用户名: 密码: 验证码:
深空自主导航方法研究及在小天体探测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主导航技术作为深空探测的关键技术之一,直接影响着各项科学考察任务的成功实施,同时能够简化探测器的地面支持系统,扩展探测器在空间的应用潜力。本学位论文结合国家自然科学基金资助项目“深空探测自主导航理论与方法研究”,针对深空探测各飞行阶段的特点,深入研究了相关的自主导航方法。论文的主要研究内容包括:
     首先,研究了深空自主导航系统的可观测性分析方法。针对深空环境的特点,利用几何方法给出了不同观测信息对应的探测器位置面;通过求取观测方程对状态变量的偏导数,利用解析方法定性分析了自主导航系统的可观测性;从自主导航系统的可观测性矩阵、误差方差阵和费歇尔信息阵三个方面研究了系统的可观测性条件和可观测度定义,并给出了状态变量的可观测度分析方法。
     其次,针对深空探测巡航段,研究了基于小行星图像信息的自主导航方法。以小行星图像提取出的视线矢量为观测模型,结合自主导航系统的最优误差方差阵和费歇尔信息阵,深入分析了不同视线矢量数目下自主导航系统的可观测性;分析导航小行星筛选准则,并利用费歇尔信息阵定义的自主导航系统的可观测度给出导航小行星列表,通过基于UD分解的递推加权最小二乘算法来确定探测器轨道;考虑到利用小行星图像背景恒星信息的姿态确定问题,给出了一种基于视线矢量的快速最优姿态估计算法。
     接着,考虑到利用光学图像信息的自主导航方法在深空巡航段应用中的限制条件,研究了基于太阳观测的自主导航方法。对于以太阳视线矢量为观测量的自主导航系统,在系统可观测度分析的基础上,给出了一种利用三次太阳视线矢量测量的初始轨道确定方法;同时,对太阳视线矢量与径向速度组合测量的基于太阳信息自主导航方法进行了仿真分析;进一步,将太阳视线矢量与光学图像信息相结合,研究了基于视线信息的自主导航方法,并给出了一种基于可观测度的信息融合自主导航算法;在分析矢量观测姿态估计误差的基础上,研究了太阳视线矢量在深空巡航段姿态最优估计中的应用。
     然后,研究了小天体探测任务接近交会段的自主导航方法。建立了接近段自主导航系统的状态方程和观测方程,利用解析方法定性分析了以探测器至目标天体视线矢量为观测量的导航系统的可观测性;考虑到目标天体的星历信息,分别研究了以相对视线矢量和太阳视线矢量为观测量的自主导航方法;针对交会段,给出了简化的相对运动轨道动力学模型,并针对相对速度大小已知、方向未知和大小方向均已知两种情况分别给出了相对位置矢量确定算法,进而给出了一种基于视线矢量的相对导航方法。
     最后,研究了小天体探测任务绕飞段和着陆段的自主导航方法。针对绕飞段,提出了一种基于小天体边缘特征点矢量观测的自主导航方法,利用光学相机和高度计测量三个边缘特征点相对探测器的位置矢量,结合事先建立的小天体形状模型,从而直接得到小天体固联坐标系下探测器的相对位置和姿态信息,并给出了一种利用高斯-马尔科夫过程和Unscented卡尔曼滤波的导航算法;针对小天体着陆任务,给出了一种基于表面特征点矢量观测的自主导航方法,利用光学相机和激光测距仪得到三个非共线特征点图像信息和探测器至特征点的距离来确定探测器相对着陆点坐标系的位置矢量和姿态信息,并利用扩展卡尔曼滤波算法来实时估计探测器的轨道。
As a key technology, the autonomous navigation influences directly the mission’s success. Spacecraft autonomous navigation can reduce the operational complexity of the ground-assisted system, and extends the potential space application. With the supports of National Natural Science Foundation of China‘Theory and Method of Deep Space Autonomous Navigation’, this dissertation deeply studies the autonomous navigation scheme according to the characters of different spaceflight stages. The main contents of this dissertation are as follows.
     Firstly, the observability analysis methods of the deep space autonomous navigation system are studied. Considering the environmental characters of deep space, the corresponding surfaces of spacecraft position with different measurement information are given utilizing the geometry method. By taking the partial derivatives of the measurement with respect to each state variable, the observability of the autonomous navigation system is analyzed qualitatively. The quantitative analysis of the observability, including the observability and observable degree, are carried out through the observability matrix, error variance matrix, and FIM (Fisher Information Matrix).
     Secondly, the autonomous navigation scheme of the interplanetary cruise phase based on asteroid image is studied. Navigation measurement model is constructed as the Line-of-Sight (LOS) vectors, and the observability of autonomous navigation system is investigated by analyzing the FIM. After given the selection criteria, the navigation asteroid is chosen according to the observable degree defined by the FIM. The spacecraft orbit is determined by using the recursive weighted least square based on UD factorization. Considering the attitude determination from the stars contained in asteroid image, a fast optimal attitude estimation algorithm is presented.
     Next, the autonomous navigation scheme of the cruise phase based on the Sun observation is studied. For the autonomous navigation system utilizing the Sun LOS vector, an initial orbit determination algorithm utilizing three LOS vectors measurement is given based on observability degree analysis. After that, the autonomous navigation method introduced the radial velocity is researched. Furthermore, the autonomous navigation method based on the LOS vector is studied from the combination of the Sun LOS vector and the optical information, and an autonomous navigation algorithm of information fusion based on observability degree is given. Based on investigating the attitude estimation error using vector observation, the application of the Sun LOS vector in the optimal attitude estimation is studied.
     Then, the autonomous navigation scheme of the rendezvous phase for small celestial body is studied. The state equation and measurement equation of the approach phase are constructed, and the observability of the navigation system is investigated qualitatively by using the analytical method. Considering the ephemeris information of the target celestial body, the autonomous navigation method based on the relative LOS vector and the Sun LOS vector are studied respectively. For the rendezvous phase, the RSEN (Reduced State Encounter Navigation) of the relative motion is given. The relative position vector is deduced under the different previous situation of the relative velocity, and the relative navigation method based on the LOS vector is researched.
     Finally, the autonomous navigation scheme of the circling phase and landing phase are studied. For the circling phase, an autonomous navigation method based on the vector observation of the limb feature points of small celestial body is proposed. Combining the shape model, the relative position and attitude of the spacecraft in the small celestial body fixed coordinate frame are deduced directly, and an autonomous navigation algorithm using the Gauss-Markov process and Unscented Kalman filter is presented. For the landing mission, an autonomous navigation method based on vector observation of the feature points on the surface of the target small celestial body is studied. The position vectors from the spacecraft to three feature points can be constructed from the measurements of optical camera and laser range finder. The landing site coordinate frame and the spacecraft relative position and attitude are constructed directly. The spacecraft orbit parameters are determined by using the extended Kalman filter.
引文
1 J. E. Riedel, S. Bhaskaran and S. P. Synnott. Navigation for the New Millennium: Autonomous Navigation for Deep Space 1. Deep Space 1 Technology Validation Report-Autonomous Optical Navigation. 2000:48~65
    2 H. B. William. Deep impact mission design. Space Science Reviews. 2005,117(1-2):23~42
    3 T. Kubota, T. Hashimoto and J. Kawaguchi, et al. An Autonomous Navigation and Guidance System for MUSES-C Asteroid Landing. Acta Astronautica. 2003,52:125~131
    4 S. Ulamec, M. Hilchenbach, D. Moura, et al. Rosetta Lander - Philae: Implications of an alternative mission. Acta Astronautica. 2006,58 (8):435~441
    5 K. H. Glassmeier, H. Boehnhardt, D. Koschny. Flying towards the origin of the solar system. Space Science Reviews. 2007, 128(1-4):1~21
    6 J. G. Fernandez, R. C. Gorgojo, T. P. Llanos.Autonomous GNC Algorithm for Rendezvous Missions to Near-Earth-Objects. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2008, 18-21 August, Honolulu, Hawaii
    7 C. L. Thornton, J. S. Border. Radiometric tracking techniques for deep space navigation. USA: John Wiley& sons, Inc. 2003:34~53
    8 Nikos Mastrodemos, Daniel G. Kubitschek, Robert A.Werner, etc. Autonomous Navigation for the Deep Impact. Proceedings of the AAS/AIAA Space Flight Mechanics Meeting: Tampa,Florida, January 22-26 2006:1251~1271
    9 F. Gandia, M.Graziano, E.Milic. Optical navigation for cooperative autonomous interplanetary spacecraft. GMV S.A., Isaac Newton. 2003
    10 C. Elachi. The Critical Role of Communications and Navigation Technologies to the Success of Space Science Enterprise Missions. Keynote Address DESCANSO International Symposium, 21 September, 1999
    11 S. Desai, D. Han and S. Bhaskaran et al. Autonomous Optical Navigation (AutoNav) Technology Validation Report. Deep Space 1 Technology Validation Report—Autonomous Optical Navigation (AutoNav):2002:1~39
    12 Y. P. Guo. Self-Contained Autonomous Navigation System for Deep Space Missions. Advances in the Astronautical Sciences. 1999,102(2):1099~1113
    13 Y. Tang, Y. Wu, M. Wu et al. INS/GPS Integration: Global Observability Analysis. IEEE Trans. on Vehicular Technology. 2009,58(3): 1129~1142
    14 A. Ben-Zvi, P. J. Mclellan, K.B. Mcauley. Identifiability of Non-linear Differential Algebraic Systems via a Linearization Approach. Canadian Journal of Chemical Engineering, 2006, 84(5): 590~596
    15 E. B. Lee and L. Markus. Foundations of Optimal Control Theory. John Wiley, New York, 1967
    16黄翔宇.探测器自主导航方法及在小天体探测中的应用研究.哈尔滨工业大学博士学位论文. 2005
    17 Goshen Meshin D. Bar Itzhack I Y. Observability analysis of piece-wise constant system. IEEE Transaction on aerospace and electronic system.1992, 28(4):1025~1075
    18万德钧,房建成.惯性导航初始对准.东南大学出版社, 1998:110~132
    19宁晓琳,房建成.航天器自主天文导航系统的可观测性及可观测度分析.北京航空航天大学学报, 2005, 31(6):673~677
    20张春青,刘良栋,李勇.测量带有常值偏差时卫星自主定轨系统可观性分析.中国空间科学技术, 2006, 26(6):1~7
    21黄翔宇,崔平远,崔祜涛.深空自主导航系统的可观性分析.宇航学报, 2006, 27(3):332~337
    22 G. Qiao, D. Wang, T. Li. Observability Analysis of Autonomous Navigation System for Earth-Lunar Transfer Orbit Phase. 2007 IEEE International Conference on Robotics and Biomimetics, 2007: 946~951
    23 F. M. Ham, R. G. Brown. Observability, Eigenvalues, and Kalman Filtering. IEEE Trans. on Aerospace and Electronic Systems, 1983, AES-19(2): 269~273
    24 J. R. Yim. Autonomous Spacecraft Orbit Navigation. Ph.D Thesis of Texas A&M University. 2002
    25 T. Zhang, B. Wang, Y. Shi. Observability of Inertial Navigation System. Journal of Beijing Institute of Technology, 2005, 14(3):269~272
    26 D. Sun, J. L. Crassidis. Observability Analysis of Six-Degree-of-Freedom Configuration Determination Using Vector Observations. Journal ofGuidance, Control and Dynamics. 2002, 25(6):1149~1156
    27石莹,段广仁,孙德波.视觉导航信息可观性分析的Matlab Symbolic Computation方法.宇航学报, 2004, 25(6):686~689
    28邢光谦.量测系统的能观度和状态估计精度.自动化学报, 1985,11(2): 152~158
    29帅平,陈定昌,江涌. GPS/INS组合导航系统状态的可观测度分析方法.宇航学报, 2004, 25(2):219~224
    30刘萍,王大轶,黄翔宇.环月探测器自主天文导航系统的可观度分析.中国空间科学技术, 2007, (6):12~18
    31 S. Desai, D. Han and S. Bhaskaran et al. Autonomous Optical Navigation (AutoNav) Technology Validation Report. Deep Space 1 Technology Validation Report—Autonomous Optical Navigation (AutoNav):2002:1~39
    32 Bernard K, JayM, RobertD. The deep space program science experiment mission (DSPSE) astrodynamics mission planning. The 44th International Astronautical Federation Congress, Graz, Austria, October16-22, 1993
    33 A. E. Marini, G. D. Racca, B. H. Foing. SMART-1 technology preparation for future planetary missions. Advaces in Space Research. 2002, 30(8):1895~1900
    34 S. Bhaskaran, J. E. Riedel and S. P. Synnott. Autonomous Nucleus Tracking for Comet/Asteroid Encounters: The STARDUST Example. 1998 IEEE Aerospace Conference, 1998, 2:353~365
    35 S. Bhaskaran, Nick Mastrodemos, Joseph E.Riedel, et al. Optical navigation for the Stardust Wild-2 encounter. 18th International Symposium on Space Flight Dynamics, 11-15 October 2004
    36 S. Bhaskaran, J. E. Riedel, S. P. Synnott. Demonstration of autonomous orbit determination around small bodies. Advances in the Astronautical Sciences Series. 1996, 90(2):1297~1308
    37 J. Kawaguchi, T. Hashimoto, T. Misu, et al. An Autonomous optical guidance and navigation around the asteroid. 47th International Astronautical Congress October 7-11, 1996
    38 J. Kawaguchi, T. Hashimoto, T. Kubota, et al. Autonomous optical guidance and navigation strategy around a small body. Journal of Guidance, Control and Dynamics. 1997, 20(5): 1210~1220
    39 T. Misu, T. Hashimoto, K. Ninomiya. Optical guidance for autonomous landing of spacecraft. IEEE Transactions on Aerospace and Electronic Systems. 1999, 35(2):459~472
    40 T. Kubota, T. Hashimoto and J. Kawaguchi, et al. An autonomous navigation and guidance system for MUSES-C asteroid landing. Acta Astronautica. 2003, 52:125~131
    41 T. Misu, T. Hashimto and K. Ninomiya. Autonomous Guidance of Spacecraft based on Natural Terrain Images. Technical Papers of Workshop on Astrodynamics and Flight Mechanics, 1995:229~234
    42 T. Misu, T. Hashimto and K. Ninomiya. Autonomy in Guidance using Image-based Terrain Recognition and Optical Navigation. J. of the Braz. Soc. Mechanical Sciences. 1999, 21:227~236
    43 N. Thomas, H. U. Keller, E. Arijs, et al. OSIRIS-The Optical, Spectroscopic and Infrared Remote Imaging System for Rosetta Orbiter. Advances in Space Research. 1998,21(11):1505~1515
    44 J. d. Lafontaine. Autonomous spacecraft navigation and control for comet landing. Journal of Guidance, Control and Dynamics. 1992, 15(3): 567~576
    45 C. Champetier, P. Régnier, J. d. Lafontaine. Advanced GNC concepts and techniques for an interplanetary mission. Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, Feb. 2-6, 1991. San Diego, CA:433~452
    46 C. D. Timothy. NEAR Laser Rangefinder: A tool for the mapping and topologic study of asteroid 433 Eros. Johns Hopkins APL Technical Digest. 1998, 19(2):142~157
    47 J.J. Bordi, J.K. Miller, B.G. Williams. Near Earth Asteroid Rendezvous (NEAR) Navigation Using Altimeter Range Observations. The Interplanetary Network Progress Report, IPN PR - 42-146. 2001
    48 A. E. Johnson, Y. Cheng, L. H. Matthies. Machine vision for autonomous small body navigation. IEEE Aerospace Conference Proceedings. 2000, 7:661~671
    49 Y. Cheng, A. E. Johnson, L. Matthies. MER-DIMES: A planetary landing application of computer vision. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 1:806~813
    50 A. E. Johnson, L. H. Matthies. Precise image-based motion estimation for autonomous small body exploration. Proceedings of the Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space. 1999: 627~634
    51 A. E. Johnson, R. Willson, Y. Cheng. Design through operation of an image based velocity estimation system for mars landing. International Journal of Computer Vision. 2007, 74(3): 319~341
    52程杨.基于星敏感器的空间飞行器姿态和姿态角速度确定.哈尔滨工业大学博士论文. 2003:5~17
    53章仁为.卫星轨道姿态动力学与控制.北京航空航天大学出版社, 1998:204~206
    54 Y. Oshman and F. L. Markley. Minimal-parameter attitude matrix estimation from vector observations. Journal of Guidance, Control, and Dynamics. 1988, 21(4):595~602
    55 A. Carmi and Y. Oshman. Robust Spacecraft Angular Rate Estimation from Vector Observations Using Interlaced Particle Filtering. Journal of Guidance, Control and Dynamics. 2007, 30(6):1729~1741
    56 Fisher, James and Vadali, S. R. Gyroless attitude control of multibody satellites using an unscented Kalman filter. Journal of Guidance, Control and Dynamics. 2008, 31(1):245~251
    57夏克强,周凤岐,周军等.无陀螺卫星的非线性姿态估计算法及仿真研究.西北工业大学学报, 2009, 27(3): 406~410
    58刘涛,赵国荣,潘爽.无陀螺捷联惯导系统角速度解算的新方法.系统工程与电子技术, 2010, 32(1):162~165
    59范春石,张高飞,孟子阳等.一种基于线性伪量测方程的无陀螺姿态确定方法.宇航学报, 2008, 29(4):1290~1296
    60 Y. Oshman and F. L. Markley. Sequential Gyroless Attitude and Attitude-Rate Estimation from Vector Observations. Acta Astronautica. 2000, 46(7): 449~463
    61 J. L. Crassidis and F. L. Markley. Predictive Filtering for Nonlinear Systems. Journal of Guidance, Control, and Dynamics. 1997,20(3):566~572
    62 J. L. Crassidis and F. L. Markley. Minimum Model Error Aproach for Attitude Estimation. Journal of Guidance, Control, and Dynamics.1997,20(6):1241~1247
    63 D. J. Mook and J. L. Junkins. Minimum Model Error Estimation for Poorly Medeled Dynamics Systems. Journal of Guidance, Control, and Dynamics. 1988, 11(3):256~261.
    64 J. L. Crassidis and F. L. Markley. Predictive Filtering for Attitude Estimation without Rate Sensors. Journal of Guidance, Control, and Dynamics. 1997,20(3):522~527
    65 J. L. Crassidis, F. L. Markley, E. G. Lightsey and E. Ketchum. Predictive Attitude Estimation Using Global Positioning System Signals. Proceedings of the Flight Mechanics / Estimation Theory Symposium, Greenbelt, MD. 1997:107~120
    66 J. L. Crassidis, R. Alonso and J. L. Junkins. Optimal Attitude and Position Determination from Line of Sight Measurements. The Journal of the Astronautical Sciences. 2000,40(2):391~408
    67 S. H. Truong. A Robust and Self-tuning Kalman Filter for Autonomous Spacecraft Navigation. PhD Dissertation of the School of Engineering and Applied Science of the George Washington University. 2001:1~24
    68 D. R. Cruickshank and G. H. Born. A New Class of Adaptive Extended Kalman Filter. Proceedings of the 6th AAS/AIAA Spaceflight Mechanics Conference, Austin, TX, Feb. 12-15, 1996, AAS 96~108
    69 P. D. Burkhart and R. H. Bishop. Adaptive orbit determination for interplanetary spacecraft. Journal of Guidance, Control, and Dynamics. 1996, 19(3):693~701
    70 J. R. Raol, N. K. Sinha. On the Orbit Determination Problem. IEEE Transactions on Aerospace and Electronic Systems. 1985, 21(3):274~291
    71 B. D. Tapley and J. G. Peters. Sequential Estimation Algorithm Using a Continuous UDUT Covariance Factorization. Journal of Guidance and Control. 1980, 3(4):326~331
    72 I. Y. Bar-Itzhack and Y. Medan. Efficient Square Root Algorithm for Measurement Update in Kalman Filtering. Journal of Guidance and Control. 1983, 6(3):129~134
    73 S. J. Julier and J. K. Uhlmann. A Consistent, Debiased Method for Converting between Polar and Cartesian Coordinate Systems. Proceedings ofAeroSense: Acquisition, Tracking and Pointing. 1997, 3086: 110~121
    74 S. J. Julier, J. K. Uhlmann and H. F. Durrant-Whyte. A New Approach for Filtering Nonliear Systems. Proceedings of the American Control Conference, Seattle, WA. 1995:1628~1632
    75 S. J. Julier, J. K. Uhlmann and H. F. Durrant-Whyte. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Transactions on Automatic Control. 2000, 45(3):477~482
    76 S. J. Julier. The Scaled Unscented Transformation. Proceedings of the American Control Conference, Anchorage, AK. 2002:4555~4559
    77 R. van der Merwe and E. A. Wan. The Square-Root Unscented Kalman Filter for State and Parameter-Estimation. International Conference on Acoustics, Speech and Signal Processing, Salt Lake City, UT. 2001
    78 D. J. Lee and K. T. Alfriend. Precise Real-Time Satellite Orbit Determination Using the Unscented Kalman Filter. 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, 9-13 February 2003
    79 M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing. 2002, 50(2): 174~185
    80 N. Gordon, D. J. Salmond, and A. F. M. Smith. A Novel Approach to Non-Linear/Non-Gaussian Bayesian State Estimation. IEE Proceedings F. 1993, 140(2): 493~500
    81 F. Gustafsson, F. gunnarsson, and N. Bergman et al. Particle Filters for Positioning, Navigation, and Tracking. IEEE Transactions on Signal Processing. 2002, 50(2):425~437
    82 K. Sooong and C. Joohwan. Bayesian bootstrap filtering for the LEO satellite orbit determination. Vehicular Technology Conference Proceedings, VTC 2000-Spring Tokyo, Japan. 2000 IEEE 51st, 2000, 2:1611~1615
    83 K. Soohong and C. Joohwan. Satellite Orbit Determination Using a Magnetometer-Based Bootstrap Filter. Proceedings of the American Control Conference, Chicago, IL. 2000, 2:792~793
    84 B. Azimi-Sadjadi. Approximate Nonlinear Filtering with Applications to Navigation. PhD Dissertation of University of Maryland, College Park. 2001:21~70
    85付梦印,邓志红,张继伟. Kalman滤波理论及其在导航系统中的应用.科学出版社, 2003:152~174
    86秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西北工业大学出版社, 1998:190~204
    87王宇飞,黄显林,胡恒章.组合导航系统中一种基于特征值分解的自适应信息融合滤波算法.航空学报, 2000, 21(3):274~276
    88刘准,陈哲. INS/GPS/TRCOM组合制导系统中的信息融合方法研究.宇航学报, 2001, 22(3):56~61
    89刘瑞华,刘建业.联邦滤波信息分配新方法.中国惯性技术学报, 2001, 9(2):28~32
    90陶俊勇,邱静,温熙森.自适应联合滤波模型及其在车载SINS/GPS组合导航系统中的应用.信息与控制, 2000, 29(2):168~172
    91陈兵舫,张育林,赵华丽. INS/GPS/Odometer组合导航初始对准及自适应联合滤波.宇航学报, 2001, 22(6):57~63
    92邱恺,荣军,陈天如等.联邦滤波信息分配方法研究.传感技术学报, 2005, 18(3):676~679
    93张怡,蔡毅,唐成凯.基于联邦卡尔曼滤波器的信息分配因子的研究.计算机仿真, 2009, 26(1):358~361
    94 T. Weismuller, D. Caballero, M. Leinz. Technology for autonomous optical planetary navigation and precision landing. AIAA SPACE 2007 Conference and Exposition, Long Beach, California, Sep. 18-20, 2007
    95 D. G. Tuckness and S. Y. Young. Autonomous Navigation for Lunar Transfer. Journal of Spacecraft and Rockets. 1995, 32(2):279~285
    96 J. R. Yim, J. L. Crassidis and J. L. Junkins. Autonomous Orbit Navigation of Interplanetary Spacecraft. AIAA/AAS Astrodynamics Specialist Conference, Denver, CO, Aug. 14-17, 2000, AIAA-2000-3936:53~61
    97 J. R. Yim, J. L. Crassidis and J. L. Junkins. Autonomous Orbit Navigation of Two Spacecraft System Using Relative Line of Sight Vector Measurements. AAS 04-257:1~14
    98 W. L. James. Autonomous Navigation Systems Technology Assessment. Proceedings of the AIAA Guidance and Navigation Symposium. 1979,1~12
    99胡小平.自主导航理论与应用.国防科技大学出版社, 2002:18~20, 29~33,179~181
    100 Chang Xiaohua, Cui Pingyuan, Cui Hutao. Observability Analysis of Autonomous Navigation System of Interplanetary Spacecraft. 2009 Chinese Control and Decision Conference, CCDC 2009: 766~770
    101 C. T. Chen. Linear system theory and design. CBS College Publishing, 1984
    102赵明旺,王杰等.现代控制理.武汉:华中科技大学出版社,2007,144~153
    103 Hermann R, Krener A J. Nonlinear controllability and observability. IEEE Trans Autom Control. 1977, AC-22(5): 728~740
    104 Zhe Chen. Local observability and its application to multiple measurement estimation. Ind. Elec., IEEE Trans., 1991,38(6):491~496
    105王晓明.基于能观能控理论的航天器自主导航与控制方法研究.哈尔滨工业大学博士学位论文. 2009:54~56
    106 S. Mancuso. Vision Based GNC Systems for Planetary Exploration. The 6th International Conference on Dynamics and Control of systems and Structures in Space 2004. Rinmaggiore, Cinque Terre, Liguria, Italy, 18-22 July 2004
    107 L. Chausson, S. Elavault. Optical navigation performance during interplanetary cruise. 17th ISSFD, Russia , Moscow , 2003
    108 R. A. Jacobson. The orbit of Phoebe from Earthbased and Voyager observations. Astronomy & Astrophysics Supplement Series, Aston. Astrophys. Ser. 128, 1998:7~17
    109 I.Y. Bar-Itzhack, R.R. Harman. Optimized TRIAD algorithm for attitude determination.J of Guidance,Control,and Dynamics,1997,20(1):208~211
    110 Shuster M D, Oh S D. Three-axis attitude determination from two vector observations. Journal of Guidance an control, 1981,4(1):70~77
    111 F.Landis Markley. Fast Quaternion Attitude Estimation from Two Vector Measurements. Journal of Guidance, Control and Dynamics, Vol.25, No.2,2002, pp.411~414
    112 Reynold. R. G. Quaternion parameterization and a simple algorithm for global attitude estimation. Journal of Guidance, Control and Dynamics, Vol.21, No.4,1998, pp.669~671
    113 S. Bhaskaran, D. Desai and P. J. Dumont et al. Orbit Determination Performance Evaluation of the Deep Space 1 Autonomous Navigation System. Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting,Monterrey, CA, Feb. 9-12, 1998, AAS 98-193:1295~1314
    114王鹏,张迎春.基于星敏感器/红外地平仪的自主导航算法研究.系统工程与电子技术, 2008, 30(8):1514~1518
    115 D. G. Kubitschek. Impactor Spacecraft Targeting for the Deep Impact Mission to Comet Tempel-1. AAS 03:615~633
    116 D. C. Woffinden, D. K. Geller. Relative Angles-Only Navigation and Pose Estimation for Autonomous Orbital Rendezvous. AIAA/AAS GN&C Conference, Keystone, CO, Aug. 2006
    117 S. Bhaskaran, J.E.Riedel, B.Kennedy, T.C.Wang. Navigation of the Deep Space 1 Spacecraft at Borrelly. Astrodynamics Specialist Conference and Exhibit. Monterey, California, 5-8 August 2002
    118 T. Kominato, M. Matsuoka, M. Uo. Optical hybrid navigation and station keeping around Itokawa. Astrodynamics Specialist Conference. 2006, 2: 1352~1366
    119 J. K. Miller, A. S. Konopliv and P. G. Antreasian, et al. Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros. Icarus. 2002,155:3~17
    120 D. J. Scheeres, B. J. Williams, J. K. Miller. Evaluation of the dynamics environment of an asteroid: Applications to 433 Eros. Journal of Guidance, Control, and Dynamics,2000, 23(3): 466~475
    121 D. J. Scheeres. Design and Analysis of Landing Trajectory and Low Altitude Asteroid Flyovers. Ipn Progress Report,2001:42~146
    122崔祜涛,史雪岩,崔平远等.绕飞弱引力小天体的轨道保持控制.高技术通讯, 2002, 3:56~59
    123 W. Hu, D. J. Scheeres.Spacecraft motion about slowly rotating asteroid . Journal of Guidance, Control and Dynamics, 2002, 25(4): 765~775
    124 Shi Xueyan, Cui Hutao, Cui Pingyuan, et al. Spacecraft motion analysis about rapid rotating small body. Journal of Harbin Institute of Technology, 2003,04:363~366
    125 B. D. Tapley, D. S. Ingram. Orbit determination in the presence of unmodeled accelerations. IEEE Transactions on Automatic Control. 1973, 18(4):369~373
    126 E. A. Wan, R. van der Merwe. The Unscented Kalman Filter for NonlinearEstimation. The IEEE of Adaptive System for Signal Processing, Communications and Control Symposium, 2000:153~158
    127 T. Kubota, M. Otsuki, T. Hashimoto, et al. Touchdown dynamics for sampling in Hayabusa mission. AIAA/AAS Astrodynamics Specialist Conference. 2006, 2:1403~1414
    128 D. J. Scheeres, R. Gaskell, S. Abe, et al. The actual dynamical environment about Itokawa. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006
    129 S. Li, P. Cui. Landmark tracking based autonomous navigation schemes for landing spacecraft on asteroids. Acta Astronautica. 2008, 62(6-7):391~403
    130 D. S. Bayard, P. B. Brugarolas. An estimation algorithm for vision-based exploration of small bodies in space. American Control Conference, June 8-10, Portland, OR, USA, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700