用户名: 密码: 验证码:
强子对撞机上R宇称破坏的超对称理论的精确检验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迄今为止标准模型(SM)被证明是非常成功的理论模型,它的预言同现在的实验数据高度吻合,但是它仍被认为是描述能量在(?)(102)GeV的粒子物理现象的有效理论。人们设计了许多实验来探索新物理的信号,同时扩展出来许多新的理论模型。在这其中,最小超对称标准模型(MSSM)由于其优美的对称形式和丰富的物理内涵而备受人们关注。人们相信如果最小超对称标准模型是正确的,在大型强子对撞机(LHC)上将会发现超对称物理的信号。
     在标准模型中,轻子数和重子数是严格守恒的。然而在一般的R宇称破坏的超对称模型理论中却可以存在轻子味道破坏(LFV)的eμ产生过程。强子对撞机上的eμ对产生的稀有过程观测有可能成为探测R宇称破坏的的一个理想过程,并可以成为实验上精确测量某些超对称模型参数的有效手段。
     为了提高事例的统计量,我们提出在数据分析时不区分电子和μ子所带电荷的正负。无论是对信号还是本底的测量,在实验中都需要与之相适应的高精度的理论预言,因而我们在理论计算中需要考虑它们的高阶修正及其理论不确定度。我们给出了强子对撞机上轻子味道破缺过程pp/pp→eμ+X的包括次领头阶量子色动力学(NLO QCD)修正和胶子-胶子聚合子过程贡献的精确计算,并给出了相应的QCD修正的K因子。我们的结果表明该K因子与单个sneutrino产生的过程pp/pp→ν+X的NLO QCD修正的K因子比较存在着明显差别。在强子对撞机上,能标的选取以及对强子部分子分布函数(PDF)的精确了解对信号或者本底的产生过程的截面的计算都具有重要意义。我们讨论了能标和PDF对QCD修正的K因子带来的不确定性,其结果表明PDF的不确定性是理论预言的不确定性的主要来源。由于在低横动量区域微扰论计算可能失效而不能得到正确的截面分布,我们需要对软胶子引起的对数项再求和从而得到一个合理的结果。我们给出了某些物理可观测量的微分截面分布,并在Collins-Soper-Sterman(CSS)再求和规则下计算了考虑到低横动量区域软胶子再求和效应之后的eμ对的横动量分布。
     本文的创新之处如下:
     ·本文的理论研究课题与实验结合密切。我们给出的所有理论预言都是应实验分析的要求,并可以直接应用于实验的数据分析中,因而对强子对撞机上寻找R宇称破坏的eμ信号的实验具有指导意义。费米实验室"FermilabToday"在报道DO实验合作组的实验成果时曾提到我们的工作[1]:“中国科技大学的理论工作者提出了在R宇称破坏的超对称模型下,有可能在Tevatron上产生单个的重标量中微子,如果实验观测到这个粒子衰变成一个电子和一个μ子,将意味着得到轻子味道改变和新物理存在的确凿证据。”
     ·本文首次计算了R宇称破坏的最小超对称模型下,强子对撞机上包含了NLO QCD修正和胶子-胶子聚合子过程贡献的eμ信号的产生过程,从而得到了该过程目前最精确的理论预言。这对寻找R宇称破坏的eμ信号的实验分析提供了理论依据。
     ·本文首次在计算eμ对的横动量分布中考虑了横动量的低端区域由于软胶子辐射而产生的大对数项的贡献,通过对这些大对数项的重求和,我们给出了eμ对的横动量分布的目前最精确的描述。我们的结果为实验分析提供了参考。
     ·本文给出了轻子味道破缺过程pp/pp→eμ+X的QCD修正的K因子并分析了能标的选取以及PDF对K因子造成的不确定性,该结果被DO实验合作组在寻找R宇称破坏的eμ信号的实验中作为理论依据而采用[2]。
Until now, the Standard Model(SM) of particle physics has been proved to be very successful as a description of high energy physical phenomena. Although its predic-tions have been coincident with the existing data in high precision, it is regarded as an effective theory describing particle physics up to (?)(102)GeV. Many experiments were proposed in the past to probe signals of new physics, and at the same time new theo-retical models were developed to extend the SM. Among all the extensions of the SM, the Minimal Supersymmetric Standard Model (MSSM) is one of the most promising candidates due to its elegant symmetry and physical connotation. It is believed that supersymmetric(SUSY) particles must be discovered at the CERN Large Hadron Col-lider(LHC).
     In the SM the baryon number B and lepton number L are exactly conserved quan-tum numbers. However, the general R-parity violating(RPV) supersymmetric models permit an eμsignature of lepton flavor violating(LFV) production in the final state. The rare production of eμ-pair at the hadron colliders could be an ideal detection channel for RPV interactions and an effective mean to measure some SUSY parameters precisely.
     We suggest not to distinguish the charge of electron or muon in event selection to get optimal efficiency of signal detection. High-precision theoretical predictions com-patible with experimental measuring accuracy for both signals and backgrounds are important and indispensable as reference for experiments, so we should take account in the high order corrections to their production cross sections and theoretical uncer-tainties. We present a precise calculation of the QCD corrections to the LFV processes pp/pp→eμ+X at the hadron colliders, including the contributions of the NLO QCD and gluon-gluon fusion subprocess, and a corresponding QCD K-factor for the process. We find that the K-factor has a sensible difference from the K-factor for the processes pp/pp→ν+X. At the hadron colliders, the selection of the renormalization and fac-torization scales and the precise knowledge of the parton distribution functions(PDF) are important to predict production cross sections of both signals and backgrounds. We carefully investigate the dependence of the renormalization and factorization scales on the total cross section, and the effects on the K-factor due to the uncertainty of PDF. We find that the uncertainty of PDFs is a dominant part of the overall uncertainties in our theoretical prediction. When the transverse momentum is very small, large logarithmic terms arise at fixed order perturbation calculations, so we could obtain an arbitrarily large cross section. We need resummating the logarithmically-enhanced terms for soft gluon to get a physical result. We also present the distributions of some physical ob-servables, and the distribution of the transverse momentum(pT) of final eμ-pair under the Collins-Soper-Sterman(CSS) resummation formalism.
     There are following innovations in this thesis:
     ·Our investigation has a close combination of theoretical analysis and experiments. We calculate the theoretical predictions at the request of experiments, and our results could be apllied directly in experimental analysis. They are helpful for the expriments at the hadron colliders to search for eμsignals of RPV production. Our studies were reported by "Fermilab Today"[1]:"Theorists at USTC hypothesized that single heavy sneutrino particles production was possible at the Tevatron in a particular model.... These particles could then decay to an electron and a muon, which would implicitly violate lepton flavor conservation and act as a smoking gun for new physics."
     ·In this thesis, we calculate the production cross sections of eμ-pair in the frame-work of the RPV SUSY model at the hadron colliders, including the contributions of the NLO QCD and gluon-gluon fusion subprocess. Our results are the most precise theoretical predictions for the RPV processes pp/pp→eμ+X so far, and could be a useful theoretical reference for experimental analysis.
     ·In this thesis, we calculate the distribution of the transverse momentum of final eμ-pair, including important contributions at low-pT region from large logrithms arising from soft gluon emission, and by resummating these large logrithms we present the most accurate description for the the distribution of the transverse mo-mentum of the eμ-pair. Our results could be a helpful reference for experimental analysis.
     ·In this thesis, we present the QCD K-factor for the LFV processes pp/pp→eμ+X and investigate the effects on the K-factor due to the selection of the scales and the uncertainty of PDF. D(?) Collaboration applied our results as a theoretical reference in their search for R-parity violating production and decay of sneutrino particles in the eμfinal state[2].
引文
[1]Femilab Today, "Violating lepton flavor with SUSY", March 13,2008, http://www.fnal.gov/pub/today/archive_ 2008/today08-03-13.html.
    [2]V. M. Abazov et al, DO Collaboration, Phys. Rev. Lett.100:241803,2008.
    [3]Sheldon L. Glashow, Nucl. Phys.22 (1961),579.
    [4]Steven Weinberg, Phys. Rev. Lett.19 (1967),1264.
    [5]Abdus Salam (1968). Nils Svartholm. ed. Eighth Nobel Symposium. Elementary Particle Physics:Relativistic Groups and Analyticity. Stockholm:Almquvist and Wiksell. pp.367.
    [6]F. Englert and R. Brout, Phys. Rev. Lett.13 (1964),321.
    [7]Peter W. Higgs, Phys. Rev. Lett.12 (1964),132; Phys. Rev. Lett.13 (1964),508; Phys. Rev.145(1966),1156.
    [8]G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett.13 (1964), 585.
    [9]G.'t Hooft, Nucl. Phys. B 33 (1971),173; B 35 (1971),167.
    [10]F. J. Hasert et al, Physics Letters B 46 (1973),121, Physics Letters B 46 (1973), 138, Nuclear Physics B 73 (1974),1.
    [11]"The discovery of the weak neutral current". CERN Courier.4 October 2004.
    [12]Y. Fukuda et al., Super-Kamiokande collaboration, Phys. Lett. B 433 (1998),9; Phys. Lett. B436 (1998),33; Phys. Rev. Lett.81 (1998),1562; M. Apollonio et al., Chooz collaboration, Phys. Lett. B 420 (1998),397.
    [13]H. E. Haber and G. Kane, Phys. Rep.117 (1985),75.
    [14]Beyond the Standard model, Jo Pater-PC4521.
    [15]N. Cabibbo, Phys. Rev. Lett.10(1963),531; M. Kobayashi and T. Maskawa, Prog. Theor. Phys.49(1973),652.
    [16]E.Witten, Dynamical Breaking of Supersymmetry,Nucl.Phys.B 188 (1981),513.
    [17]M. Chen, C. Dionisi, M. Martinez, X. Tata, Phys. Rep.159 (1988),201.
    [18]S. P. Martin, A Supersymmetry Primer, hep-ph/9709356.
    [19]H. Murayama, Supersymmetry Phenomenology, hep-ph/0002232.
    [20]H. E. Haber, G. L. Kane and T. Sterling, Nucl. Phys. B 161 (1979),493.
    [21]J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University press, Princeton 1983; S. Gate, M. Grisaru, M. Rocek and W. Siegel, Superspace or One Thousand or One Lessons in Supersymmetry, volume 58 of Frontiers in Physics, Benjiamin/Cummings, U. S. A.,1983.
    [22]H. P. Nilles, Phys. Rep.110 (1984),1.
    [23]N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429 (1998),263.
    [24]N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Rev. D 59 (1999),086004.
    [25]L. Randall, R. Sundrum, Phys. Rev. Lett.83 (1999),3370.
    [26]G. F. Giudice, A. Romanino, Nucl. Phys. B 699 (2004),65.
    [27]E. Witten, Nucl. Phys. B 188 (1981),513; S. Dimopoulos and H. Georgi, Nucl. Phys. B 193 (1981),150; L. Susskind, Phys. Rep.104 (1984),181; R. K. Kaul, Phys. Lett. B 109 (1982),19.
    [28]S. Coleman and J. Mandula, Phys. Rev.159 (1967),1251; R. Haag, J. T. Lo-puszanski and M. Sohnius, Nucl. Phys. B 88 (1975),257.
    [29]H. P. Nilles Phys. Rep.110,1 (1984); H. E. Haber and G. L. Kane, Phys. Rep.117, 75 (1985); J. F. Gunion, H. E. Haber, Nucl. Phys. B 272,1 (1986).
    [30]张仁友,《超对称衰变现象研究》,Ph. D Thesis.
    [31]李新州,徐建军,《超对称物理导论》,复旦大学出版社。
    [32]L. Girardello and M. T. Grisaru, Nucl. Phys. B 194 (1982),65.
    [33]H. E. Haber and G. L. Kane, Phys. Rep.117 (1985),75.
    [34]J. Rosiek, Phys. Rev. D 41 (1990),3464.
    [35]J. F. Gunion, H. E. Haber, Nucl. Phys. B 272 (1986),1.
    [36]P. Fayet, Phys. Lett. B 69 (1977),489; G. R. Farrar and P. Fayet, Phys. Lett. B 76 (1978),575.
    [37]S. Weinberg, Phys. Rev. D 26 (1982),287; N. Sakai, T. Yanagida, Nucl. Phys. B 197(1982),533.
    [38]Z. H. Yu, Symmetry-Breaking in a Supersymmetric Theory, Ph. D Thesis.
    [39]C. Caso et al., Eur. Phy. J. C 3 (1998),1.
    [40]L. J. Hall, J. Lykken and S. Weinberg, Phys. Rev. D 27 (1983),2359.
    [41]V. Barger, M. S. Berger and P. Ohmann, Phys. Rev. D 47 (1993),1093; D 47 (1993),2038; D 49 (1994),4908; V. Barger, M. S. Berger, P. Ohmann and R. J. N. Phillips, Phys. Lett. B 314 (1993),351; K. Inoue, A. Kakuto, H. Komatsu and H. Takeshita, Prog. Theor. Phys.68 (1982),927; 71 (1984),413; N. K. Falck, Z. Phys. C 30 (1986),247; P. M. Ferreira, I. Jack, D. R. T. Jones, Phys. Lett. B 387 (1996),80.
    [42]M. C. Bento, L. Hall, G. G. Ross, Nucl. Phys. B 292 (1987),400; N. Ganoulis, G. Lazarides, Q. Shafi, Nucl. Phys. B 323 (1989),374.
    [43]R. Barbieri et al., hep-ph/9810232;
    [44]B. Allanach et al., hep-ph/9906224;
    [45]J. C. Romao, M. A. Diaz, M. Hirsch, W. Porod and J. W. F. Valle, Phys. Rev. D 61 (2000),071703(R); M. Hirsch, M. A. Diaz, W. Porod, J. C. Romao and J. W. F. Valle, Phys. Rev. D 62 (2000),113008.
    [46]F. Deliot et al., Phys. Lett. B 475 (2000),184; G. Moreau et al., Nucl. Phys. B 604 (2001),3; S. Bar-Shalom, G. Eilam and B. Mele,Phys. Rev. D 64 (2001),095008.
    [47]G. Bhattacharyya, Nucl. Phys. B 52 (1993),83.
    [48]C. Carlson, P. Roy and M. Sher, Phys. Lett. B 357 (1995),99.
    [49]A. Y. Smirnov and F. Vissani, Phys. Lett. B 380 (1996),317.
    [50]J. L. Goity and M. Sher, Phys. Lett. B 346 (1995),69.
    [51]S. Dimopoulos and L. J. Hall, Phys. Lett. B 207 (1987),210.
    [52]R. Godbole, P. Roy and X.Tata, Nucl. Phys. B 401 (1993),67.
    [53]S. R. Elliott and J. Engel, J. Phys. G 30 (2004) R183.
    [54]D. Geiregal et al., Charm Ⅱ collaboration, Phys. lett. B 231 (1989),539.
    [55]R. N. Mohapatra, Phys. Rev. D 34 (1986),3457.
    [56]M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, Phys. Rev. Lett.75 (1995),17; Phys. Rev. D 53 (1996),1329.
    [57]K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett.75 (1995),2276.
    [58]V. Barger, G. F. Giudice and T. Han T, Phys. Rev. D 40 (1989),2987.
    [59]K. S. M. Mc Farland et al., CCFR Collaboration, Eur. Phys. J 1 (1998),509.
    [60]C. S. Wood et al., Science,275, (1997) 1759.
    [61]Particle Data Group, Phys. Rev. D 50 (1994),1173.
    [62]H. Dreiner H, hep-ph/9707435.
    [63]S. Davidson, D. Bailey and B. Campbell, Z. Phys. C 61 (1994),613.
    [64]K. Agashe and M. Graesser, Phys. Rev. D 54 (1996),4445.
    [65]Particle Data Group, Phys. Rev. D 54(1996),1.
    [66]G. Bhattacharyya and D. Choudhury, Mod. Phys. Lett. A 10 (1995),1699.
    [67]G. Bhattacharyya, J. Ellis and K. Sridhar, Mod. Phys. Lett. A 10 (1995),1583.
    [68]G. Bhattacharyya, D. Choudhury and K. Sridhar, Phys. Lett. B 355 (1995),193.
    [69]D. Ward, Plenary Talk at the EPS meeting, Jerusalem, August 1997.
    [70]R. Hempfling, SUSY without R-parity:symmetry breaking and LSP phenomenol-ogy, hep-ph/9702412.
    [71]E. A. Baltz, P. Gondolo, Phys. Rev. D 57 (1998),2969.
    [72]B. Mukhopadhyaya, S. Roy, Rhys. Rev. D 60 (1999),115012.
    [73]V. Barger, W. Y. Keung, R. J. N. Phillips, Phys. Lett. B 364 (1995),27; Erratum Phys. Lett. B 377 (1996),486.
    [74]T. Kon, T. Kobayashi, S. Kitamura, Phys. Lett. B 333 (1994),263.
    [75]H. Dreiner and G. Ross, Nucl. Phys. B 365 (1991),597.
    [76]S. Dimopoulos, R. Esmailzadeh, L. J. Hall et al., Rhys. Rev. D 41 (1990),2099.
    [77]V. Barger, G. F. Giudice. and T. Han, Phys. Rev. D 40 (1989),2987.
    [78]H. Dreiner and S. Lola, "R-parity Violatio", Proc. of the workshop "e+e. Collisions at 500 GeV:The Physics Potentia" (Ed. P.M. Zerwas), Munich-Annecy-Hamburg (1991) p.707-710; Proc. of the workshop "e+e. Collisions at TeV Energies" (Ed. P.M. Zerwas), Annecy-Gran Sasso-Hamburg (1995) p.435-441.
    [79]M. Chemtob, G. Moreau, Phys. Rev. D 59 (1999),055003.
    [80]M. Chaichian, K. Huitu, Z. H. Yu, Phys. Lett. B 508 (2001),317.
    [81]M. Chaichian, K. Huitu, S. Roy and Z. H. Yu, Phys. Rev. D 63(2001),115001.
    [82]T. Kon, T. Kobayashi, S. Kitamura, T. Ilimura, Phys. Lett. B 494(2000),280.
    [83]S. Kitamura, T. Kon, T. Kobayashi, Mod. Phys. Lett. A 16 (2001),947.
    [84]S. Aid et al., Hl Collaboration, Phys. Lett. B 380 (1996),461.
    [85]L. Hall and M. Suzuki, Nucl. Phys. B 231 (1984),120.
    [86]S. Dawson, Nucl. Phys. B 261 (1985),237.
    [87]S. Dimopoulos and L. J. Hall, Phys. Lett. B 207 (1987),210; R. M. Godbole, R. P. Roy and X. Tata, Nucl. Phys. B 401 (1993),67; B. de Carlos and P. L. White, Phys. Rev. D 54 (1996),3427.
    [88]M. Hirsch, W. Porod, M. A. Diaz et al., Neutrino Masses and Mixings in SUSY with Broken R-Parity, hep-ph/0202149.
    [89]M. Hirsch, M. A. Diaz, W. Porod, J. C. Romao, J. W. F. Valle, Phys. Rev. D 62 (2000),113008.
    [90]D. K. Ghosh, S. Raychaudhuri and K. Sridhar, hep-ph/9608352.
    [91]S. Abdullin et al, The SUSY Working Group:Summary Report, hep-ph/0005142.
    [92]G. Bhattacharyya, D. Choudhurry and K. Sridhar, Phys. Lett. B 349 (1995),118.
    [93]J. Yin, W. G. Ma, L. H. Wan and R. Y. Zhang, Phys. Rev. D 65 (2002),116006.
    [94]P. Chiappetta, A. Deandrea, E. Nagy, S. Negroni, G. Polesello and J. M. Virey, Phys. Rev. D 61:115008,2000, hep-ph/9910483.
    [95]M. Chemtob, G. Moreau, Phys. Rev. D 59 (1999),116012.
    [96]H. Zhou, W. G. Ma, Y. Jiang, R. Y. Zhang and L. H. Wan, Phys. Rev. D 64 (2001), 095006.
    [97]Z. H. Yu, H. Pietschmann, W. G. Ma, et al., Eur. Phys. J. C16 (2000),541.
    [98]Sun Yan-Bin et al., Commun. Theor. Phys.44,107-116 (2005), hep-ph/0412205.
    [99]Sun Yan-Bin et al., JHEP 0409 (2004),043.
    [100]Chen Zhao et al., "Search for Resonant Sneutrino Production via eμ Signal", D(?) Note 4709,
    [101]A. Abulencia et al., The CDF Collaboration, Phys. Rev. Lett.96:211802,2006, hep-ex/0603006.
    [102]CDF Collaboration, Phys. Rev. Lett.74:2626-2631,1995.
    [103]DO Collaboration, Phys. Rev. Lett.74:2632-2637,1995.
    [104]CDF Collaboration, Phys. Rev. Lett.97:242003,2006.
    [105]CDF Collaboration, Phys. Rev. Lett.99:202001,2007.
    [106]DO Collaboration, Phys. Rev. Lett.99:052001,2007.
    [107]DO Collaboration, Phys. Rev. Lett.101:232002,2008.
    [108]M. Witherell, DO Collaboration meeting,22-26 April 2002, http://www-bd.fnal.gov/notifyservlet/www?project=outside.
    [109]Cern Press Release, "LHC research programme gets underway", PR07.10, March 30,2010.
    [110]J. Botts et al., Phys. Lett. B 304 (1993),159, hep-ph/9303255; H. L. Lai et al., Phys. Rev. D 51 (1995),4763, hep-ph/9410404; H. L. Lai et al., Phys. Rev. D 55 (1997),1280, hep-ph/9606399; H. L. Lai et al., Eur. Phys. J. C 12 (2000),375, hep-ph/9903282.
    [111]A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, Eur. Phys. J. C 4 (1998),463, hep-ph/9803445; Eur. Phys. J. C 14 (2000),133, hep-ph/9907231; Eur. Phys. J. C 23 (2002),73, hep-ph/0110215; Eur. Phys. J. C 28 (2003),455, hep-ph/0211080; Eur. Phys. J. C 35 (2004),325, hep-ph/0308087; Phys. Lett. B 604 (2004),61, hep-ph/0410230.
    [112]J. Pumplin, D. R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, JHEP0207:012,2002.
    [113]D. Stump, J. Pumplin, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Phys. Rev. D 65:014012,2001.
    [114]J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Phys. Rev. D 65:014013,2001.
    [115]J. C.Collins and D. E. Soper, Nucl. Phys. B 250 (1985),199.
    [116]G. Parisi and R. Petronzio, Nucl. Phys. B 154 (1979),427.
    [117]G. Curci, M. Greco and R. Srivastava, Phys. Rev. Lett.43 (1979),834; Nucl. Phys. B 159 (1979),451.
    [118]J. C. Collins, D. E. Soper and G. Sterman, Phys. Lett.109 B (1982),338; Nucl. Phys. B 223 (1983),382; Phys. Lett.126 B (1983),275; 134 B (1984),263.
    [119]J. Kodaira and L. Trentadue, Phys. Lett.112 B (1982),66.
    [120]C. T. H. Davies and W. J. Stirling, Nucl. Phys. B 244 (1984),337.
    [121]J. C. Collins and D. E. Soper, Nucl. Phys. B 193 (1981),381; erratum B 213 (1983),545; B 197 (1982),446.
    [122]D. Choudhury, S. Majhi and V. Ravindran, Nucl. Phys. B 660 (2003),343-361, hep-ph/0207247.
    [123]R. Hamberg, W. L. van Neerven and T. Matsuura, Nucl. Phys. B 359 (1991),343.
    [124]M. Cacciari, S. Frixione, G. Ridolfi, M. L. Mangano and P. Nason, JHEP04 (2004),068.
    [125]J. M. Campbell and R. K. Ellis, Phys. Rev. D 60113006, (1999).
    [126]T. Aaltonen et al., Phys. Rev. Lett.102:091805,2009.
    [127]B. W. Harris and J.F. Owens, Phys. Rev. D 65 (2002),094032, hep-ph/0102128.
    [128]T. Hahn, Comput. Phys. Commun.140 (2001),418; T. Hahn, C. Schappacher, Comput. Phys. Commun.143, (2002).
    [129]T. Hahn, Acta Phys. Polon. B 30 (1999),3469; G. J. Oldenborgh, Comput. Phys. Commun.66,1991.
    [130]A. Denner, S. Dittmaier, M. Roth and M.M. Weber, Nucl. Phys. B 660 (2003), 289, hep-ph/0302198.
    [131]W. Beenakker, R. Hopker, P.M. Zerwas, Phys. Lett. B 378 (1996),159; W. Beenakker, R. Hopker, T. Plehn, P.M. Zerwas, Z. Phys. C 75 (1997),349.
    [132]H. K. Dreiner et al., Phys. Rev. D 45 (2007),035003.
    [133]Y. Q. Chen, T. Han and Z. G. Si, SDU-HEP-200608, hep-ph/0612076v3.
    [134]B. Allanach et al., hep-ph/9906224; Barbier R et al., Phys. Rep.420 (2005),1.
    [135]D. Stump, J. Huston, J. Pumplin, W. K. Tung, H. L. Lai, S. Kuhlmann and J. Owens, JHEP 0310 (2003),046, hep-ph/0303013.
    [136]A. Cafarella and C. Coriano, Comp. Phys. Commun.160 (2004),213.
    [137]I. Hinchliffe and S. F. Novaes, Phys. Rev. D 38 (1988),3475; R. Kauffman, Phys. Rev. D 44 (1991),1415.
    [138]C. T. H. Davies, B. Webber and W. J. Stirling, Nucl. Phys. B 256 (1985),413.
    [139]A. Denner, H. Eck, O. Hahn and J. Kiiblbeck, CERN-TH.6549/92, June 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700