 3052 - 3057
    [80] Cam U, Kuntman H. A new CCII2based sinusoidal oscillator providing fully independent control of oscillation condition and frequency[J]. Microelectronics Journal, 1998, 29: 913 - 919
    [81] Basso M, Evangelisti A, Genesio R. On bifurcation control in time delay feedback systems[J]. Int. J. of Bifur and Chaos, 1998, 8: 713 - 721
    [82] Chen G. Chaos, bifurcation and their control[A]. New York: Wiley, 1998, 3: 194 - 218
    [83] Chen G. Controlling chaos and bifurcations in engineering systems[M]. Boca Raton, FL: CRC Press, 1999
    [84] J. E. Mottershead, H. Ouyang, M. P. Cartmell. Parametric resonances in an annular disc with a rotating system of distributed mass and elasticity. Proc. R. Soc. London, 1997, 1-19
    [85] H. Ouyang, J. E. Mottershead, M. P. Cartmell. Friction-induced parametric resonances in discs: Effect of a negative friction-velocity relationship, J. Sound Vib., 1998, 209(2), 251-264
    [86]王洪礼,张琪昌,《非线性动力学理论及应用》,天津:天津大学出版社,1999
    [87]李欣业,多自由度内共振系统的非线性模态及其分岔:[博士学位论文],天津:天津大学,2001
    [88] D. Chen, H. O. Wang, G. Chen. Anti-control of Hopf bifurcations through washout filters[A]. Proc. 37th IEEE Conf. on Decis. Contr.[C], Tampa, FL, 1998, 3040-3045
    [89] E. H. Abed, F. H. Fu. Local stabilization and bifurcation control (?): hopf bifurcation [J], Systems and Control Letters, 1986, 7(1): 11-17
    [90] D. S. Chen, H. O. Wang. Anti-control of Hopf bifurcations, IEEE Transactions on Circuits and System (?): Fundamental Theory and Applications, 2001, 48(6): 661-672
    [91] Q. S. B, P. Yu. Symbolic computation of normal forms for semi-simple cases. Journal of Computational and Applied Mathematics, 1999, 102(1): 195-220
    [92]吴志强,多自由度非线性系统的非线性模态及Normal Form直接法,[博士学位论文]:天津,天津大学,1996
    [93]雷振山,LabVIEW 7 Express实用技术教程,北京:中国铁道出版社,2004,45~103
    [94]周求湛,钱志鸿等,虚拟仪器与LabVIEW7 Express程序设计,北京:北京航空航天大学出版社,2004,66~175
    [95] National Instruments Company,LABVIEW用户手册,National Instruments Company Limited,2002
    [96]詹惠琴,古军,袁亮,虚拟仪器设计,北京:高等教育出版社,2008
    [97] L. Gammaitoni, P. H?nggi, et al. Stochastic resonance. Rev. Mod. Phys., 1998, 70(1): 223-246
    [98] A. R. Bulsara, L. Gammaitoni. Tuning in to noise. Physics Today, 1996, (49), 39-45
    [99]冷永刚,大信号变尺度随机共振的机理分析及其工程应用研究:[博士学位论文],天津:天津大学,2004
    [100] X. Godivier, F. Chapeau-Blondeau. Noise-assisted signal transmission in a nonlinear electronic comparator: experiment and theory. Signal Processing, 1997, (56): 293-303
    [101]胡岗,随机力与非线性系统,上海:上海科学教育出版社,1994,220-222
    [102]张海勇,马孝江,盖强,抑制时频分布交叉项的一种新方法,系统工程与电子技术,2002,24(1):28-30
    [103] Leon Cohen. Time-Frequency Analysis: Theory and Applications, New York: Prentice Hall, 1995
    [104] N. E. Huang, Z. Shen, S. R. Long, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond, 1998, 454: 903-995
    [105] N. E. Huang, Z. Shen, S. R. A new view of nonlinear water waves: the hilbert spectrum, annu. Rev. Fluid Mech. 1999, 31: 417-457
    [106] N. E. Huang. A new view of earthquake ground motion data: The Hilbert spectrum analysis Proc. Int’l workshop on annual commemoration of Chi-Chi Earthquake. 2000,Ⅱ: 64-75
    [107] Yue Huanyin, Guo Huadong, Han Chunming, et al. A SAR interferogram filter based on the empirical mode decomposition method, Geoscience and Remote Sensing Symposium, 2001, 5: 2061-2063
    [108]盖强,局域波时频分析方法的理论研究与应用:[博士学位论文],大连:大连理工大学, 2001
    [109]王珍,基于局域波分析的柴油机故障诊断方法的研究及应用:[博士学位论文],大连:大连理工大学, 2002
    [110]张海勇,马孝江,盖强,抑制时频分布交叉项的一种新方法,系统工程与电子技术,2002,24(1):28-30
    [111]钟佑明,秦树人,汤宝平,一种振动信号新变换法的研究,振动工程学报, 2002, 15(2):233-238
    [112]李中付,华宏星,宋汉文等,模态分解法辨识线性结构在环境激励下的模态参数,上海交通大学学报,2001,35(12):1761-1765
    [113] Chen Zhong, Zheng Shi-xiong, Sun Yan-ming. Gearbox vibration recognition using empirical mode decomposition method, Journal of South China University of Technology, 2002, 30(9): 61-64
    [114]胡劲松,面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究:[博士学位论文],杭州:浙江大学,2003
    [115]胥永刚,机电设备监测诊断时域新方法的应用研究:[博士学位论文],西安:西安交通大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700