用户名: 密码: 验证码:
西藏尼木曲水一带花岗岩类成因矿物学及找矿潜力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏尼木-曲水地区地处世界三大主要斑岩成矿域的特提斯——喜马拉雅成矿域,其大地构造位置属冈底斯-念青唐古拉构造带的冈底斯陆缘火山-岩浆弧中部,发育有多期次、大规模的中酸性侵入岩及火山岩。西藏尼木-曲水一带目前已发现众多铜、金矿化点,但大型原生矿床除厅宫和冲江2处铜矿床外,金矿床一直没有突破,目前总的矿产形势还呈现只见星星少见月亮的态势。已有的工作表明,本区矿床和矿化点(Au,Cu)与中酸性岩浆岩有关,但迄今尚未对其成矿潜力进行过研究,特别是还未从成因矿物学角度进行研究。本文从这一空白领域入手进行研究,以图对本区与花岗岩类有关矿产的找矿勘查工作提供矿物学依据。
     通过对本区花岗岩类样品进行显微观察研究,知其主要的岩石类型为花岗闪长岩、石英二长闪长岩,其中的岩石包体主要为二长闪长岩,其造岩矿物为钾长石、斜长石、角闪石、云母、石英、磁铁矿、榍石、磷灰石和绿帘石等,长石中环带现象比较常见,云母、榍石等暗色矿物颜色较深,表明其氧化程度较高。
     对本区花岗岩类样品进行了全岩主量元素、稀土元素及微量元素分析,对角闪石和云母单矿物进行了化学成分分析,对钾长石、斜长石、角闪石、云母、及石英、磁铁矿、磷灰石和榍石进行了电子探针和X射线粉晶衍射分析。通过对测试数据的分析与综合研究,并同中国和世界一般花岗岩类以及中国主要金、铜成矿岩体的花岗岩类进行对比,得出本区花岗岩类岩石具有以下特征:属磁铁矿-Ⅰ型或同熔型花岗岩,其岩浆物质具壳幔混源特征:主要由熔融态岩浆经结晶分异作用,通过多期变速上侵而形成;其分异演化程度较低;寄主岩基和包体具有同源性;岩石的形成温度范围约为500℃-700℃,压力大约为2.50GPa-4.35Gpa,氧逸度值1gfo_2为-15.53—14.00;该岩带主要形成于板块碰撞前消减的活动板块边缘期,为燕山至喜马拉雅早期的大陆边缘火山弧环境的产物。
     将本区花岗岩类与金、铜矿有关的花岗岩类的矿物学、岩石学和地球化学特征进行对比,结果表明尼木-曲水地区的花岗岩类富Fe、Mg和Ca,Na_2O/K_2O>0.8,ANKC<1.10,DI<88,Fm为0.50-0.80,Eu亏损不强烈,δEu>0.3,La/Yb>10,上述特征为有利于金、铜矿形成的标志。
     通过与胶东郭家岭地区的花岗岩类的矿物学进行对比,可知本区花岗岩类矿物结晶时处于氧化状态,具有富含挥发分的特征,碱质含量高,造岩矿物及副矿物表现出Ⅰ型花岗岩特征,具有壳幔混源物质,表现出有利于金、铜矿形成的花岗岩类的矿物特征。
The area of Nimu-Qushui in Tibetan Plateau lies in Tethyan-Himalaya metallogenic belt, which is one of three main porphyry metallogenic belts. It is in the middle of marginal volcanic-magmatic arc of Gandise tectomagmatic belt. Multiphase and large-scale medium-acid intrusive and volcanic rocks have well developed in this area. Many Cu and Au mineralized spots have been discovered along Nimu-Qushui area. But large-scale Cu ore deposits have been found only in Tinggong area and there is no breakthrough in large primary Au ore deposit prospecting. It has been proved that large-area medium-acid magmatic rocks have well developed in this area and had close relation with some Au or Cu ore deposits and mineralized spots. But till now little research has been done for mineralization potentiality of medium-acid magmatic rocks, especially in the aspect of genetic mineralogy. In order to know the mineralization potentiality of medium-acid magmatic rocks in the area of Nimu-Qushui in Tibetan Plateau, this thesis focuse
    s on the studies of genesis and prospecting potentiality of the intrusive rocks from the point of view of genetic mineralogy. This will provide some information for prospecting.
    The microscopical observation proves that the main types of granitoid rocks are granodiorite and quartz monzodiorite, and the enclave is mainly monzodiorite. The rock-forming minerals are mainly k-feldspar, plagioclase, amphiboie, biotite, quartz, magnetite, titanite, apatite, epidote, etc. The zonation of the feldspars is very popular. The dark-colored minerals, such as biotite and titanite, have been highly oxidized.
    The main element analysis of whole rocks, the REE analysis and the trace element analysis have been done for the granitoid samples in this area. The chemical composition analysis has been done for the amphiboie and biotite minerals. The EPMA and x-ray powdered crystal diffraction have been done for k-feldspar, plagioclase, amphiboie, biotite, quartz, magnetite, titanite. and apatite. By these analyses and comparison with general granite both in China and the world and with the granite in other Au or Cu belt in China, the characteristics of the granite in this area are concluded as follows. It belongs to magnetite-I or syntectic granite and has crust-mantle mixed characteristics; it was formed mainly by crystallization differentiation of melting magma and multiphase varied intrusion; the degree of differentiation evolvement is not high; the granite and its enclaves p.re congenetic; the range of temperature is about 500 -700 , the range of pressure is about 2.50 Gpa-4.35 Gpa,
    and the range of oxygen fugacity (lg fo2) is -15.53--14.00; most granite bodies formed
    before the collision of plates, and few formed after the collision of plates.
    Compared with the granite from other areas in mineralogy, petrology, and geochemistry, the granitoid in Nimu-Qushui has a high content of Fe, Mg and Ca. The value of Na2O/K2O is over 0.8, ANKC is under 1.10, and DI is under 88. Its Fm is 0.50-0.80, 5 Eu>0.3 and La/Yb > 10. The characteristics above mentioned are the signs profitable for formation of Au and Cu ore deposites.
    
    
    Comparing with the granitoid from Jiaodong Guojialing in mineralogy, the minerals in the granitoid in Nimu-Qushui granitoid crystallized in the environment of oxidization, the granitoid has a characteristic of rich volatile components and a high content of alkali, the rock-forming minerals and accessory minerals have a characteristic of I-type granite, and the granite shows a characteristic in favor of An and Cu ore formation.
引文
(1) Agrawal-Salil. Geochemistry of Sendra granitoid suite, central Rajasthan, India;the role of hybridization process in their genesis. Congress Geologique International.Resumes. 1996, 30 (2) : 412.
    (2) Barbarin, B. Genesis of the two main types of peraluminous granitoids. Geology. 1996,24:295-298.
    (3) Barbarin, B., didder, J., Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas, Trans Roy. Soc. Edinb: Earth science. 1988, 83:145-153.
    (4) Buddington, A. F. & Lindsley, D. H. Iron-titanium oxide minerals and synthetic equivalents. Jour. Of Petrol. 1964, Vol.5.
    (5) Chappel, B. W and White, A.J.R. Two contrasting granites types. Pocific Geol, 1974.
    (6) Foster M D. Interpretation of composition of trioctaherdral micas. U S Geol Surv Prof. 1960, 354-B: 1-49.
    (7) Fuharman, M.L. & Lindsley, D.H.:Ternary-feldspar modeling and thermometry . Am. Mineral. 1988,73:201-215.
    (8) Goldsmith, J.R. & Laves, F.:The microcline-sanidine stability relations. Geochim. Cosmochim.Acta.1954, 5: 1-19.
    (9) Hanson, G.N. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet.Sci.Letters. 1978, 38: 26-43.
    (10) Haselton H.T., et al., Calorimsitric invertigation of the excess entropy of mixingineran albite-sandine solid solution: lack of evidence for Na, K short range order and implications of two feldspar thermometer, Am., Mineral. 1983, 68: 398-413.
    (11) Hibbard, M.J. (1986) : The magma mixing origin of mantled feldspars. Contrib. Mineral. Petrol. 1986, 76: 158-170.
    (12) Hovis,G.L.Behaviour of alkali feldspanCrystallographic properties and characterization of composition of composition and AL-Si distribution. Am. Mineral. 1986,71:869-890.
    (13) Irvine, T.N., 1971. A guide to he chemical classification of the common volcanic rocks, Canada. J. Earth Sci.8.
    (14) Jakes P, White AJR. Major and trace element abundance in Volcanic rocks of orogenic areas (J) .Geol Soc Am Bull, 1972, 83: 29-39.
    (15) J. K. Pati. S. Raju. V. D. Mamgain and Ravi Shanker. Gold mineralization in parts of bundelkhand granitoid complex. Journal Geological Society of India. 1997, 50: 601-606.
    (16) Jones, J.B., Nesbitt, R.W., Slade, P.G. The determination of the orthoclase content of
    
    homogenized alkali feldspar using the 201 X-ray methord. Min.Mag. 1969, 37: 489-496.
    (17) J. P. Burg & G.M.Chen. Tectonis and structural Zonation of Southern Tibet. China nature. 1984,311 (20) : 219-223.
    (18) Kirkham-R-V, Sinclair-W-D. Porphyry copper, gold, molybdenum, tungsten, tin, silver. Geology of Canada. 1995, 8: 421-446.
    (19) Kroll, H., Schmiemann.I., Colin, G.v. Feldspar solid solution. Am. Mineral. 1986, 71: 1-16.
    (20) Leake, B.E., 1978, Nomenclature of amphiboles, Amer. Mineral. Vol.63.
    (21) Pati-J-K: Raju-S; Mamgain-V-D; Shanker-Ravi. Gold mineralization in parts of Bundelkhand Granitoid Complex (BGC). Journal of the Geological Society of India. 1997. 50 (5) : 601-606.
    ( 22) Pearce. J.A., Harris, N.B.W. and Tindle, A.G. Trace element discrimination diagrams for the tectonic interperation of granitic rocks, J.Petrolog. 1984, Vol.25, part 4.
    (23) Peccerillo A, Taylor S R. Geochemistry of Eocene calealkaline Volcanic rocks from the kastamou area. Northern Turkey. Contrib Miner Petrol, 1976, 58:68-81.
    (24) Petersen J S. Rare-earth element fractionation and petrogenetic modeling in charnockitic rocks. Southwest Norway. Contribution to mineral and petrology. 1980. 73: 161-172.
    (25) Petro W L 挤压和张裂性板块边界深成岩套主要元素的化学特征[J].国外地质 科技,1981,(7) :47-57.
    (26) Pitcher W S. Granites and yet more granites forty years on. Geol. Rundsch, 1987, 76(1) : 51-57.
    (27) Reid J B, et al. Magma mixting in granitic rocks of central Sierra Nevada, California. Earth plan. Sci. Lett, 1983. 66:243-261.
    (28) Rittmann. A.. 1962, olcanoes and their activity. J.Wiley and Sons, New York-London.
    (29) Sassi F.P. Recognition of the pressure character in greenschist facies metamorphism. Schweiy Mineral. Petrogr. Mitt. 1976, 56: 427-434.
    (30) Stormer. A practical two-feldspar geothermometer, Am. Miner. 1975, 60:7-8.
    (31) Vernon r H, Collins W J. Igneous microstructures in migmaites. Geology, 1988, 16:1126-1129.
    (32) Vernon R. H., Microgranitoid enclaves in granites globules of hybrid magmaquenched in a plutonic environment. Nature, 1984,309:438-439.
    (33) W.G泰勒.锡矿床地质,地质出版社,1983.
    (34) Wyllie P J, et al. the habit of apatite in sythetic systems and igneous rocks. J. Petrol.,1962, 32:238-243.
    (35) Whalen, J.B., Chappell, B.W. Opaque mineralogy and mafic mineral chemistry of I
    
    and S-type granites of the Lachlan fold belt, southeast Australia, Am. Mineralogist, 1988,Vol.73, pp.281-296.
    (36) White A J R, Et al. Enclaves of S type granites in the Lachlan Fold Belt, southeastern Anradia. In: Didier J, et al.ed. Endaves and Granite Petrology, Development in Petrology, 13. Amsterdam: Elsevier, 1991, 493-508.
    (37) Wyllie P J, et al. The habit of apatite in sythetic systems and igneous rocks. J. Petrol., 1962, 32:238-243.
    (38) W.S皮切尔.花岗岩的类型和构造环境.国外地质科技.1984,第三期.
    (39) Yoder. H. S. et al. Al:Si order and symmetry of natural alkali feldspars, and relationships o strained cell parameters to bulk composition, Bull.Soc.Fr. Mineral Crystallog. 1974, 97 (2): 356-377.
    (40) 陈光远等.弓长岭铁矿成因矿物学.岩石矿物.1984,4(2).
    (41) 陈光远、孙岱生、等.胶东郭家岭花岗闪长岩成因矿物学与金矿化.中国地质大学出版,1993.
    (42) 丁孝石.西藏中南部各类花岗岩中云母矿标型特征及其地质意义.中国地质科学院矿床地质研究所所刊.1988(1):33-50.
    (43) 杜光树、冯孝良、陈福忠等.西藏金矿地质.成都:西南交通大学出版社.1993: 1-177.
    (44) 杜杨松.酸性-中酸性火山-侵入杂岩中岩石包体研究的新进展.现代地质.1996,10(2):169-173.
    (45) 郝辉.花岗岩类中的闪长质微粒包体.沈阳黄金学院学报.1995,14(3):316-319.
    (46) 郝立波、段国正.大兴安岭中南段含锡花岗岩地球化学体制及判别标志.长春地质学院建院40周年研究论文集.长春:吉林科学技术出版社,1992.
    (47) 洪大卫.花岗岩研究的最新进展及发展趋势.地学前缘.1994,1(1):79-86.
    (48) 洪大卫.钾长石的有序-无序及其地质意义.矿物学、岩石学论丛(一).北京:地质出版社,1980年.
    (49) 洪大卫.华南花岗岩的云母和矿物相及其与矿化系列的关系.地质学报. 1982,(2).
    (50) 侯增谦、曲晓明、黄卫等,冈底斯斑岩铜矿成矿带有望成为第二条“玉龙”铜矿带.中国地质.2001,28(10):27-29.
    (51) 胡承绮、刘家远.应用斜长石成分与结构态研究花岗岩类与大地构造环境的关系.1995(6):60-64.
    (52) 胡受奚等.华北与华南古板块拼合带地质和找矿.南京:南京大学出版社,1988.
    (53) 黄祟轲、白冶等.中国铜矿床.地质出版社,2001.
    (54) 贾建业、谢先德、吴大清.驾鹿金矿钾长石的结构态与平衡温度及其成矿意义.岩石矿物学杂志.2000,19(2):167-173.
    (55) 江万.中酸性侵入岩中铁镁质微粒包体及其意义.地质科技情报.1996,15(1):13-16.
    
    
    (56) 姜耀辉、杨万志.青藏高原西部燕山早期花岗岩地球化学及其大地构造意义.矿物岩石.2000,20(1):74-79.
    (57) 姜耀辉、杨万志.西昆仑山A型花岗岩带的发现及其地球动力学意义.地质评论.2000,46(1).
    (58) 金成伟.喜马拉雅和冈底斯中段花岗岩类的微量元素和稀土元素特征,见:喜马拉雅地质Ⅱ.北京地质出版社,1984.
    (59) 赖绍聪、隆平.内蒙白旗地区火山碎斑熔岩斜长石成分及其有序度.西北地质.1997,18(3):8-12.
    (60) 李朝阳等.中国铜矿主要类型特征及成矿远景,北京:地质出版社,2000。
    (61) 李胜荣.论豫西洛宁-嵩县中生代钙碱性花岗岩类的同源性.地质评论.1994,40(6):489-493.
    (62) 李胜荣、陈光远、邵伟等.胶东乳山金矿田成因矿物学.北京:地质出版社,1996.
    (63) 李胜荣、邓军、侯增谦等.西藏冈底斯带区域性断裂与金矿床剥蚀程度:Ag/Au比值的启示.中国科学(D辑).2001,31:105-108.
    (64) 李胜荣、邵克忠.祁雨沟地区爆发角砾岩型金矿成矿地质条件及找矿方向研究.河北地质学院学报编辑部编辑出版,1992.
    (65) 李鹤年等.大兴安岭中南段燕山期花岗岩地球化学特征及成矿作用.中国北方花岗岩及其成矿作用论文集.北京:地质出版社,1991.
    (66) 梁祥济.江西德兴斑岩铜矿成矿物质来源的实验研究.地质评论.1995,41(5):463-471.
    (67) 刘成龙.宽甸石柱子花岗闪长岩体的矿物组合特征机器找(铜)矿标志.;辽宁地质.1995,4:272-283.
    (68) 刘春化等.胶东文登岩体-二长花岗质岩石地球化学特征及成因探讨.吉林地质,1995.
    (69) 刘凤山、石准立.从闪长质岩石包体角度探讨太行山-燕山造山带壳幔成矿作用.矿床地质.1995,14(3):206-214.
    (70) 刘鸿飞.西藏拉萨地层系统及问题讨论.西藏地质.1995,14(2):128-137.
    (71) 刘英俊等.华南花岗岩类中金的丰度.地球化学.1982(3):253-259.
    (72) 刘振声、王洁民.青藏高原南部花岗岩地质地球化.成都:四川科学技术出版社.1994:1-133.
    (73) 吕志成、李鹤年、刘丛强等.大兴安岭中南段花岗岩中云母矿物学地球化学特征及成因意义.矿物岩石.2000,20(3):1-8.
    (74) 罗中舒.西藏高原板快构造及其发展:青藏高原地质文集》(1).地质出版社,1982.
    (75) 栾世伟等.金矿地质及找矿方法.成都:四川科学技术出版社,1987.
    (76) 马鸿文.钾长石X射线与红外有序度的对比及与Al占位和平衡温度的关系.矿物学报.1988,8(2):144-150.
    (77) 马鸿文.西藏玉龙斑岩铜矿带花岗岩类与成矿.中国地质大学出版社,1990.
    
    
    (78) 马鸿文.岩浆成因榍石微斑晶的稳定性及其意义.矿物岩石.1989,9(4):49-53.
    (79) 马鸿文.藏东马拉松多含铜斑岩中造岩矿物的标型体制及其在岩矿成因研究中的意义.地质评论.1984:5.
    (80) 马鸿文.藏东玉龙铜矿带岩浆作用的物理化学条件.现代地质.1987:2.
    (81) 马鸿文.藏东马拉松多含铜斑岩中造岩矿物的标型特征及其在岩矿成因研究中的意义.地质评论.1984(5).
    (82) 南京大学地质系矿物岩石学教研室,粉晶X射线物相分析.北京:地质出版社,1980.
    (83) 莫柱荪等.南岭花岗岩地质学.北京:地质出版社,1983.
    (84) 彭勇民、陈福忠.西藏昌都盆地高吉碱性岩体特征与成矿关系.西藏地质.1995,13 (1):66-73.
    (85) 邱家骧、林景仟.岩石化学.北京:地质出版社,1991.
    (86) 曲晓明、王鹤年.郭家岭岩体壳幔演讲混合作用与侵位机制的动力学研究.地质科学.1997,32(4):446-453.
    (87) 芮宗瑶、黄崇轲、齐国明等.中国斑岩铜(钼)矿床.北京:地质出版社,1984.
    (88) 孙世华.云母类矿物分类及其在花岗岩类研究中的意义.花岗岩地质利成矿关系.南京:江苏科学技术出版社.1982:249-260.
    (89) 苏树春.碱性长石的光学鉴定.北京:地质出版社,1982.
    (90) 涂光炽等.西藏南部花岗岩类地球化学,科学出版社,1982:55-64.
    (91) 万子益.西藏高原地质特征《青藏高原地质文集》(1).地质出版社,1982.
    (92) 王成善、夏代祥、周详等.雅鲁藏布江缝合带-喜马拉雅山地质.地质出版社,1999.
    (93) 王鹤年、徐克勤.胶东中元古代玲珑花岗岩及其后期叠加改造作用的地质、地球化学证据.南京大学学报(地球科学),1988(1):105-118.
    (94) 王洁民、刘振声,西藏花岗岩类中云母的特征.矿物岩石.1988(4):66-71.
    (95) 王强、邱家骧、王人镜.大别造山带何不典型造山期花岗岩岩浆演化的P-T轨迹.矿物岩石.1999,19(4):15-20.
    (96) 王涛.花岗岩研究与大陆动力学.地学前缘.2000,7:137-146.
    (97) 王增、申屠保涌、丁朝建等.藏东花岗岩类及其成矿作用.成都:西南交通大学出版社,1995.
    (98) 王之田等.大型铜矿地质与找矿.北京:冶金工业出版社,1994。
    (99) 王中刚.花岗岩类稀土元素分布模式.国际学术会议论文集.南京:江苏科学技术出版社,1984.
    (100) 王中刚.新疆北部花岗岩类成因类型及其与成矿的关系.1994,12(1):11-20.
    (101) 西藏自治区地矿局.西藏自治区区域地质志。地质出版社,1993.
    (102) 西藏自治区地矿局.曲水幅1:200000区域地质调查报告,1993.
    (103) 刑文臣、余根峰、季绍新.西藏花岗岩体含矿性的判别.火山地质与矿产.1998,19 (3):196-204.
    
    
    (104) 熊清华.论地质构造研究在花岗岩类区单元-超单元填图中的地位利作用.江西地质.1992,第二期.
    (105) 熊清华.西藏曲水岩基4个系列花岗岩的特征及构造意义.1988,17(4):347-352.
    (106) 熊清华等.西藏冈底斯岩带中段尼木-曲水岩基单元-超单元划分及主要特征.地学探索,1996.
    (107) 徐宝文、巴登珠、张宜智.雅鲁藏布江巨型构造带地质特征初步探讨《青藏高原地质文集》(1).地质出版社,1982.
    (108) 徐克勤等.与金矿有关花岗岩类的岩石地球化学特征.桂林冶金地质学院学报.1992,12(1):1-9.
    (109) 徐克勤等.华南花岗岩类的成因系列和物质来源.南京大学学报(地球科学).1989(3):1-18.
    (110) 徐克勤、涂光炽.花岗岩地质和成矿关系(国际学术会议论文集).江苏科学技术出版社,1984.
    (111) 徐启东、钟增球、周汉文等.小秦岭东闯金矿区花岗岩浆活动的性质.黄金地质.1997,3(3):19-23.
    (112) 徐夕生、周新民.花岗岩类中的岩石.包体南京大学学报,1988(1).
    (113) 徐宪、曹佑功、朱明玉等.西藏板块构造-建造图(1:150万)说明书.地质出版社,1982.
    (114) 薛纪越、蔡元峰、赵晓宁等.碱性长石Al-Si有序化进程中微结构和~(29)SiNMR谱的表现.矿物学报.1998,18(3):261-263.
    (115) 杨文金,王联奎等.华南两个不同成因系列花岗岩的云母标型特征.矿物学报.1986,(4):298-397.
    (116) 杨文金,王联奎等.从云母微量元素特征探讨华南花岗岩的成因和演化.矿物学报.1988(2):127-135.
    (117) 杨文金、王联奎等.华南两个不同成因系列花岗岩的云母标型特征.矿物学报.1986(4):298-397.
    (118) 杨学明、张培善.微斜长石中Al和Si的有序-无序及其对寄主岩石冷却历史的指示.中国科学技术大学学报.1993,23(3):270-277.
    (119) 叶大年、金成伟.X射线粉末法及其在岩石学中的应用.科学出版社,1984.
    (120) 张成立、周鼎武、卢欣祥.东秦岭商丹带线状花岗岩体成因讨论.西北地质. 1995,16(1):11-15.
    (121) 中国科学院地球化学研究所.矿物射线粉晶鉴定手册.科学出版社,1978.
    (122) 朱训、黄崇轲,芮宗瑶等.德兴斑岩铜矿.北京:地质出版社,1983.
    (123) 周详、曹佑功、朱明玉等.西藏板块构造-建造图(1:150万)说明书,地质出版社,1989.
    (124) 周殉若,王方正.岩石物理化学.郑州:河南科学技术出版社,1987.
    (125) 周遗军等.论金矿床的分类.黄金地质.1996,2:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700