用户名: 密码: 验证码:
单/多基线相位解缠绕技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相位解缠绕(Phase Unwrapping,PU)做为一种重要的图像处理技术,在干涉合成孔径雷达(Interferometry Synthetic Aperture Radar,InSAR),核磁共振成像(Magnetic Resonance Imaging,MRI)和光学干涉(Optical Interferometry)等干涉测量技术中都有着重要的应用。本文在InSAR的背景下,结合工程应用中存在的一些核心问题,针对相位解缠绕技术展开研究。
     本文总体上可以分为两大部分:第一部分主要研究了单基线相位解缠绕的相关技术,这部分首先对单基线相位解缠绕的基本概念进行了介绍,然后针对单基线相位解缠绕现存的一些技术问题,提出了相应的解决策略。单基线相位解缠绕在近几十年中有了长足的发展,但是单基线相位解缠绕技术对于复杂地区内绝对相位的恢复(例如:山谷,陡峭山脉等地形)存在着一定的“天然缺陷”。针对单基线相位解缠绕技术存在的不足之处,本文第二部分主要对多基线相位解缠绕技术展开了研究。这部分首先分析了多基线相位解缠绕技术的基本原理,然后在此基础之上提出了多基线相位解缠绕技术的一系列算法。
     本文的主要工作概括如下:
     1、提出了一种基于离群点检测技术的单基线相位解缠绕方法。L0-norm相位解缠绕方法是目前人们比较公认的一种在统计意义下最优的相位解缠绕算法,其解缠绕结果也是人们在实际工程中最想获得的。遗憾的是,Chen(?)(?)Zebker证明了L0-norm是一个NP-hard问题,也就是说其最优解无法由现有的知识在多项式时间内获得。为了有效的解决这个问题,本文提出了一种基于离群点检测技术的单基线相位解缠绕算法。此方法首先将相位解缠绕问题抽象为一个超定方程组的求解问题,然后把方程组内对应于L0-norm枝切线的方程视为离群点,通过数据挖掘中基于密度信息的离群点检测技术将这类方程剔除后再进行方程求解以获得L0-norm(?)勺近似解缠绕结果。与其他近似方法不同的是,本文提出的这种方法不是直接获取L0-norm枝切线的近似,而是获取L0-norm枝切线的母集,也就是说,其可以避免直接求解上述NP-hard(?)司题来获得L0-norm(?)勺解。实验结果表明了该方法的有效性。
     2、提出了两种基于残点聚类的缠绕相位图分块策略。到目前为止已经有很多著名的相位解缠绕算法被提出。这些算法在不同的方面有着各自的优势,例如:解缠绕结果的精度或者算法的执行速度。但是,绝大多数的算法在设计时并没有考虑到计算机内存对算法性能的限制。而随着InSAR技术的发展,待处理的缠绕相位图的规模也越来越大。当出现由于计算机内存的限制导致的缠绕相位图不能一次性整体处理的情况时,分块求解的策略将不得不被采用。在这种情况下,局部相位解缠绕结果和全局整体处理时的相位解缠绕结果是否一致就成为了相位解缠绕技术的新挑战。本文根据残点聚类的思想,首先提出了一种近似保证L0-norm相位解缠绕算法局部解和全局解一致性的分块策略来辅助L0-norm(?)相位解缠绕算法进行大规模相位解缠绕。然后,本文在上述分块策略的基础上提出了另一种辅助L1-norm(?)相位解缠绕算法进行大规模相位解缠绕的分块策略。此分块策略可以严格保证L1-norm自的局部解缠绕结果和全局解缠绕结果的一致性。理论证明和实验结果都表明这两种缠绕相位图分块策略的有效性。
     3、提出了一种基于L1-norm的多基线相位解缠绕算法。单基线相位解缠绕属于数学领域中的逆问题,逆问题的最大特点是其解不具有唯一性。为了使得单.基线相位解缠绕具有唯一解,相位解缠绕的工作者们提出了相位连续性假设来保证其解具有唯一性。从本质上说,这个假设是要求lnSAR系统进行测绘的地区具有空间连续性。但是,并不是所有的实际场景都服从这个假设,例如山谷、陡峭山脉以及悬崖等地形通常就难以保证地形高度的连续性。为了解决单基线相位解缠绕技术的不足,人们提出了多基线相位解缠绕技术。本文通过借助传统单基线L1-norm相位解缠绕方法,同时结合不同长度的基线获得的多幅缠绕相位图之间的关系,提出了一种基丁L1-norm(?)勺多基线相位解缠绕方法。仿真实验的结果表明,该算法具有较高的解缠绕精度,可以适用于复杂地形的测绘。
     4、提出了一种基于聚类分析的多基线相位解缠绕算法。多基线相位解缠绕技术可以摆脱相位连续性假设的限制,但是其却存在着噪声鲁棒性差的缺点,并且由于多基线相位解缠绕是同时处理多幅缠绕相位图,因此多基线相位解缠绕在运算效率和内存使用上都存在着一定的压力。本文首先对多幅缠绕相位图的联合信息、进行研究,然后在此基础上提出了一种基于聚类分析的高效多基线相位解缠绕算法。该方法首先将具有相同模糊数向量的像素进行聚类,然后逐类进行相位解缠绕。仿真实验表明,与传统方法相比本方法具有更好的噪声鲁棒性和低的时间复杂度。
Phase unwrapping (PU), an important image processing technique, has been applied in many fields of interferometric measurement, such as, synthetic aperture radar interferometry (InSAR), magnetic resonance imaging (MRI), optical interferome-try, and so on. This dissertation, under the context of InSAR, makes a study on phase unwrapping technique with the combination of some key problems in the engineering application.
     This dissertation falls into two parts. The research on single-baseline phase un-wrapping technique is described in the first part, where some basic concepts of single-baseline phase unwrapping are introduced firstly, and then some technical problems in it are described with solutions proposed. Single-baseline phase unwrapping has been developed greatly in the recent decades, but it has the "nature disadvantage" in the recovery of the absolute phase in complicated areas (such as, valleys and steep mountains). For this reason, the multi-baseline phase unwrapping technique is intro-duced in the second part, where the basic principle of multi-baseline phase unwrap-ping is described firstly. In addition, some multi-baseline phase unwrapping algorithms are proposed.
     The main content of this dissertation is summarized as follows.
     1. In chapter2, an Outlier-Detection based single-baseline phase unwrapping method is proposed. It is known that the L0-norm phase unwrapping method is sta-tistically the best strategy, and its phase unwrapping solution is the most desired in practice. Unfortunately, Chen and Zebker have investigated that the L0-norm is an NP-hard problem, i.e., which is very difficult to find an exact solution in a polynomial time. In order to effectively solve this problem, PU process is abstracted as a process of solving an inconsistent equation system firstly, and then the equation correspond-ing to branch cuts of the L0-norm in the inconsistent equation system are considered as the outliers. Furthermore, after the removal of the outliers by the density-based Outlier-Detection technique in data mining, the approximation phase unwrapping so-lution of the L0-norm can be achieved by solving the remain equations. The significant difference from other conventional approximation algorithms is that the approximation phase unwrapping solution of the L0-norm is not obtained from branch cuts of the L0-norm directly but from the mother-set of branch cuts of the L0-norm. That is to say, the Outlier-Detection based single-baseline phase unwrapping method can obtain the L0-norm phase unwrapping solution without solving an NP-hard problem directly. A set of experimental results shows that the proposed method is effective in phase un-wrapping.
     2. In chapter3, two Residues Cluster-based tiling strategies are presented. So far, many phase unwrapping methods have been proposed. These methods are ad-vanced in different aspects, such as the accuracy of the solution or the speed of the algorithm. However, the limitation of computer's memory size is ignored in the design of most of these methods. With the rapid development of the InSAR technology, the interferograms are becoming larger and larger. When the size of the interferogram ex-ceeds the limitation of computing capability, adopting divide-and-conquer policy dur-ing the phase unwrapping process is unavoidable in practice. Under this condition, whether the phase unwrapping result of each tile is consistent with that of the whole image or not becomes a new challenge for phase unwrapping. In this dissertation, a tiling strategy according to the clustering characteristic of residue distribution is pro-posed to assist the L0-norm large-scale phase unwrapping, which can approximately ensure the consistency between local and global phase unwrapping solutions of the L0-norm. Then, the other tiling strategy for the L1-norm large-scale phase unwrap-ping is proposed, which is the extension and improvement of the previous tiling strat-egy. This tiling strategy can exactly ensure the consistency between local and global phase unwrapping results of the L1-norm. Both theoretical analysis and experiments demonstrate that these two tiling strategies are effective for the large-scale phase un-wrapping.
     3. In chapter4, an L1-norm based multi-baseline phase unwrapping method is given. Single-baseline phase unwrapping is an inverse problem, whose signifi-cant character is that there are an infinite number of different solutions. In order to find the unique solution to the phase unwrapping problem, the phase continuity as-sumption is proposed. In essence, this assumption demands the measured regions have the space continuity. However, this assumption does not hold in any actual terrains, such as, valleys and steep mountains. In order to solve this problem, the multi-baseline phase unwrapping technique is proposed. By taking conventional L1-norm based single-baseline phase unwrapping method as a base, and combining the relation among interferograms obtained by multi-baseline InSAR, an L1-norm based multi-baseline phase unwrapping method is proposed in this dissertation. Simulated experiments demonstrate that this method is of great accuracy on phase unwrapping results and it can be applied to measure the complex terrains.
     4. In chapter5, the Cluster-Analysis-based multi-baseline phase unwrapping method is put forward. Multi-baseline phase unwrapping technique can break the lim-itation of phase continuity assumption, but it has a disadvantage that it is not robust to noise. Moreover, because multi-baseline phase unwrapping technology processes more than one interferograms, great pressure of execution speed and memory re-quirement exits in the multi-baseline phase unwrapping processing. This dissertation first makes an analysis of the combined information of multi InSAR interferograms, and then presents the Cluster-Analysis-based multi-baseline phase unwrapping method. The pixels with the same ambiguity vectors are clustered firstly by this method and the phase of pixels are unwrapped group by group. Simulation results show the pro-posed method has advantage in efficiency and noise robustness over the conventional methods.
引文
[1]J.M.Blackedge. Quantitative Coherent Imaging. Academic Press,1989.
    [2]A.V.Oppenheim and J.S.Lim. The importance of phase signals. Proceedings of the IEEE,69:529-541,1981.
    [3]Reid G.T. Automatic fringe pattern analysis:a review. Optics and lasers in Engineering,7:37-68,1986.
    [4]R.Bamler and P.Hartl. Synthetic aperture radar interferometry. Inverse Problems,14:1-54,1998.
    [5]P.A.Rosen, S.Hensley, I.R.Joughin. F.K.Li, S.N.Madsen. E.Rodriguez, and R.M.Goldstein. Synthetic aperture radar interferometry. Proc IEEE,88:333-382,2000.
    [6]L.C.Graham. Synthetic interferometer radar for topographic mapping. Proc IEEE,62:763-768,1974.
    [7]H.A.Zebker and R.M.Goldstein. Topographic mapping from interferometric synthetic aperture radar observations. J.Gcophys.Res,91:4993-4999,1986.
    [8]B.Rabus, M.Eineder, A.Roth, and R.Bamler. The shuttle radar topography mission (srtm)-a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens,57:241262,2003.
    [9]保铮,邢孟道,王彤.雷达成像技术.电子工业出版社,2005.
    [10]H.Smith. Principles of Holography. Wiley-Interscience,1969.
    [11]A.E.Rogers and R.P.Ingalls. Venus:mapping the surface reflectivity by radar interferometry. Science,165:797-799,1969.
    [12]S.H.Zisk. A new earth-based radar technique for the measurement of lunar. Moon,4:296-306,1972.
    [13]L.C.Graham. Synthetic aperture radar for topographic mapping. Proc IEEE, 62:763-768,1974.
    [14]D.L.Fried. Least-squares fitting a. wave-front distortion estimate to an array of phase-difference measurement. Journal of the Optical Society of America, 67:370-375,1977.
    [15]Dennis C. Ghiglia and Mark D. Pritt. Two-Dimensional Phase Unwrapping: Theory. Algorithms and Software. Wiley, New York,1998.
    [16]R.M.Goldstein, H.A.Zebker, and C.L.Werner. Satellite radar interferomctry two-dimensional phase unwrapping. Radio Science,23:713-720.1988.
    [17]J.M.Huntley and J.R.Buckland. characterization of sources of 2pi phase dis-continuity in speckle interferograms. Journal of the Optical Society of Amer-ica,12:1990-1996,1995.
    [18]H.Takajo and T.Takahashi. Least-squares phase estimation from the phase difference. Journal of the Optical Society of America,5:416-425,1988.
    [19]H.Takajo and T.Takahashi. Noniterativc method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference. Journal of the Optical Society of America,5:1818-1827, 1988.
    [20]D.C.Ghiglia and L.A.Romero. Direct phase estimation from phase differences using fast elliptic partial differential equation solvers. Optics Letters,14:1107-1109,1989.
    [21]J.M.Huntley. Noise-immune phase unwrapping algorithm. Applied Optics, 28:3268-3270,1989.
    22] C.Prati, M.Giani. and N.Leuratti. Sar interferometry:A 2-d phase unwrap-ping technique based on phase and absolute values information. Proceedings of the 1990 International Geoscience. and Remote Sensing Symposium, IEEE, pages 2043-2046,1990.
    [23]D.J.Bone. Fourier fringe analysis:the two-dimensional phase unwrapping problem. Applied Optics,30:3627-3632.1991.
    [24]Q.Lin. J.F.Vesecky, and H.Zebker. New approaches in interferometric sar data processing. IEEE Trans. Geosci. Remote Sens.,30:560-567.1992.
    [25]Q.Lin, J.F.Vesecky, and H.Zebker. Phase unwrapping through fringe-line detection in synthetic aperture radar interferometry. Applied Optics,33:201 208.1994.
    [26]D.C.Ghiglia and L.A.Romero. Robust two-dimensional weighted and un-weighted phase unwrapping that uses fast, transforms and iterative methods. Journal of the Optical Society of America,11:107-117,1994.
    [27]R.Cusack, J.M.huntley, and H.T.Goldrein. Improved noise-immune phase-unwrapping algorithm. Applied Optics,34:781-789,1995.
    [28]J.R.Buckland, J.M.Huntley, and S.R.E.Turner. Unwrapping noisy phase maps by use of a minimum cost matching algorithm. Applied Optics,34:5100-5108,1995.
    [29]D.Derauw. Phase unwrapping using coherence measurements. Synthetic Aperture Radar and Passive Microwave Sensing, Proceedings of the SPIE, 2584:319-324.1995.
    [30]J.A.Quiroga, A.Gonzalez-Cano, and E.Bernabeu. Phase-unwrapping algo-rithm based on an adaptive criterion. Applied Optics,34:2560-2563,1995.
    [31]H.Lim, W.Xu, and X.Huang. Two new practical methods for phase unwrap-ping. Proceedings of the 1996 International Geoscience and Remote Sensing Symposium, pages 196-198,1995.
    [32]D.Labrousse, S.Dupont, and M.Berthod. SAR interferometry:A markovian approach to phase unwrapping with a discontinuity model. Proceeding of the 1995 Interational Geoscience and Remote Sensing Symposium,34:556-558, 1995.
    [33]M.D.Pritt. Phase unwrapping by means of multigrid techniques for interfer-ometric SAR. IEEE Trans. Geosci. Remote Sens.,34:728-738,1996.
    [34]G.Fornaro, G.Franceschetti. and R.Lanari. Interferometric SAR phase un-wrapping using green's formulation. IEEE Trans. Geosci. Remote Sens., 34:720-727,1996.
    [35]D. C. Ghiglia and L. A. Romero. Minimum Lp-norm two-dimensional phase unwrapping. Journal of the Optical Society of America A,13:1999-2013, 1996.
    [36]T.J.Flynn. Consistent 2-d phase unwrapping guided by a quality map. Pro-ceeding of the 1996 International Geoscience and Remote Sensing Sympo-sium, pages 27-31,1996.
    [37]T. J. Flynn. Two-dimensional phase unwrapping with minimum weighted discontinuity. Journal of the Optical Society of America A,14:2692-2701, October 1997.
    [38]Mario Costantini. A novel phase unwrapping method based on network pro-gramming. IEEE Trans. Geosci. Remote Sens.,36:813-821,1998.
    [39]Wei Xu and Ian Cumming. A region-growing algorithm for InSAR phase unwrapping. IEEE Trans. Geosci. Remote Sens.,37:124-134,1999.
    [40]C.W. Chen and H. A. Zebker. Network approaches to two-dimensional phase unwrapping:Intractability and two new algorithms. Journal of the Optical Society of America A,17:401-414,2001.
    [41]C.W. Chen and H. A. Zebker. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. Journal of the Optical Society of America A.18:338-351,2001.
    [42]Curtis W. Chen and Howard A. Zebker. Phase unwrapping for large SAR interferograms:Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens,40:1709-1719.2002.
    [43]Jose M. B. Dias and Jose M. N. Lcitao. The ZpiM algorithm:A method for interferometric image reconstruction in sar/sas. IEEE Transactions on Image Processing,11:408-422,2002.
    [44]Ryo Yamaki and Akira Hirose. Singularity-spreading phase unwrapping. IEEE Trans. Geosci. Remote Sens,45:3240-3251,2007.
    [45]Jose M. Bioueas-Dias and Goncalo Valadao. Phase unwrapping via graph cuts. IEEE Transactions on Image Processing,16:698-709,2007.
    [46]Otmar Loffeld, Holger Nies, Stefan Knedlik, and Wang Yu. Phase unwrapping for SAR interferometry-A data fusion approach by kalman filtering. IEEE Trans. Geosci. Remote Sens.,46:47-58,2008.
    [47]Juan J. Martinez-Espla, Tbmas Martinez-Marin, and Juan M. Lopez-Sanchez. A particle filter approach for InSAR phase filtering and unwrapping. IEEE Trans. Geosci. Remote Sens.,47:1197-1211.2009.
    [48]Kui Zhang, Linlin Ge, Zhe Hu, Alex Hay-Man Ng, Xiaojing Li, and Chris Rizos. Phase unwrapping for very large interferometric data sets. IEEE Trans. Geosci. Remote Sens,49:4048-4061,2011.
    [49]W. Xu, E. Chang, L. Kwoh, H. Lim. and W. Cheng. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline. In Proc. IEEE Int. Geosci. and Remote Sens. Symp., pages 730-732, Pasadena, California, USA,1994.
    [50]D. C. Ghiglia and D. E. Wahl. Interferometric synthetic apertureradar terrain elevation mapping from multiple observations. In Proc. IEEE Digital Signal Process. Workshop, pages 33-36, Albuquerque, NM.1994.
    [51]J. S. Lee, K. W. Hoppel, S. A. Mango, and A. R. Miller. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE trans. Geosci. Remote Sens.,32:1017-1028.1994.
    [52]D. G. Thompson, A. E. Robertson, D. V. Arnold, and D. G. Long. Multi-baseline interferometric SAR for iterative height estimation. In IEEE Int. Geosci. and Remote Sens. Symp., pages 251-253,1999.
    [53]Ferretti A., Prati C., and Rocca F. Multibaseline InSAR DEM reconstruc-tion:the wavelet approach. IEEE Trans. Geosci. Remote Sens.,37:705-715.1999.
    [54]V. Pascazio and G. Schirinzi. Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters. IEEE trans. Image Process,11:1478-1489,2000.
    [55| G. Fornaro, A. Pauciullo, and E. Sansosti. Phase difference based multiple acquisition phase unwrapping. In Proc. IEEE Int. Geosci. and Remote Sens. Symp, pages 948-950, Toulouse, France,2003.
    [56]G. Fornaro, A. Monti Guarnicri, A. Pauciullo. and F. De-Zan. Maximum likelihood multi-baseline SAR interferometry. Proc. Inst. Electr. Eng.-Radar Sonar Navig.,153:279-288,2006.
    [57]Fornaro G., Pauciullo A., and Sansosti E. Phase difference-based multichan-nel phase unwrapping. IEEE Transactions on Image Processing,14:960 972,2005.
    [58]G. Fornaro, A. Pauciullo, and E. Sansosti. Bayesian approach to phase-difference-based phase unwrapping. In Proc. IEEE 36th Asilomar Conf. Sig-nals, Syst. and Comput., pages 1397-1396, Napoli, Italy,2002.
    [59]G. Poggi, A. P. R. Ragozini, and D. Servadei. A bayesian approach for SAR interferometric phase restoration. In Proc. IEEE Int. Geosci. Remote Sens Symp., pages 3202-3205,2000.
    [60]L. Ying, D. C. Munson, R. Koetter, and B. J. Frey. Multibaseline InSAR terrain elevation estimation:A dynamic programming approach. In Proc. IEEE Int. Conf. Image Process, pages 1522 4880,2003.
    [61]G. Ferraiuolo, V. Pascazio, and G. Schirinzi. Maximum a posteriori estima-tion of height profiles in InSAR imaging. IEEE Geosci. Remote Sens. Lett, 1(2):66-70, Apr 2004.
    [62]Ferraiuolo G., Meglio F., Pascazio V., and Schirinzi G. DEM reconstruction accuracy in multichannel SAR interferometry. IEEE Trans. Geosci. Remote Sens.,47:191-201,2009.
    [63]赵争,张继贤,张过.遗传算法在InSAR相位解缠中的应用.测绘科学.27:37-39.2002.
    [64]于勇,下超,张红,刘智,高鑫.基于不规则网络下网络流算法的相位解缠方法.遥感学报.7:472-477,2003.
    [65]Yang Lei, Feng Qian, and Wanig Zhi Gang'. Optimized minimum spanning tree phase unwrapping algorithm for phase image of interferometric SAR. Intermational Coference on ITS Proceedings, pages 1240-1243,2006.
    [66]索志勇,李真芳,保铮.基于残点识别的环路积分校正InSAR相位展开方法.电子学报.
    [67]Zhenfang Li, Zheng Bao, and Zhiyong Suo. A joint image coregistration, phase noise suppression, and phase unwrapping method based on subspace projection for multibaseline insar systems. IEEE Trans. Geosci. Remote Sens.,45:584-591,2007.
    [68]李海,廖桂生.基于相关系数加权观测矢量的多基线相位解缠方法.自然科学进展.18:313322,2008.
    [69]Zhijie Mao and Guisheng Liao. Optimum data vector approach to multibase-line SAR interferometry phase unwrapping. IEEE Geoscience and Remote Sensing Letters,6:42-46,2009.
    [70]魏志强,金亚秋.基于蚁群算法的InSAR相位解缠算法.电子与信息学报,30:518-523.2008.
    [71]Heping Zhong, Jinsong Tang, Sen Zhang, and Ming Chen. An improved quality-guided phase-unwrapping algorithm based on priority queue. IEEE Geoscience and Remote Sensing Letters,8:364-368,2011.
    [72]Dapeng Gao and Fuliang Yin. Mask cut optimization in two-dimensional phase unwrapping. IEEE Geoscience and Remote Sensing Letters,9:338-342,2012.
    [1]R.Bamler and P.Hartl Synthetic aperture radar interferometry. Invers Problems,14:1-54,1998.
    [2]P.A.Rosen, S.Hensley, I.R.Joughin, F.K.Li, S.N.Madsen, E.Rodriguez, and R.M.Goldstein. Synthetic aperture radar interferometry. Proc IEEE,88:333-382,2000.
    [3]L.C.Graham. Synthetic interferometer radar for topographic mapping. Proc IEEE,62:763-768.1974.
    [4]H.A.Zebker and R.M.Goldstein. Topographic mapping from interferometric synthetic aperture radar observations. J.Geophys.Res,91:4993-4999,1986.
    [5]B.Rabus, M.Eineder, A.Roth, and R.Bamler. The shuttle radar topography mission (srtm)-a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens,57:241-262,2003.
    [6]保铮,邢孟道,王彤.雷达成像技术.电子工业出版社,2005.
    [7]Dennis C. Ghiglia and Mark D. Pritt. Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software. Wiley, New York,1998.
    [8]Alessandro Ferretti. Andrea Monti-Guarnieri, Claudio Prati. and Fabio Rocca. InSAR Principles:Guidelines for SAR Interferometry Processing and Interpretation. European Space Agency. Netherlands,2007.
    [9]Charles W.Groetsh. Inverse Problem. Springer,2006.
    [10]D.C.Ghiglia, G.A.Mastin, and L.A.Romero. Cellular automata method for phase unwrapping. Journal of the Optical Society of America,4:267-280, 1987.
    [11]R.M.Goldstein. H.A.Zebker, and C.L.Werner. Statellite radar interferometry: Two-dimensional phase unwrapping. Radio Science,23:713-720,1988.
    [12]Henri Maitre.合成孔径雷达图像处理.电子工业出版社,2005.
    [13]M.W.Roth. Phase unwrapping for interferometric sar by the least-error path. Johns Hopkins University Applied Physics Laboratory Technical Report,30, 1995.
    [14]M.D.Pritt. Phase unwrapping by means of multigrid techniques for inter-ferometric SAR.. IEEE Transactions on Geoscience and Remote Sensing, 34:728-738,1996.
    [15]D.J.Bone. Fourier fringe analysis:the two-dimensional phase unwrapping problem. Applied Optics.30:3627-3632,1991.
    [16]T.J.Flynn. Consistent 2-d phase unwrapping guided by a quality map. Pro-ceeding of the 1996 International Geoscience and Remote Sensing Sympo-sium, pages 2057-2059.1996.
    [17]D. C. Ghiglia and L. A. Romero. Robust two-dimensional weighted and un-weighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A,11:107-117,1994.
    [18]Mark D. Pritt. Phase unwrapping by mean of multigrid techniques for inter-ferometric SAR. IEEE Trans. Geosci. Remote Sens.34:728-738,1996.
    [19]M. D. Pritt and J. S. Shipman. Least-squares two-dimensional phase unwrap-ping using FFTs. IEEE Trans. Geosci. Remote Sens.,32:706-708,1994.
    H. Takajo and T. Takahashi. Least-squares phase estimation from phase differences. Journal of the Optical Society of America A,5:416-425,1988.
    [21]D. C. Ghiglia and L. A. Romero. Minimum Lp-norm two-dimensional phase unwrapping. Journal of the Optical Society of America A,13:1999-2013, 1996.
    [22]Mario Costantini. A novel phase unwrapping method based on network pro-gramming. IEEE Trans. Geosci. Remote Sens.,36:813-821,1998.
    [23]R.K.Ahuja, T.L.Magnanti, and J.B.Orlin. Network Flows:Theory, Algo-rithms, and Applications. Englewood Cliffs,1993.
    [24]C.W. Chen and H. A. Zebker. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. Journal of the Optical Society of America A,18:338-351,2001.
    [25]Jose M. B. Dias and Jose M. N. Leitao. The ZpiM algorithm:A method for interferometric image reconstruction in sar/sas. IEEE Transactions on Image Processing,11:408-422,2002.
    [26]Jose M. Bioucas-Dias and Goncalo Valadao. Phase unwrapping via graph cuts. IEEE Transactions on Image Processing,16:698-709,2007.
    [27]Ryo Yamaki and Akira Hirose. Singularity-spreading phase unwrapping. IEEE Trans, Geosci. Remote Sens,45:3240-3251,2007.
    [28]C.Prati, M.Giani, and N.Leuratti. SAR interferometry:A 2-d phase unwrap-ping technique based on phase and absolute values information. Proc. Int. Geosci. Remote Sens. Symp, pages 2043-2046,1990.
    [29]T.J.Flynn. Two-dimensional phase unwrapping with minimum weighted dis continuity. Journal of the Optical Society of America,14:2692-2701,1997.
    [30]I.Gurov and M.Volkov. Fringe evaluation and phase unwrapping of compli-cated fringe patterns by the data-dependent fringe processing method. IEEE Trans. lustrum. Meas,55:1634-1640.2006.
    [31]N.H.Ching, D.Rosenfeld. and M.Braun. Two-dimensional phase unwrapping using a minimum spanning tree algorithm. IEEE Trans. Image Processing, 1:355-365,1992.
    [32]C.W. Chen and H. A. Zebker. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. Journal of the Optical Society of America A,17:401-414,2001.
    [33]T. J. Flynn. Consistent 2-D phase unwrapping guided by a quality map. In Proceedings of the 1996 International Geoscience and Remote Sensing Sym-posium, pages 2057-2059, Lincoln, NE,1996.
    [34]Wei Xu and Ian Cumming. A region-growing algorithm for InSAR phase unwrapping. IEEE Trans. Geosci. Remote Sens..37:124-134.1999.
    [35]Otmar Loffeld, Holger Nies, Stefan Knedlik, and Wang Yu. Phase unwrapping for SAR interferometry-A data fusion approach by kalman filtering. IEEE Trans. Geosci, Remote Sens.,46:47-58.2008.
    [36]Juan J. Martincz-Espla, Tomas Martinez-Marin, and Juan M. Lopez-Sanchez. A particle filter approach for InSAR phase filtering and unwrapping. IEEE Trans. Geosci, Remote Sens.,47:1197-1211,2009.
    [37]越民义.最小网络—斯坦纳树问题.上海科学技术出版社,2006.
    [38]David C.Lay. Linear Algebra and Its Applications. Addison-Wesley,2003.
    [39]Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Elsevier(Smgapore)Pte Ltd,2st edition,2008.
    [40]邓乃杨,田英杰.数据挖掘中的新方法—支持向量机.科学出版社,2004.
    [41]Chang Chih-Chung and Lin Chih-Jen. Training v-Support Vector Regression: Theory and Algorithms, cjlin@csie.ntu.edu.tw.
    [42]Cristianini N and Shawe-Taylor J. An introduction to Support Vector Ma-chines and Other Kernel-based Learning Methods. Cambridge University Press,2000.
    [43]G.Nagaraja and G.Krishna. An algorithm for the solution of linear inequali-ties. IEEE Trans. Computers,23:421-427.1974.
    [44]D.C.Clark and R.C.Gonzalez. Opyical solution of linear inequalities with ap-plications to pattern recognition. IEEE Trans. Pattern Analysts and Machine Intelligence,3:643-655.1981.
    [45]边肇祺,张学工.模式识别.清华大学出版社.2000.
    [1]D. C. Ghiglia and L. A. Romero. Minimum Lp-norm two-dimensional phase unwrapping. Journal of the Optical Society of America A,13:1999-2013, 1996.
    [2]C.W. Chen and H. A. Zebker. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. Journal of the Optical Society of America A,18:338-351,2001.
    |3] Wei Xu and Ian Cumming. A region-growing algorithm for InSAR phase unwrapping. IEEE Trans. Geosci. Remote Sens.,37:124-134,1999.
    [4]Otmar Loffeld, Holger Nies. Stefan Knedlik, and Wang Yu. Phase unwrapping for SAR interferometry-A data fusion approach by kalman filtering. IEEE Trans. Geosci. Remote Sens.,46:47-58,2008.
    [5]Juan J. Martinez-Espla, To mas Martinez-Marin, and Juan M. Lopez-Sanchez A particle filter approach for InSAR phase filtering and unwrapping. IEEE Trans. Geosci. Remote Sens.,47:1197-1211,2009.
    [6]D. C. Ghiglia and L. A. Romero. Robust two-dimensional weighted and un-weighted phase unwrapping that uses fast transforms and iterative methods. Journal of the. Optical Society of America A,11:107-117,1994.
    [7]T. J. Flynn. Two-dimensional phase unwrapping with minimum weighted discontinuity. Journal of the Optical Society of America A,14:2692-2701, October 1997.
    [8]T.J.Flynn. Consistent 2-d phase unwrapping guided by a quality map. Pro-ceeding of the 1996 International Geoscience and Remote Sensing Sympo-sium, pages 27-31,1996.
    [9]Jose M. B. Dias and Jose M. N. Leitao. The ZpiM algorithm: A method for interferometric image reconstruction in sar/sas. IEEE Transactions on Image Processing,11:408-422,2002.
    [10]Jose M. Bioucas-Dias and Goncalo Valadao. Phase unwrapping via graph cuts. IEEE Transactions on Image Processing,16:698-709:2007.
    [11]Ryo Yamaki and Akira Hirose. Singularity-spreading phase unwrapping. IEEE Trans. Geosci. Remote Sens,45:3240-3251,2007.
    [12]Mark D. Pritt. Phase unwrapping by mean of multigrid techniques for inter-ferometric SAR. IEEE Trans. Geosci. Remote Sens,34:728-738,1996.
    [13]M. D. Pritt and J. S. Shipman. Least-squares two-dimensional phase unwrap-ping using FFTs. IEEE Trans. Geosci. Remote Sens,32:706-708,1994.
    [14]H. Takajo and T. Takahashi. Least-squares phase estimation from phase differences. Journal of the Optical Society of America A,5:416-425,1988.
    [15]R.M.Goldstein, H.A.Zebker, and C.L.Werner. Statellite radar interferometry: Two-dimensional phase unwrapping. Radio Science,23:713-720,1988.
    [16]Q.Lin, J.F.Vesecky, and H.Zebker. New approaches in interferometric sar data processing. IEEE Trans. Geosci. Remote Sens.,30:560-567,1992.
    [17]Q.Lin, J.F.Vesecky, and H.Zebker. Phase unwrapping through fringe-line detection in synthetic aperture radar interferometry. Applied Optics,33:201-208.1994.
    [18]A.Koch and C.Heipke. Quality assessment of digital surface models de-rived from the shuttle radar topography mission (SRTM). IEEE Internatinal Geosci.Remote Sensing Symposium. IGARSS. pages 2863-2865,2001.
    [19| G.Rufino, A.Moccia. and S.Esposito. Dem generation by means of ers tandem data. IEEE Trans. Geosci. Remote Sens.,36:1905-1912,1998.
    [20]Gerhard Krieger, Alberto Moreira, Hauke Fiedler, Irena Hajnsek, Marian Werner, Marwan Younis, and Manfred Zink. ZinkTanDEM-X:A Satellite Formation for High-Resolution SAR Interferometry. IEEE trans. Geosci Remote Sens.,45:3317-3341,2007.
    [21]G. Carballo. Statistically-based multiresolution network flow phase unwrap-ping for SAR interferometry. Ph.D. dissertation. Stockholm, Sweden,2000.
    [22]S.Hensley. private communication.2001.
    [23]Curtis W. Chen and Howard A. Zebker. Phase unwrapping for large SAR interferograms:Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens,40:1709 1719.2002.
    [24]Kui Zhang, Linlin Ge, Zhe Hu, Alex Hay-Man Ng. Xiaojing Li, and Chris Rizos. Phase unwrapping for very large interferometric data sets. IEEE Trans. Geosci. Remote Sens,49:4048-4061.2011.
    [25]Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Elsevier.2006.
    [26]边肇祺,张学工.模式识别.清华大学出版社,2000.
    [27]Jiawei Han and Micheline Kamber. Data Mining: Concepts and. Techniques. Elsevier(Singapore)Pte Ltd,2st edition.2008.
    [28]Mario Costantini. A novel phase unwrapping method based on network pro-gramming. IEEE Trans. Geosci. Remote Sens.,36:813-821,1998.
    [29]R.K.Ahuja, T.L.Magnanti, and J.B.Orlin. Network Flows:Theory, Algo-rithms and Applications. Englewood Cliffs.1993.
    [30]Henri Maitre.合成孔径雷达图像处理.电子工业工版社,2005.
    [31]Dennis C. Ghiglia and Mark D. Pritt. Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software. Wiley, New York,1998.
    [32]M.W.Roth. Phase unwrapping for interferometric sar by the least-error path. Johns Hopkins University Applied Physics Laboratory Technical Report,30, 1995.
    [33]M.D.Pritt. Phase unwrapping by means of multigrid techniques for inter-ferometric SAR. IEEE Transactions on Geoscience and Remote Sensing, 34:728-738,1996.
    [34]D.J.Bone. Fourier fringe analysis:the two-dimensional phase unwrapping problem. Applied Optics,30:3627-3632:1991.
    [35]T.J.Flynn. Consistent 2-d phase unwrapping guided by a quality map. Pro-ceeding of the 1996 International Geoscience and Remote Sensing Sympo-sium,, pages 2057-2059,1996.
    [36]C.W. Chen and H. A. Zebker. Network approaches to two-dimensional phase unwrapping:Intractability and two new algorithms. Journal of the Optical Society of America A,17:401-414,2001.
    [37]Neng H. Ching, Dov Rosenfeld, and Michael Braim. Two-dimensional phase unwrapping using a minimum spanning tree algorithm. IEEE Trans ON Image Processing,1:355-365,1992.
    [38]Sanjoy Dasgupta, Christos Papadimtriou, and Umesh Vazirani. Algorithms. The McoGraw-Hill Companies,2008.
    [39]王树禾.图论.科学出版社,2004.
    [40]M.H.Alsuwaiyel. Algorithm Design Techniques and Analysis. World Scien-tific.1999.
    [41]Udi Manber. Introduction to Algorithms:A Creative Approach. Pearson Educaton,1989.
    [42]GAMMA Remote Sensing AG. Interferometric SAR Processing:GAMMA Remote Sensing. Gumligen, Switzerland.
    [1]Dennis C. Ghiglia and Mark D. Pritt. Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software. Wiley, New York,1998.
    [2]Alessandro Ferretti, Andrea Monti-Guarnieri, Claudio Prati, and Fabio Rocca. InSAR Principles:Guidelines for SAR Interferometry Processing and Interpretation. European Space Agency. Netherlands,2007.
    [3]Charles W.Groetsh. Inverse Problem. Springer,2006.
    [4]R.Bamler and P.Hartl. Synthetic aperture radar interferometry. Inverse Problems,14:154,1998.
    [5]P.A.Rosen, S.Hensley, I.R.Joughin, F.K.Li, S.N.Madsen, E.Rodriguez, and R.M.Goldstein. Synthetic aperture radar interferometry. Proc IEEE,88:333 382,2000.
    [6]B.Rabus, M.Eineder, A.Roth, and R.Bamler. The shuttle radar topography mission (srtm)-a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens,57:241-262,2003.
    7] C.G.Brown, K.Sarabandi, and L.E.Pierce. Validation of the shuttle radar to-pography mission height data. IEEE Trans. Geosci. Remote Sens.,43:1707 1715,2005.
    [8]A.Koch and C.Heipke. Quality assessment of digital surface models de-rived from the shuttle radar topography mission (SRTM). IEEE Internatinal Geosci.Remote Sensing Symposium.IGARSS, pages 2863-2865,2001.
    [9]G.Rufino, A.Moccia, and S.Esposito. Dem generation by means of ers tandem data. IEEE Trans. Geosci. Remote Sens.,36:1905-1912,1998.
    [10]F.Li and R.M.Goldstein. Studies of nmltibaseline spaceborne interferometric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens.,28:88-97,1990.
    [11]A.Jakobsson, F.Gini, and F.Lombardini. Robust estimation of radar reflectiv-ities in multibaseline InSAR. IEEE Trans. Aerospace and Electronic Systems. 41:751758,2005.
    [12]A.Reigber and A.Moreira. First demonstration of airborne SAR tomography using multibaseline 1-band data. IEEE Trans. Geosci. Remote Sens.,38:2142-2152,2000.
    [13]Kim J and W.Wiesbeck. Investigation of a new multifunctional high perfor-mance SAR system concept expoiting MIMO technogy. IEEE International Geosci.Remote Sensing Symposium, IGARSS, pages 221-224; 2008.
    [14]M.Neumann, L.Ferro-Famil, and A.Reigber. Estimation of forest struc-ture,ground, and canopy layer characteristics from multibaseline polarimetric interferometrie SAR data. IEEE Trans. Geosci. Remote Sens.,48:1086-1104, 2010.
    [15]J.Askne and M.Santoro. Multitemporal repeat pass sar interferometry of boreal forest. IEEE Trans. Geosci. Remote Sens.,43:1219-1228,2005.
    [16]P.Prats, A.Reigber, and J.J.Mallorqui. Topography-dependent motion com-pensation for repeat-pass interferometric SAR systems. IEEE Geosci. Remote Sens.Lett.,2:206-210,2005.
    [17]F.D.Zan, M.Eineder, and G.Krieger. Tandem-l:mission performance and optimization for repeat-pass interferometry. In Proc. European Radar Conf,Aachen. Germany, pages 4851,2010.
    [18]G.A.Arciniegas, W.Bijker, and N.Kerle. Coherence- and amplitude-based analysis of seismogenic damage in bam,iran,using envisat asar data. IEEE Trans. Geosci. Remote Sens.,45:1571-1581,2007.
    [19]M.V.Dragosevic and S.Chiu. Space-based motion estimators-evaluation with the first radarsat-2 modex data. IEEE Geosci. Remote Sens.Lett,6:438-442, 2009.
    [20]M.Chini, S.Atzori, and E.Trasatti. The may 12,2008,(mw 7.9) sichuan earth-quake (china): Multiframe ALOS-PALSAR DInSAR analysis of coseismic deformation. IEEE Geosci. Remote Sens.Lett 7:266-270,2010.
    [21]S.Samsonov. Topographic correction for ALOS PALSAR interferomctry. IEEE Trans. Geosci. Remote Sens.,48:3020-3027,2010.
    [22]Fabrizio Lombardini, Monica Montanari, and Fulvio Gini. Reflectivity esti-mation for multibaseline interferometric radar imaging of layover extrended sources. IEEE Trans. Geosci. Remote Sens.,51:1508-1519,2003.
    [23]Adrian Luckman and William Grey. Urban building height variance from multibaseline ERS coherence. IEEE Trans. Geosci. Remote Sens.,41:2022-2025,2003.
    [24]Pan Prats, Rolf Scheiber, Andreas Reigber, Ghristian Andres, and Ralf Horn. Estimation of the surface velocity field of the aletsch glacier using multi-baseline airborne SAR interferometry. IEEE Trans. Geosci. Remote Sens., 47:419-430,2009.
    [25]Zhong Lu, Eric Fielding, Matthew R. Patrick, and Charles M. Trautwein. Estimating lava volume by precision combination of multiple baseline space-borne and airborne interferometric synthetic aperture radar:The 1997 erup-tion of okmok volcano, alaska. IEEE Trans. Geosci. Remote Sens.,41:1428-1436,2003.
    [26]L.C.Graham. Synthetic interferometer radar for topographic mapping. Proc IEEE,62:763 768,1974.
    [27]H.A.Zebker and R.M.Goldstein. Topographic mapping from interferometric synthetic aperture radar observations. I.Geophys.Res.,91:4993-4999,1986.
    [28]保铮,邢孟道,王彤.雷达成像技术.电子工业出版社,2005.
    [29]Henri Maitre.合成孔径雷达图像处理.电子工业出版社,2005.
    [30]W. Xu, E. Chang, L. Kwoh, H. Lim. and W. Cheng. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline. In Proc. IEEE Int. Geosci. and Remote Sens. Symp., pages 730-732, Pasadena, California, USA.1994.
    [31]柯召,孙琦.数论讲义.高等教育出版社,1986.
    [32]D. C. Ghiglia and L. A. Romero. Minimum Lp-norm two-dimensional phase unwrapping. Journal of the Optical Society of America A,13:1999-2013. 1996.
    [33]Mario Costantini. A novel phase unwrapping method based on network pro-gramming. IEEE Trans. Geosci. Remote Sens.,36:813-821.1998.
    [34]陈开周.最优化计算方法.西安电子科技大学出版社,1984.
    [35]Dimitri P.Bertsekas. Convex Optimization Theory. Athena Scientific.2002.
    [1]R.Bamler and P.Hartl. Synthetic aperture radar interferometry. Inverse Problems,14:1-54,1998.
    [2]P.A.Rosen, S.Hensley, I.R.Joughin, F.K.Li, S.N.Madsen, E.Rodriguez, and R.M.Goldstein. Synthetic aperture radar interferometry. Proc IEEE,88:333-382.2000.
    [3]L.C.Graham. Synthetic interferometer radar for topographic mapping. Proc IEEE,62:763-768.1974.
    [4]H.A.Zebker and R.M.Goldstein. Topographic mapping from interferometric synthetic aperture radar observations. J.Geophys.Res,91:4993-4999,1986.
    [5]B.R,abus, M.Eineder, A.Roth, and R.Bamler. The shuttle radar topography mission (srtm)-a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens,57:241-262,2003.
    [6]保铮,邢孟道,王彤.雷达成像技术.电子工业出版社,2005.
    [7]C.G.Brown, K.Sarabandi, and L.E.Pierce. Validation of the shuttle radar to-pography mission height data. IEEE Trans. Geosci. Remote Sens.,43:1707-1715,2005.
    [8]A.Koch and C.Hcipke. Quality assessment of digital surface models de-rived from the shuttle radar topography mission (SRTM). IEEE Internatinal Geosci.Remote Sensing Symposium,IGARSS, pages 2863-2865,2001.
    [9]G.Rufino, A.Moccia, and S.Esposito. Dem generation by means of ers tandem data. IEEE Trans. Geosci. Remote Sens.,36:1905-1912,1998.
    [10]Dennis C. Ghiglia and Mark D. Pritt. Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software. Wiley. New York.1998.
    [11]Alessandro Ferretti, Andrea Monti-Guarnieri, Claudio Prati, and Fabio Rocca. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. European Space Agency, Netherlands.2007.
    [12]W. Xu, E. Chang, L. Kwoh, H. Lim, and W. Cheng. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline. In Proc. IEEE Int. Geosci. and Remote Sens. Symp., pages 730-732, Pasadena. California, USA,1994.
    [13]柯召,孙琦.数论讲义.高等教育出版社,1986.
    [14]G. Fornaro, A. Pauciullo, and E. Sansosti. Bayesian approach to phase-difference-based phase unwrapping. In Proc. IEEE 36th Asilomar Conf. Sig-nals, Syst. and Comput., pages 1397-1396, Napoli, Italy.2002.
    [15]G. Fornaro, A. Pauciullo, and E. Sansosti. Phase difference based multiple acquisition phase unwrapping. In Proc. IEEE Int. Geosci. and Remote Sens. Symp, pages 948-950, Toulouse, France,2003.
    [16]G. Fornaro, A. Monti Guarnieri, A. Pauciullo, and F. De-Zan. Maximum likelihood multi-baseline SAR interferometry. Proc. Inst. Electr. Eng.-Radar Sonar Navig.,153:279-288,2006.
    [17]Z. Li, Z. Bao, and Zhiyong Suo. A joint image coregistration, phase noise suppression, and phase unwrapping method based on subspace projection for niultibaseline InSAR system. IEEE Trans. Geosci. Remote Sens.,45:584-591, 2007.
    [18]P. Lombardo and F. Lombardini. Multi-baseline SAR interferometry for ter-rain slope adativity. In Proc. Nat. Radar Conf., pages 196-201,1997.
    [19]R.M.Goldstein, H.A.Zebker, and C.L.Werner. Satellite radar interferometry two-dimensional phase unwrapping. Radio Science,23:713-720,1988.
    [20]Mario Costantini. A novel phase unwrapping method based on network pro-gramming. IEEE Trans. Geosci. Remote Sens.,36:813-821,1998.
    [21]T.J. Flynn. Two-dimensional phase unwrapping with minimum weighted discontinuity. Journal of the Optical Society of America A,14:2692-2701, October 1997.
    [22]A.R.Ghiglia. Statistical Pattern Recognition. Wiley,2002.
    [23]Jiawei Han and Michelne Kamber. Data Mining: Concepts and Techniques. Elsevier(Singapore)Pte Ltd.2st edition,2008.
    [24]Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Elscvior,2006.
    [25]边肇祺,张学工.模式识别.清华大学出版社,2000.
    [2G]Andrew R. Webb. Statistical Pattern Recognition. John Wiley & Sons Ltd, The Atrium. Southern Gate, Chichester, West Sussex PO19 8SQ. England, 1st edition.2002.
    [27]D. G. Thompson, A. E, Robertson, D. V. Arnold, and D. G. Long. Multi-baseline interferometric SAR for iterative height estimation. In IEEE Int. Geosci. and Remote Sens. Syrup., pages 251-253,1999.
    [28]Gerhard Kriegor. Alberto Moreira, Hauke Fiedler, Irena Hajnsek. Marian Werner. Marwan Younis, and Manfred Zink. ZinkTanDEM-X:A Satellite Formation for High-Resolution SAR Interferometry. IEEE trans. Geosci. Remote Sens.,45:3317-3341,2007.
    David C.Lay. Linear Algebra and Its Applications. Addison-Wesley,2003.
    [30]同济大学数学教研室.高等数学.高等教育出版社,北京市东城区沙滩后街55号,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700