用户名: 密码: 验证码:
半线性偏微分方程的分支理论及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在半线性偏微分方程的研究领域当中有一类非常重要的非线性现象,这类非线性现象就是分支现象,它反应的是流的拓扑结构随参数的变化而引起质的变异。分支问题主要包括局部分支问题、半局部分支问题和全局分支问题。偏微分方程分支问题的研究既要用到经典的动力系统理论,又要用到拓扑、代数、泛函等相关知识,其研究具有强烈的实际背景和重大的理论意义。
     本文利用中心流形理论、规范型方法以及全局稳态分支定理等数学理论与数学方法,针对几类半线性偏微分方程的局部Hopf分支、全局稳态分支以及图灵分支进行了系统的研究。本文的主要工作如下:
     1、利用中心流形理论和规范型方法,给出了一般的半线性偏微分方程的局部Hopf分支定理:给出了判定Hopf分支存在性的条件,以及判定分支方向和分支周期解稳定性的一般的计算公式。这一定理的提出,为半线性偏微分方程局部Hopf分支的研究提供了方法和途径;结合一类具有扩散项的捕食与被捕食模型和刻划CIMA化学反应的Lengyel-Epstein系统,我们证明了这两类半线性偏微分方程,不但具有空间齐次的周期解,而且还具有空间非齐次的周期解;同时,我们证明了,空间的“大小”影响着空间非齐次分支周期解的个数:当空间区域足够大时,空间越“大”,空间非齐次分支周期解的个数越多。
     2、利用史峻平和王学峰的推广的全局稳态分支定理(该定理指出,在适当的条件下,局部稳态分支和全局稳态分支是等价的),给出了适用于一般半线性偏微分方程的简化的全局稳态分支定理。结合一类具有扩散项的捕食与被捕食模型,给出了这类半线性偏微分方程产生全局稳态分支的条件,并证明了在适当的条件下,系统的稳态分支曲线将形成一个“线圈”,该“线圈”连接系统的两个不同的稳态分支点。同时,研究了这类半线性偏微分方程中Hopf分支和稳态分支之间的相互作用与影响。
     3、利用适用于一般的半线性偏微分方程处理图灵分支的方法,在一维的有界的空间区域上,考虑了刻划CIMA化学反应的Lengyel-Epstein系统的图灵分支,得到了易于验证的一般性的判别准则。同时,通过数值模拟对我们的理论分析加以验证。
In the field of nonlinear partial differential equations, there exists an importantnonlinear phenomenon, which is bifurcation phenomenon. So called bifurcation phe-nomenon means that, when the parameters cross through certain critical values, thephenomenon of the change of some structural properties in the system are studied.Bifurcation is made up of three parts: local bifurcation, semi-local bifurcation andglobal bifurcation. The study of bifurcation of partial differential equation is not onlyrelated to the theories of classical dynamical system, but also related to the otherknowledge such as topology, algebra and functional analysis. The study is of greattheoretical significance and practical background.
     This paper mainly performs local Hopf bifurcation analysis, global steady statebifurcation analysis, and Turing bifurcation analysis to the semilinear partial differ-ential equations by using center manifold theory, normal form methods and globalsteady state bifurcation theorems. The main contents of the paper are as follows:
     1、By using the center manifold theory and normal form methods, we obtainan abstract local Hopf bifurcation theorem for the semilinear partial differential equa-tions, which derives the conditions for the general semilinear reaction-diffusion equa-tions to undergo Hopf bifurcation, and obtains the general algorithm to determinethe bifurcation direction and the stability of the bifurcating periodic solutions. Thismakes it convenient for readers’future applications in the Hopf bifurcation analysisin semilinear partial differential equations. By applying our results to the diffusivepredator-prey system and the diffusive Lengyel-Epstein system modeling the CIMAchemical reaction, we prove that these two semilinear partial differential equationsnot only have the spatial homogenous periodic solutions but also have the spatial non-homogenous periodic solutions. Moreover, the“size”of the spatial domain affects thenumber of the spatial non-homogenous bifurcating periodic solutions in the followingway: whenever the domain is large enough, the larger the domain is, the more thespatial non-homogenous bifurcating periodic solutions.
     2、By using Shi and Wang’s generalized global steady state bifurcation theorem,which says that under suitable conditions the local steady state bifurcation is equiv- alent to the global steady state bifurcation, we derive an abstract simplified globalsteady state bifurcation theorem for the semilinear partial differential equations. Byapplying our results to a diffusive homogenous predator-prey system, we prove that,under certain conditions, this system has a global steady state bifurcation, and partic-ularly we show that, under suitable conditions, the system may have loops consistingof the positive steady solutions, which connects with two different bifurcation points.Further, we consider the interaction between Hopf bifurcations and steady state bifur-cations.
     3、By using the general results on Turing bifurcations of the general semilinearpartial differential equations, we consider the Turing bifurcation of a Lengyel-Epsteinsystem in CIMA chemical reaction, in a bounded interval in the one dimensionalspace, and obtain the criterion for the system to occur Turing bifurcation. Finally wepresent numerical simulations to support our theoretical analysis.
引文
1 S. Chow, J. Hale. Methods of Bifurcation Theory. Springer-Verlag, New York,1982: 161–198
    2 P. Guckenheimer. Nolinear Oscillations, Dynamical Systems and Bifurcationsof Vector Fields. Springer-Verlag, New York, 1983: 117–166
    3韩茂安.动力系统的周期解与分支理论.科学出版社,2002: 166–242
    4蒋卫华.时滞微分方程的分支分析.哈尔滨工业大学,博士论文, 2005:1–50
    5罗定军,张祥,董梅芳.动力系统的定性与分支理论.科学出版社,2001: 130–164
    6马天,汪守宏.非线性演化方程的稳定性与分歧.科学出版社,2007:1–507宋永利.泛函微分方程的分支理论及应用.上海交通大学,博士论文,2006: 1–70
    8唐云.对称性分岔理论基础.科学出版社,2000: 181–216
    9张芷芬,丁同仁,黄文灶,董镇喜.微分方程定性理论.科学出版社,1997: 1–44
    10张芷芬,李承志,郑志明,李伟固.向量场的分岔理论基础.高等教育出版社. 1997: 58–157
    11张锦炎,冯贝叶.常微分方程几何理论与分支理论.北京大学出版社,2004: 206–348
    12 Y. Kuznetsov. Elements of Applied Bifurcation Theory. Springer-Verlag, NewYork, 1997: 113–194
    13魏俊杰,黄启昌.泛函微分方程分支理论发展概况.科学通报,1995,40(30): 198–200
    14 B. Hassard, N. Kazarinoff, Y. Wan. Theory and Application of Hopf Bifurca-tion. Cambridge University Press, Cambridge, 1981, 1–386
    15 S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos.Springer, New York, 1991: 1–280
    16 J. Alexander, J. Yorke. Global Bifurcation of Periodic Orbits. Amer. J. Math.1978, 100(263): 1–15
    17 M. Berger. Nonlinearity and Functional Analysis. Academic Press, New York,1977: 1–100
    18 K. Deimling. Nonlinear Functional Analysis. Springer. 1985: 1–200
    19 M. Golubitsky, D. Schaeffer. Singularities and Groups in Bifurcation theory. Vol I. Springer, 1985: 1–200
    20 M. Golubitsky, L. Stewart, D. Schaeffer. Singularities and Groups in Bifurca-tion Theory. Vol II. Springer, 1988: 1–120
    21 H. Amann. Fixed Point Equations and Nonlinear Eigenvalue Problems in Or-dered Banach Spaces. SIAM Review. 1976, 18(4): 620–709
    22 K. Chang. Infinite-dimensional Morse Theory and Multiple Solution Prob-lems. Progress in Nonlinear Differential Equations and their Applications.Birkhauser, Boston, 1993, 6: 1–68
    23 L. Nirenberg. Topics in Nonlinear Functional Analysis. Courant Lecture Notesin Mathematics, Vol 6, New York University, Courant Institute of MathematicalScience. New York; American Mathematical Society, Providence, 2003: 1–200
    24 P. Rabinowitz. Minimax Methods in Critical Point Thory with Applicationsto Differential Equations. CBMS Regional Conference Series in Mathematics.American Mathematical Society, Providece, 1986, 65:20–59
    25 S. Michael. Variational Methods and Applicationas to Nonlinear Partial Dif-ferential Equations and Hamiltonian Systems. Springer-Verlag, Berlin, 2003:1–150
    26 M. Crandall, P. Rabinowitz. Bifurcation from Simple Eigenvalues. Jour. Func.Anal. 1971, 8: 321–340
    27 M. Crandall, P. Rabinowitz. The Hopf Bifurcation Theorem in Infinite Dimen-sions. Arch. Rational Mech. Anal. 1977, 67: 53–72
    28 M. Crandall, P. Rabinowitz. Bifurcation, Perturbation of Simple Eigenvaluesand Linearized Stability. Arch. Rational Mech. Anal. 1973, 52: 161–180
    29 T. Ouyang, J. Shi. Exact Multiply of Positive Solutions for a Class of Semilin-ear Problem: II. Jour. Diff. Equa. 1999, 158(1): 94–151
    30 T. Ouyang, J. Shi. Exact Multiply of Positive Solutions for a Class of Semilin-ear Problem. Jour. Diff. Equa. 1998, 146(1): 121–156
    31 J. Shi. Persistence and Bifurcation of Degenerate Solutions. Jour. Func. Anal,1999, 169(2): 494–531
    32 P. Lions. On the Existence of Positive Solutions of Semilinear Elliptic Equa-tions. SIAM Review. 1982, 24(4): 441-467
    33 J. Shi. Global Bifurcation of Semilinear Neumann Boundary Problem. Tran.Amer. Math. Soc. 2002, 354(8): 3117–3154
    34 J. Shi, R. Shivaji. Global Bifurcations of Concave Semipositone Problems.Advances in Evolution Equations: Proceedings in honor of J. A. Goldstein’s60th birthday Edited by G. R. Goldstein, R. Nagel, and S. Romanelli, MarcelDekker, Inc., New York, Basel, 2003: 385–398
    35 J. Shi. Reaction-Diffusion Equations and Mathematical Biology. Undergradu-ate Lecture Notes, preprint, 1–50
    36 J. Shi. A Radially Symmetric Anti-maximum Principle and Applications toFishery Management Models. Elec. Jour. Diff. Equa. 2004, 2004(27): 1–13
    37 P. Korman, J. Shi. On Lane-Emden Type Systems. Discrete and ContinuousDynamical Systems, Proceedings of 5th AIMS International Conference onDynamic Systems and Differential Equations. 2005: 510–517
    38 J. Shi, R. Shivaji. Semilinear Elliptic Equations with Generalized Cubic Non-linearities. Discrete and Continuous Dynamical Systems, Proceedings of 5thAIMS International Conference on Dynamic Systems and Differential Equa-tions. 2005: 798–805
    39 Y. Lee, L. Sherbakov, J. Taber, J. Shi. Bifurcation Diagrams of Popula-tion Models with Nonlinear Diffusion. Journal of Computational and AppliedMathematics. 2006, 194: 357–367
    40 J. Shi. A New Proof of Anti-maximum Principle via a Bifurcation Approach.Results of Mathematics. 2005, 48(1-2): 162–167
    41 R. Cui, Y. Wang, J. Shi. Uniqueness of Positive Solution for a Class of Semi-linear Elliptic Systems. Nonlinear Analysis: Theory, Methods & Applications.2007, 67(6), 1710–1714
    42 J. Shi, M. Yao. Positive Solutions of Elliptic Equations with Singular Nonlin-earity. Elec. Jour. Diff. Equa. 2005(4):1-11
    43 E. Dancer, J. Shi. Uniqueness of Positive Solution to Sublinear SemipositoneProblem. Bulletins of London Mathematical Society. 2006, 38(6): 1033–1044
    44 Y. Zhao, Y. Wang, J. Shi. Exact Multiplicity of Solutions and S-shaped Bifur-cation Curve for a Class of Semilinear Elliptic Equations. Journal of Mathe-matical Analysis and Applications. 2007, 331(1): 263–278
    45 J. Shi, S. Wang. Exact Multiplicity of Boundary Blow-up Solutions forBistable Equation. Computers & Mathematics with Applications. 2007, 54(9-10): 1285–1292
    46 B. Gidas, W. Ni, L. Nirenberg. Symmetry of Positive Solutions of NonlinearElliptic Equations in Rn. Mathematical Analysis and Applications, Part A, pp.369-402, Adv. in Math. Suppl. Stud., 7a. Academic Press, New York-London,1981
    47 J. Shi. Exact Multiplicity of Positive Solutions to Superlinear Problems. Elec.Jour. Diff. Equa., Conf. 2002, 10: 257–265
    48 E. Dancer, K. Schmitt. On Positive Solutions of Semilinear Elliptic Equations.Proc. Amer. Math. Soc. 1987, 101(3): 445–452
    49 J. Blat, K. Brown. Global Bifurcation of Positive Solutions in Some Systemsof Elliptic Equations. SIAM Jour. Math. Anal. 1986, 17: 1339–1353
    50 Y. Du. Exact Multiplicity and S-shaped Bifurcation Curve for Some SemilinearElliptic Problems from Combustion Theory. SIAM Jour. Math. Anal. 2003,32(4): 707–733
    51 S. Hu, Y. Du. A Diffusive Predator-prey Model in Heterogeneous Environment.Jour. Diff. Equa. 2004(203): 331–364
    52 Y. Du, J. Shi. Some Recent Results on Diffusive Predator-prey Models in Spa-tially Heterogeneous Environment. Nonlinear dynamics and evolution equa-tions. Fields Inst. Commun., 48, Amer. Math. Soc., Providence, RI, 2006: 95–13553 Y. Du, J. Shi. A Diffusive Predator-prey Model with a Protection Zone. Jour.Diff. Equa. 2006, 229(1): 63–91
    54 Y. Du, J. Shi. Allee Effect and Bistability in a Spatially HeterogeneousPredator-prey Model. Trans. Amer. Math. Soc. 2007, 359(9): 4557–4593
    55 Y. Du, M. Wang. Asymptotic Behavior of Positive Steady-states to a Predator-Prey model. Proc. Roy. Soc. Edinburgh. 2006, 136A: 759–778
    56 Y. Du, X. Liang. A Diffusive Competition Model with a Protection Zone. Jour.Diff. Equa. 2008, 244(1): 61-86
    57 J. Jiang, J. Shi. Dynamics of a Reaction-Diffusion System of AutocatalyticChemical Reaction. Discrete and Continuous Dynamical Systems. 2008, 21(1):245–258
    58 J. Shi, X. Wang. On Global Bifurcation for Quasilinear Elliptic Systems onBounded Domains. Submitted, 2008
    59张春霞,欧阳颀.图灵斑图动力学.科学(上海),2001: 01, 248–450
    60 A. Turing. The Chemical Basis of Morphogenesis. Philos. Trans. Roy. Soc.London Ser. B, 1952, 237: 37–72
    61 P. De Kepper, V. Castets, E. Dulos, J. Boissonade. Turing-type Chemical Pat-terns in the chlorite-iodide-malonic-acid Reaction. Physica D. 1991, 49: 161–169
    62 W. Ni, M. Tang. Turing Patterns in the Lengyel-Epstein System for the CIMAReaction. Tran. Amer. Math. Soc. 2005, 357: 3953–3969
    63 J. Jang, W. Ni, M. Tang. Global Bifurcation and Structure of Turing Patterns inthe 1-D Lengyel-Epstein Model. Jour. Dynam. Diff. Eqs, 2005, 16(2): 297–320
    64 D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer- Ver-lag, Berlin, 1981: 1–314
    65 K. Hansj′org. Bifurcation Theory: An Introduction with Applications to PDEs.Applied Mathematical Sciences, 156. Springer-Verlag, New York, 2004: 1–333
    66 J. Marsden, M. McCracken. The Hopf Bifurcation and Its Applications. NewYork: Springer. 1976: 224–258
    67 H. Freedman. Deterministic Mathematical Models in Population Ecology. Mar-cel Dekker. New York, 1980: 1–50
    68 C. Holling. Some Characteristics of Simple Types of Predation and Parasitism.Canadian Entomologist, 1959, 91: 385–398
    69 M. Rosenzweig, R. MacArthur. Graphical Representation and Stability Condi-tions of Rredator-prey Interactions. Amer. Natur. 1963, 97: 209–223
    70 A. Rovinsky, M. Menzinger. Interaction of Turing and Hopf Bifurcations inChemical Systems. Phys. Rev. A. 1992, 3(10): 6315–6322
    71 R. May. Stability and Complexity in Model Ecosystems. 2nd ed., PrincetonUniv. Press, Princeton, 1974: 1–50
    72 M. Rosenzweig. Paradox of Enrichment: Destabilization of ExploitationEcosystems in Ecological Time. Science. 1971, 171(3969): 385–387
    73 R. Seydel. Practical Bifurcation and Stability Analysis. Springer-Verlag. NewYork, 1999: 4510–4529
    74 J. Sugie, R. Kohno, R. Miyazaki. On a Predator-prey System of Holling Type.Proc. Amer. Math. Soc. 1997, 125(7): 2041–2050
    75 L. Segel, J. Jackson. Dissipative Structure: An Explaination and an EcologicalExample. Jour. Theor. Biol. 1972, 37: 545–559
    76 C. Zhang, J. Wei. Stability and Bifurcation Analysis in a Kind of BusinessCycle Model with Delay. Chaos, Solitons & Fractals. 2004, 22: 883–896
    77 Y. Zhang, Z. Xiu, L. Chen. Chaos in a Food Chain Chemostat with Pulsed Inputand Washout. Chaos, Solitons & Fractals 2005, 26: 159–166
    78 A. Ardito, P. Ricciardi. Lyapunov Functions for a Generalized Gause-typeModel. Jour. Math. Biol. 1995, 33(8): 816–828
    79 H. Comins, M. Hassell, R. May. The Spatial Dynamics of Host-parasitoid Sys-tems. Jour. Animal Ecol. 1992, 61: 735–748
    80 M. Hassell, H. Comins, R. May. Spatial Structure and Chaos in Insect Popula-tion Dynamics. Nature. 1991, 353: 255–258
    81 C. Huffaker. Experimental Studies on Predation: Despersion Factors andPredator-prey Sscilasions. Hilgardia. 1958, 27: 343–383
    82 N. Kazarinov, P. Van den Driessche. A Model Rredator-prey System with Func-tional Response. Math, Biosci, 1978, 39: 125–134
    83 H. Zou. Spatial Patterns: Predator-prey Models with Diffusion II: the NeumannBoundary Conditions and Bifurcation at a Higher Eigenvalue. Preprint, 2008
    84 S. Levin. Population Dynamic Models in Heterogeneous Environments. Annu.Rev. Ecol. Syst. 1976, 7, 1287–1311
    85 S. Hsu. On Global Stability of a Predator-prey System. Math. Biosci. 1978,39(1-2): 1–10
    86 S. Hsu. Ordinary Differential Equations with Applications. Series on AppliedMathematics, 16. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,2006: 1–50
    87 S. Hsu, S. P. Hubbell, P. Waltman. Competing Predators. SIAM Jour. Appl.Math. 1978, 35(4): 617–625
    88 S. Hsu, J. Shi. Relaxation Oscillator Profile of Limit Cycle in PredatorpreySystem. Submitted, 2008
    89 S.-B. Hsu, J.-P. Shi. Spatial Predator-prey Model with Immobile Prey, Submit-ted, 2008
    90 K. Cheng. Uniqueness of a Limit Cycle for a Predator-prey System. SIAMJour. Math. Anal. 1981, 12(4): 541–548
    91 W. Ko, K. Ryu. Qualitative Analysis of a Predator-prey Model with HollingType II Functional Response Incorporating a Prey Refuge. Jour. Diff. Equa.2006, 231: 534–550
    92 S. Hsu. A Survey of Constructing Lyapunov Functions for Mathematical Mod-els in Population Biology. Taiwanese Jour. Math. 2005, 9(2): 151–173
    93 J. Wu. Symmetric Functional-differential Equations and Neural Networks withMemory. Trans. Amer. Math. Soc. 1998, 350(12): 4799–4838.
    94 I. Epstein, J. Pojman. An Introduction to Nonlinear Chemical Dynamics. Ox-ford University Press. 1998: 1–20
    95 I. Lengyel, I. Epstein. Modeling of Turing Structure in the Chlorite Iodide Mal-onic Acid Starch Reaction System. Science. 1991, 251: 650–652
    96 I. Lengyel, I. Epstein. A chemical Approach to Designing Turing Patterns inReaction-diffusion System. Proc. Natl. Acad. Sci. USA. 1992, 89: 3977–3979
    97 P. de Motoni, F. Rothe. Convergence to Homogeneous Equilibrium State forGeneralized Volterra-Lotka Systems. SIAM Jour. Appl. Math. 1979, 37: 648–663
    98 J. LaSalle. Invariance Principle in The Theory of Stability. Int. Symp. On Dif-ferential Equations and Dynamical Systems, J. K. Hale and J. P. LaSalle, eds.,Academic Press, New York, 1967, 1–29
    99 E. Conway, D. Hoff, J. Smoller. Large Time Behavior of Solutions of Systemsof Nonlinear Reaction-diffusion Equations. SIAM Jour. Appl. Math. 1978,35(1): 1–16
    100 P. Rabinowitz. Some Global Results for Nonlinear Eigenvalue Problems. Jour.Func. Anal. 1971, 7: 487–513
    101 P. Liu, J. Shi, Y. Wang. Imperfect Transcritical and Pitchfork Bifurcations. Jour.Func. Anal. 2007, 251(2): 573–600
    102 J. Pejsachowicz, P. Rabier. Degree Theory for C1 Fredholm Mappings of Index0. Jour. Anal. Math. 1998, 76: 289–319
    103 Y. Lou, W. Ni. Diffusion, Self-diffusion and Cross-diffusion. Jour. Diff. Equa.1996, 131: 79–131
    104 R. Peng, J. Shi, M. Wang. On Stationary Patterns of a Reaction-diffusion Modelwith Autocatalysis and Saturation Law. To appear in Nonlinearity. 2008
    105 C. Lin, W. Ni, I. Takagi. Large Amplitude Stationary Solutions to a ChemotaxisSystem. Jour. Diff. Equa. 1988, 72(1): 1–27
    106 R. Nussbaum. A Global Bifurcation Theorem with Applications to FunctionalDifferential Equations. Jour. Func. Anal. 1975, 19(4): 319–338
    107 R. Nussbaum. Periodic Solutions of Some Nonlinear, Autonomous FunctionalDifferential Equations. II. Jour. Diff. Equa. 1973, 14: 360–394
    108 R. Nussbaum. A Hopf Global Bifurcation Theorem for Retarded FunctionalDifferential Equations. Trans. Amer. Math. Soc. 1978, 238: 138–164
    109 L. Erbe, W. Krawcewicz, K. Gpolhk, J. Wu. S1-degree and Global Hopf Bi-furcation Theory of Functional Differential Equations. Jour. Diff. Equa. 1992,98(2): 277–298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700