用户名: 密码: 验证码:
塔里木盆地塔中隆起带主干断裂系统及其油气地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自油气勘探工作在塔里木盆地全面展开以来,塔中隆起带一直是石油勘探的重点区域。断裂系统是塔中隆起带的基本构造要素之一,前人对其已进行了比较广泛和深入的研究,但是在断裂系统的分期配套、发育的动力学背景和断裂的构造演化及对塔中隆起构造格局的控制等方面仍存在很大争议,对塔中断裂系统的油气地质意义,尤其是断裂对塔中碳酸盐岩台地发育的控制作用以及对岩溶作用的控制等方面研究尚显薄弱。针对塔中隆起带断裂构造研究中存在的问题,本文利用地震、钻井以及区域地质资料对其进行了综合而系统地研究。
     塔中地区断裂系统按走向可分为三组,分别为北西向的塔中1号断裂带、塔中22号断裂、主垒带的塔中2号、10号断裂带,北东向的塔中8井、中3井、塔中3井断裂带、玛东-塘北断裂、塘古巴斯坳陷内断裂以及北东向的一组深入基底的走滑断裂,近东西向的塔中5号断裂。通过精细的地震剖面解释,本文对塔中地区主干断裂系统的几何学、运动学特征进行了详细描述,按变形机制的不同将塔中地区断裂组合样式分为压扭性构造、伸展构造以及走滑构造三种主要类型,其中又以压扭性构造为常见。根据断裂发育的程度、组合样式和几何关系的复杂性等特征,进一步将压扭性构造划分为多种次级类型。论文对计算断裂活动性的古落差方法进行了改进,采用一种通过层拉平,选定标准层,并统计主干断裂各活动时期形成的铅直断距来进行断裂活动性的分析和计算。结果表明,北西向断裂系统活动的高峰期为早奥陶世末-中晚奥陶世早期,晚奥陶世以后活动微弱;而北东向或近东西向断裂系统活动高峰期为晚奥陶世末期,志留纪以后继承性微弱活动。
     在对断裂的构造样式和构造活动性系统分析的基础上,论文开展了对塔中地区主干断裂系统的分期配套研究。结果显示,北西向断裂系统主要形成于早奥陶世末的中加里东Ⅰ幕构造运动,平面呈向西撒开,向东收敛的“帚状断裂系”,其中塔中Ⅰ号断裂带为主干断裂,且西段构造活动性整体较强,与其反冲的塔中22号以及主垒带断裂组合成“冲起构造”,东段断层活动性减弱,反冲构造不发育,表现为以断弯褶皱为特征的低幅背斜。因此,塔中隆起构造样式具有显著的东西分异的特点;发育于塔中南缘、塘古巴斯坳陷内北东向或近东西向断裂系统主要形成于晚奥陶世末中加里东Ⅱ幕构造运动,平面上形成一个向西北方向凸出的弧形,叠加于中加里东Ⅰ幕断裂体系之上。早期构造格局的东西差异性直接导致叠加方式的不同,西段塘古巴斯坳陷内的于田北-塘南断裂带、中3井断裂带与隆起边界的玛东-塘北断裂带、塔中8井断裂带形成对冲构造样式,构成挤压式“对冲凹陷”。东段塔中5号断裂直接逆冲于早期的低幅背斜之上,形成双冲构造。此外,晚奥陶世末期,塔中地区还发育一组北东向深入基底的走滑断裂,切割了早期的北西向断裂系统,而早期的部分北西向断裂后期以走滑形式继承性活动;中加里东Ⅱ幕构造运动之后,塔中地区断裂活动逐渐微弱,仅南缘的部分断裂以及主垒带的塔中2号、10号断裂带具有一定的、以压扭性方式为特征的继承性活动。
     塔中断裂的活动控制了隆起带的构造演化和构造格局。本文通过利用地质外推法恢复各时期的剥蚀量,综合应用构造演化剖面技术,编制了3条跨塔中地区的构造演化剖面,在隆起各构造单元关键部位选择模拟井进行沉降史分析,以此为基础研究断裂对隆起构造格局及沉降过程的控制作用。同时,总结前人的研究成果,并通过地层的对比,结合航磁资料及岩石测年数据,分析了塔里木盆地基底结构对后期构造的控制和影响作用,详细研究了周缘三大造山带的构造演化与塔中断裂及隆起构造演化的成因联系,确定塔中隆起带的构造演化和隆坳格局变迁过程如下:
     震旦-早奥陶时期,盆地周缘都处于大洋发育阶段,塔中地区处于伸展环境,伸展构造发育,整体上表现为—北倾的缓坡;早奥陶世末中加里东Ⅰ幕构造运动,西昆仑地区古昆仑洋大规模俯冲消减,发育塔西南周缘前陆盆地,塔中地区由伸展转换为挤压,北西向断裂系统作为该期前陆冲断系的锋缘断裂系统发育,断裂活动方式的不同控制了塔中隆起东西构造格局的差异性,西部表现为断裂控制的“冲起断块”,东部则表现为—低副背斜,隆起西高东低,西宽东窄,将原先基本统一的坳陷分隔为南北两侧的塘古巴斯蚴陷与满加尔坳陷,形成两坳夹—隆的构造格局;中晚奥陶世早期,塔中地区地区继承了早奥陶世末期的构造格局,北西向锋缘断裂系统进一步发育,塔中隆起进一步隆升,其南北两侧的塘古巴斯坳陷以及满加尔坳陷则持续的沉降,两坳夹—隆的构造格局越发明显。晚奥陶世末中加里东Ⅱ幕构造运动发生,东南缘古阿尔金洋的闭合造山,北东向或近东西向的一套向西北凸出的弧形断裂开始发育,组成了以古车尔臣、塘古孜巴斯断裂带为山前构造带,于田北-塘南断裂带、中3井-塔中5号断裂带为锋缘构造的前陆断裂系统,塘古巴斯坳陷抬升解体,塔中隆起东部大幅抬升,完成了西高东低向东高西低构造格局的转换,北侧的满加尔坳陷沉降速率则持续大幅度下降。此外,该时期古昆仑洋已经闭合,发育塔西南周缘前陆盆地,从而来自西南和东南两个方向的挤压构造应力导致塔中隆起地区走滑分量,发育了一套北东向走滑断裂系统,早期北西向部分断裂也以走滑形式继承性活动,隆起基本定型;志留-中泥盆世末期,晚加里东-早海西构造运动,盆地北缘南天山洋开始俯冲消减,东南缘东昆仑洋闭合碰撞造山,由于受远程应力作用的影响微弱,塔中地区断裂活动基本停滞,仅一些位于塔中南缘的部分断裂、北东向走滑断裂以及主垒带断裂以压扭性质继承活动,隆起进一步抬升接受改造并最终定型;晚泥盆世以后,周缘古大洋逐渐闭合,三叠纪早期整个塔里木地块进入陆内造山阶段,塔中地区断裂不再发育,局部地区偶见走滑断裂的形迹,之后随塔里木盆地整体抬升或沉降,隆起彻底消亡。
     碳酸盐岩岩溶作用是塔中地区有利储层发育的重要背景,而断裂系统的发育及其所控制的隆起带的演化是碳酸盐岩台地以及岩溶作用发育的重要因素之一,论文的最后对此进行了比较深入的分析,提出了本区碳酸盐岩台地以及岩溶作用规律的发育模式。塔中隆起碳酸盐岩台地在寒武纪-中晚奥陶世早期的建造期经历了三种不同结构模式的碳酸盐岩台地演化阶段:早中寒武世时期,塔中地区发育北东向倾斜的缓坡型碳酸盐岩台地;晚寒武-早奥陶世,受控于水动力条件以及海平面的变化,塔中地区发育镶边结构的缓坡型碳酸盐岩台地;早奥陶世末-中晚奥陶世早期,受控于与西昆仑造山带有关的中加里东Ⅰ幕的北西向逆冲断裂系统,塔中地区以发育礁滩型孤立台地为特点。晚奥陶世末期受控于与阿尔金造山带有关的中加里东Ⅱ幕北东向断裂系统,塔中隆起带碳酸盐岩台地遭受严重改造破坏。在上述演化过程中,塔中地区三期大的构造运动,控制了本区发生岩溶作用的地层及发生岩溶作用的范围,且在各个不同构造单元岩溶作用特点显著不同,本文综合各类因素分析,建立了研究区内三种不同的岩溶模式。
Since the oil and gas exploration implementing comprehensive in the Tarim Basin, Tazhong Uplift had been the key region of exploration. Fault system is a basic structural elements of Tazhong Uplift, and predecessors have made some extensive and deep research, but there are still much controversy on faults staging and matching, dynamic background, tectonic evolution of fault system and its controlling of the tectonic framework of Tazhong uplift, and some studies are still weak such as the oil and gas geological significance of Tazhong fault system, particularly the control action of faults to the development of the carbonate platform and karst process. For solving these problems existing in researching Fault system of Tazhong Uplift, this paper carried out comprehensive and systematic study by using seismic, drilling and regional geological data.
     The fault system of Tazhong uplift can be divided into three groups:the northwestward of Tazhong1 fault, Tazhong22 fault, the Tazhong2 fault and Tazhong10; The northeastward faults contain Tazhong 8 well fault, zhong 3 well fault, Tazhong 3 well fault, Madong-tangbei fault and faults system in Tangguzibasi depression, and a group of NE strike-slip faults which pentrate into the basement; the nearly east-westward of Tazhong 5 fault. Through the accuratly interpretation of seismic profiles, this paper described the geometry and kinematics characters of the fault system in Tazhong uplift detailly, and divided the structural styles into compresso-shear tectonic structures, extensional tectonic structures and strike-slip tectonic structures according to the different of deformation mechanisms, and the compresso-shear tectonic structures is the most common.According to the degree of faults development, assemble patterns and complexity of geometric relationship, compresso-shear structures can be divided into multiple sub-types.This paper improved palae-throw method, proposed an new method which based on horizon flattening and selecting the marker bed to compute the vertical fault flow of main faults in the different active epoch.Result showed that the northwestward fault system is mainly actived from the end of Early Ordovician to the early of the Middle-Late Ordovician, and weakened after the Late Ordovician, however, the northeastward or eastwestward fault systems are mainly actives in the end of Late Ordovician, after Silurian succession actived weakly.
     On the basis of the systematic analysis of the structure style and the tectonic activity of the main fault belt, the coordination of the main fault systems was studied in the Tazhong Areat. The result shows that the fault system striking NW was formed during the EpisodeⅠin the Caledonian movement at the last period of the early Ordovician. On the map, that is the broom-lie fault system which disperse westward and convergent eastward. The fault TazhongⅠis the main fault and its west branch was more active. The fault Tazhong 22, recoiled to the TazhongⅠ, and the faults at the main horst zone consist the pop-up structure. The east branch of the TazhongⅠwas weaker with litter ramp and shows as the gentle anticline characterized by the faulted-bend fold. Therefore, the structure style of the Tazhong uplift is very different between the east and west branch. The faults striking NE or nearly EW were formed during the EpisodeⅡin the Caledonian movement, located at the southern margin of the Tazhong and the Tagubasi depression. These faults consist of a northwestward arcuate zone and overlap on the fault system formed at the EpisodeⅠof the Caledonian movement. The difference between the earlier tectonic framework directly lead to the different overlap style. The Yutangbei-Tangnan faults belt and the Zhong-3-Well fault in the western Tanggubasi depression, and the Madong-Tangbei faults belt and the Tazhong-8-well fault consist of the opposite thrust structure and formed the compressional opposite thrust depression. The east branch of the Tazhong 5 fault directly thrust up to earlier formed gentle anticline and composed the duplex thrust structure. Meanwhile, a serial NE fault, deep into the basement, cut the earlier NW faults system and some earlier NW faults showed as continued strike slip at later. After the EpisodeⅡof the middle Caledonian movement, the activity of the faults in Tazhong became weaker and only a few faults at the southern margin and the Tazhong 2 and 10 fault showed litter compression at the main horst zone.
     The activity of fault system controlled the tectonic framework about Tazhong unlift. By using the geological extrapolation method to recover the erosion thickness of each period, combining with tectonic evolution sections technology, this paper compilated three tectonic evolution profiles that crossed the uplift and subsidence history analysis of imitation wells that distributed in key position of the uplit, and researched the evolution of tectonic framework and settling process which controlled by the fault system. Meanwhile, according to summarize the results of previous studies, combine with stratigraphic correlation aeromagnetic and rock dating data, This paper analysed the basal structure of the Tarim Basin and its affections to the later deformation, researched the tectonic evolution of the three orogenic zone around the basin, studied the genetic connection between the evolution of orogenic zone and Tazhong fault system, based on, This paper determined the tectonic evolution and the uplift-depression framework processing changes about the uplift as follows:
     Sinian-early Ordovician period, the basin is surrounding with paleo-oceans and Tazhong area is extensional setting, commonly developing stretching structure. The basin is revealed it is a north dipping slop; At stageⅠof Caledonian movement of the end of the early Ordovician, large-scale Kunlun paleo-ocean was subducted and shortened, generating Taxinan peripheral foreland basin. In addition, stresses of Tazhong were transformed from stretching to compression. Thrust zone of foreland basin is characterized by front-edge northwest dipping faults and fractures system. The difference of faulting activity controls different characteristics of north-east trending tectonic framework, i.e. pop-up structure are developed to the west, and to the east it is low amplitude anticline, dipping toward north and deformation zone decreasing The uplift divided originally unity of depression into two relatively small-scale depressions, Tanggulazi depression and Manjiaer depression. Tectonic framework of Tazhong area inherited style of early and middle Ordovician period. Northwest trending front-edge faults systems were further developed and uplift of Tazhong area is ongoing, resulting to persistent subsidence of Tangguolasi and Manjiaer depressions. In all, uplift is flanked by two depression gradually shown there. The end of the Late Ordovician is Caledonian stageⅡmovement, southeastern basin margin Aerjin paleo-ocean is closed and orogeny is commencing. Northeast or East-west trending arc-shaped faults system are appeared. This system consisted with Gucheercheng-Tangguolabasi piedmont tectonic belt, Yutianbei-Tangnan faults and Zhong well 3-Tazhong No. 5 faults front edge foreland faults system. Tanggubasi depression was broke up and north segment of Tazhong uplift rose dramatically, giving rise to tectonic framework transformation from west-high-east-low to east-high-west-low. Meanwhile, subsidence rates of Manjiaer depression, lie to northern Tarim basin, are reduced. In addition, Gunlun ocean was closed leading to development of Taxinan peripheral foreland basin. Compression tectonic stress from the southwest and southeast led to strike-slip in Tazhong area and Northeast trending strike-slip system are appeared there, the previous Northwest trending faults also acted as inherited strike-slip fault. Uplift is stable; Silurian- late Devonian is Late Caledonian-Hercynian tectonic movement, subduction of South Tianshan ocean, located in northern basin margin, is beginning. Whereas East Kunlun ocean, located in southeast basin margin, begin to close with orogenic collision. Faults in Tazhong area are weak due to weak distance effect. Only a few faults in the South edge of Tazhong, northeast trending strike-slip faults, as well as faults on the main horsts experience twisting stress, uplifts continue to rise and eventually uplifting; After late Devonian, paleo-ocean surrounding Tarim basin were gradually closed and at early Triassic period Tarim block experience intro-continent orogeny. Faults in Tazhong area stop development and occasionally strike-slip is generated. Uplift and subsidence of Tarim basin results to disappear of uplift.
     The karstification of carbonatite is an important backgroud for reservoir development in Tazhong, the development of fault system and the evolution of uplift which were controled by the fault system was one of the important factors that controedl the development of carbonate platform and its karstification. An more in-depth analysis have been taken in the final of this paper, the models of carbonate platform and its karstification development have been taken in this area. The Tazhong uplift Area Carbonate platform had been experienced three different evolution models in construction period from Cambrian to the early of Middle-Late Ordovician: Early-Middle Cambrian, ramp carbonate platform developed which trend to northeast; Late Cambrian to Early Ordovician, rimmed shelf carbonate platform developed which was controlled by hydrodynamic conditions and sea level changes; The end of Early Ordovician to the eraly of Middle-Late Ordovician, controlled by the northwestward thrust fault system which associated with the West Kunlun orogenic belt, developed isolated reef platform in Tazhong uplift Area. The end of Middle-Late Ordovician, controlled by the northeastward thrust fault system associated with Arkin orogenic belt which led the platform and depression lifting、disintegration and destruction.In the process of evolution mentioned above, three major tectonic movements had been controled the horizon and the scope of karstification, and showed different characters in the different tectonic unit. Comprehensive analysed all factors, this paper established three different karst model.
引文
[1]Levorsen A I, Berry Frederick A F. Geology of Petroleum[M].Amer Assn of Petroleum Geologists,1954.
    [2]Kingston D R, Dishroom C P, Williams PA. Global Basin Classification system[J]. AAPG, 1983,67:2175-2193.
    [3]Kleinspehn K L, Paola C. New Perspectives in Basin Analysis[M]. New York: Springer-verlag,1988,453.
    [4]Shannon P M, Naylor D. Petroleum Basin Studies[M]. New York:Springer-verlag,1989, 200.
    [5]朱夏.我国中新生界含油气盆地的大地构造特征及有关问题[A].中国大地构造问题[C].北京:科学出版社,1965,4-26.
    [6]朱夏.活动论构造历史观[J].石油实验地质,1991,13(3):201-209.
    [7]朱夏,徐旺等.中国中新生代沉积盆地[C].北京:石油工业出版社,1990,1-12.
    [8]孙肇才.中国油气盆地基本地质特征[A].中国新星石油文集[C].北京:地质出版社,1999,152-162.
    [9]汤良杰,贾承造,金之钧等.中国西北叠合盆地的主要构造特征[J].地学前缘(中国地质大学,北京),2003,10(特刊):118-124.
    [10]汤良杰,金之均,庞雄奇.多期叠合盆地油气运聚模式[J].石油大学学报(自然科学版),2000,24(4):67-70.
    [11]庞雄奇,金之均,姜振学等.叠合盆地油气资源评价问题及其研究意义[J].石油勘探与开发,2002,29(1):9-13.
    [12]Dickinson W R, Anderson R N, Biddle K T, et al. The dynamics of sedimentary basins.Panel of the Geodynamics of Sedimentary Basins, U.S.Geodynamics Committee, Board on Earth Sciences and Resources,Commission on Geosciences, Environment,and Resources, National Research Council[M]. Washington:National Academy Press,1997,43.
    [13]Allen P A, Allen J R. Basin Analysis PrinciPles and Application[M].Blackwell,1990, 460-464.
    [14]Ziegler PA. Plate tectonics, plate moving mechanisms and rifting[J].Tectonphysics,1992 (b),215:9-34.
    [15]Dickinson W R.Basin Geodynamlcs[J]. Basin Research,1993,5(5):195-196.
    [16]Borowski W S, Paull C K, Usslerll I W.Marine Pore-water sulfate Profiles indicate in situ methane flux from underlying gas hydrate[J].Geology,1996,24 (7):655-658.
    [17]贾承造.中国塔里木盆地构造特征与油气[M].北京:油工业出版社,1997.
    [18]贾承造,魏国齐,姚慧君等.塔里木盆地构造演化与区域构造地质[M].北京:石油工业出版社,1995.
    [19]张宗命,贾承造.塔里木克拉通盆地内古隆起及其找油方向[J].西安石油学院学报,1997,12(3):8-13
    [20]贾承造.塔里木盆地构造特征与油气聚集规律[J].新疆石油地质,1999,20(3):177-183.
    [21]贾承造等.塔里木盆地板块构造与大陆动力学[M].北京:石油工业出版社,2004.
    [22]何登发,李德生.塔里木盆地构造演化与油气聚集[M].北京:地质出版社,1996.
    [23]何登发.塔里木盆地的地层不整合面与油气聚集[J].石油学报,1995,16(3):14-21.
    [24]李明杰,郑孟林,冯朝荣等.塔中低凸起的结构特征及其演化[J].西安石油大学学报(自然科学版),2004,19(4):43-45.
    [25]李曰俊,吴根耀,孟庆龙等.塔里木盆地中央地区的断裂系统:几何学、运动学和动力学背景[J].地质科学,2008,43(1):82-118.
    [26]钟建华等.塔里木盆地塔中Ⅱ号构造带演化及其对油气藏的控制作用[学位论文].北京:北京石油大学,2007.
    [27]李明杰,胡少华,王庆果等.塔中地区走滑断裂体系的发现及其地质意义[J].石油地球物理勘探,2006,41(1):116-121.
    [28]Thorsen C E.Age of growth faulting in southeast Louisana, Trans., Gulf-Coast ASS.Geol.Socs.,1963,13:103-110.
    [29]徐开礼,朱志澄.构造地质学[M].北京:地质出版社,1984,125-126.
    [30]Elliott D.The energy balance and deformation mechanisms of thrust sheets:pfilosopical Tramsactions Royal Society of London,1976,283:289-312.
    [3]]高振家,陈晋镳,陆松年,等.新疆北部前寒武系[M].前寒武纪地质,第6号,北京:地质出版社,1993.
    [32]胡霭琴,格雷姆,罗杰斯.新疆塔里木北缘首次发现33亿年的岩石[J].科学通报,1992,37(7):627-630.
    [33]董富荣,李嵩龄,冯新昌.库鲁克塔格地区新太古代深沟片麻杂岩特征[J].新疆地质,1999,17(1):82-87.
    [34]胡霭琴,张国新,李启新等.新疆北部同位素地球化学与地壳演化[A].新疆北部地球科学新进展[C].北京:科学出版社,1993.
    [35]李志琛.敦煌地块变质岩系时代新认识[J].中国区域地质,1994,2(1):131-134.
    [36]王云山等.青海省及毗邻地区变质地带与变质作用[M].北京:地质出版社,1987,9-10.
    [37]车自成,孙勇.阿尔金麻粒岩相杂岩的时代及塔里木盆地的基底[J].中国区域地质,1996,(1):51-57.
    [38]新疆地矿局十大队.和田地区地质矿产图说明书.北京:地质出版社,1989.
    [39]Cowgill E S.Tectonic Evolution of the Altyn Tagh and the Western Kunlun Sham Northern Tibetan Plateau, Ph.D. thesis, University of California,2001, Los Anugeles Cunningham W D, et al. Late Cettoaoic transpression in southwestern Mongolia and the Gobi Altai-Tien Shan connection, Earth and Planetary Science letters,1996,140:67-68.
    [40]Liou J G, Graham S A, Matuyama S, wang X, et, al. Proterozoic blueschist belt in western China; best documented Precambrian blueschists in the world[J]. Geology,1989,17(12): 1127-1131.
    [41]Nakajima T, Maruyama S, Uchiumi S, et, al.Evidence for late Proterozic subduction from 700-Myr-old blueschists in China[J].Nature,1990,346:263-265.
    [42]吴根耀,李曰俊,王国林等.新疆西部巴楚地区晋宁期的洋岛火山岩[J].现代地质,2006,20(3):361-369.
    [43]周辉,储著银,李继亮,侯泉林,王志洪,方爱民.西昆仑库地韧性剪切带的40Ar/39Ar年龄[J].地质科学,2000,35(2):233-239.
    [44]汪玉珍.西昆仑依莎克群的时代及其构造意义[J].新疆地质,1983,1(1):1-8.
    [45]肖序常,王军,苏犁,等.再论西昆仑库地蛇绿岩及其构造意义[J].地质通报,2003,22(10):745-750.
    [46]王元龙,李向东.西昆仑加里东期花岗岩带的地质特征[J].矿物学报,1995,15(4):457-461.
    [47]许荣华Vidal, P.西昆仑山北部早古生代构造—岩浆带的发现[J].地质科学,1994,29(4):313-328.
    [48]崔建堂,王炬川.边小卫西昆仑康西瓦—带早古生代石英闪长岩的地质特征及其锆石SHRIMP U-Pb测年[J].地质通报,2006.25(12):1450-1457.
    [49]郭坤一,张传林,赵宇.塔里木南缘煌斑岩的时代及其地质意义[J].地质科学,2003,38(4):532-534.
    [50]冯益民.祁连造山带研究概况.历史、现状及展望[J].地球科学进展,1997,12(4):307-314.
    [51]许志琴,杨经绥,张建新等.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报,1999,73(3):193-205.
    [52]修群业,于海峰,刘永顺.阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄[J].地质学报,2007,81(6):787-794.
    [53]史仁灯,杨经绥, 吴才来等.柴达木北缘超高压变质带中的岛弧火山岩[J].地质学报,2004,78(1):52-64.
    [54]校培喜.阿尔金山中段清水泉-茫崖蛇绿构造混杂岩带地质特征[J].西北地质,2003,36(2):20-29.
    [55]刘良,车自成.阿尔金茫崖地区早古生代蛇绿岩的Sm—Nd等时线年龄证据[J].科学通报,1998,43(8):880-883.
    [56]相振群,陆松年,李怀坤等.北祁连西段熬油沟辉长岩的锆石SHRIMP U-Pb年龄及地质意义[J].地质通报,2007,26(12):1678-1686.
    [57]陈宣华,Gehrels G,王小凤.阿尔金山北缘花岗岩的形成时代及其构造环境探讨[J].矿物岩石地球化学通报,2003,22(4):294-298.
    [58]郝杰,王二七,刘小汉等.阿尔金山脉中金雁山早古生代碰撞造山带:弧岩浆岩的确定与岩体锆石U-Pb和蛇绿混杂岩40Ar/39Ar年代学研究的证据[J].岩石学报,2006,22(11):2743-2752.
    [59]宋述光,张立飞,Y.Niu等.北祁连山榴辉岩锆石SHRIMP定年及其构造意义[J].科学通报,2004,49(6):592-595.
    [60]兰朝利,李继亮,何顺利.古特提斯多岛洋洋-陆俯冲:木孜塔格蛇绿岩的矿物学证据[J].地球科学(中国地质大学学报),2007,32(3):322-328.
    [61]郝杰,刘小汉.南天山蛇绿混杂岩形成时代及大地构造意义[J].地球科学,1993,28(1):93-95.
    [62]王润三,王焰,李惠民等.南天山榆树沟高压麻利地体U-Pb法锆石定年极其地质意义[J].地球化学,1998,27(6):517-522.
    [63]王超,刘良,车自成等.西南天山阔克萨彦岭巴雷公镁铁质岩石的地球化学特征、LA—ICP—MS U—Pb年龄及其大地构造意义[J].地质论评,2007,53(6):743-754.
    [64]杨海波,高鹏,李兵等.新疆西天山达鲁巴依蛇绿岩地质特征[J].新疆地质,2005,23(2):123-126.
    [65]肖序常,汤耀庆.新疆北部及其邻区大地构造[M].北京:地质出版社,1992.
    [66]徐学义,马中平,何世平等.西南天山吉根地区P-MORB残片的发现及其构造意义[J].岩石矿物学杂志,2003,22(3):245-253.
    [67]徐学义,马中平,夏祖春等.天山中西段古生代花岗岩TIMS法锆石U-Pb同位素定年及岩石地球化学特征研究[J].西北地质,2006,39(1):50-75.
    [68]汤耀庆,高俊,赵民等.西南天山蛇绿岩和蓝片岩[M].北京:地质出版社,1995,133.
    [69]刘斌,钱一雄.东天山三条高压变质带地质特征和流体作用[J]岩石学报,2003,19(2):283-296.
    [70]邬光辉,张宝收,张承泽等.英吉苏凹陷碎屑锆石测年及其对沉积物源的指示[J].新疆地质,2007,25(4):351-355.
    [71]Lyon-Caen H.Comparison of the upper mantle shear wave velocity structure of the Indian shield and the Tilaet plateau and tectonic implications[J].Geophysical J.R. Astron, Soc., 1986,86:727-749.
    [72]李成,王良书,随平等.塔里木盆地热演化[J].石油学报,2000,21(3):13-17.
    [73]Carroll A R, Grahamw S A, Smith M E, et, al. Walled sedimentary basins of China[J]. Basin Research,2010,22:17-32.
    [74]Ahr W M. The carbonate ramp-an alternative to the shelf model[J]. Trans. Gulf Coast Assoc. Geol. Societies,1973,23:221-225.
    [75]Ginsburg R N, James N P. Holocene carbonate sediments of continental shelves[J]. In:The Geology of Continental Margins (Ed. by C.A. Burk & C.L. Drake),1974,137-155. Springer-Verlag.
    [76]Wilosn J L. Carbonate Facies in Geologic History[J]. Springer-Verlag, New York,1975.
    [77]Kendall, C. G. ST. C.& SCHLAGER, W. Carbonates and relative changes in sea level. Mar. Geol.,1981,44:181-212.
    [78]Hine A C, Mullins H T. The carbonate shelf-slope break[J]. In:The Shelf-Break:Critical Interface on Continental Margins (Ed. by D.J. Stanley & G.T. Moore), Soc. Econ.Paleontol. Miner. Spec. Publ.,1983,33:169-183.
    [79]James N P, Mountjoy E W. Shelf-slope break in fossil carbonate platforms:an overview[J]. In:The Shelf-Break:Critical Interface on Continental Margins (Ed. by D.J. Stanley & G.T. Moore), Soc. Econ. Paleontol. Miner. Spec. Publ.,1983,33:189-206.
    [80]Read J F. Carbonate platforms of passive (extensional) continental margins:types, characteristics and evolution[J].Tectonophysics,1982,81:195-212.
    [81]Read J F. Carbonate platform facies models[J]. Am. Assoc.Petrol. Geol. Bulletin,1985,69: 1-21.
    [82]Tucker M E. Geological background to carbonate sedimentation. In:Carbonate Sedimentology (Ed. by M.E.Tucker & V.P. Wright), Blackwell Scienti(?)cPublications, Oxford,1990,28-69.
    [83]Handford C R, Loucks R G. Carbonate depositional sequences and systems tracts-responses of carbonate platforms to relative sea-level changes[J]. In:Carbonate Sequence Stratigraphy: Recent Developments and Applications (Ed. By B. Loucks&R.J. Sarg), Am. Assoc. Petrol. Geol. Bull.,1993,57:3-41.
    [84]Wright V P, Burchette T P.Shallow-water carbonate environments[J].In:Sedimentary Environ ments:Processes, Facies and Stratigraphy (Ed. by H.G. Reading), Blackwell Science Ltd, Oxford,1996:325-394.
    [85]Pomar L. Types of carbonate platforms:a genetic approach[J]. Basin Research,2001,13: 313-334.
    [86]顾家裕,马锋,季丽丹.碳酸盐岩台地类型、特征及主控因素[J].古地理学报,2009,11(1):21-27.
    [87]尹微,樊太亮,郭刚等.不同受力机制下的碳酸盐岩台地类型及其控制因素分析[J].石油天然气学报(江汉石油学院学报),2006,28(4):188-191.
    [88]于炳松.塔里木盆地北部古生代层序地层系统[J].地质评论,1996,42(1):14-21.
    [89]成都地质学院沉积地质矿产研究所译编.古岩溶与油气储层[M].成都:成都科技大学出版社,1991,2-6.
    [90]舒志国,朱振道,何希鹏等.塔中隆起奥陶系古岩溶储层发育特征[J].新疆地质,2008,26(3):274-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700