用户名: 密码: 验证码:
轴流泵内部空化流动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空化现象普遍存在于诸多领域内液体输送过程中,空化的发生会造成输送机械性能的下降,产生空蚀破坏,引起机组振动加剧,无法控制的空化会产生严重的甚至是灾难性的后果。对空化流动的研究属于多学科强交叉的范畴,揭示空化流动的机理从而实现对空化程度的有效控制是学术界和工程界急需解决的难题。目前对空化两相流动理论的研究仍处于探索之中,水力机械内部空化流动机理尚未被揭示。在国家自然科学基金项目(N0.50776040)的资助下,本文以自行设计的轴流式模型泵为研究对象,从理论分析、数值计算和实验研究三方面入手,对该型泵内空化演变过程、流动机理等问题进行了较为系统的研究,主要工作及取得的创新性成果如下:
     1、从分析水力机械内空化流动理论入手,详细阐述了影响空化发生和发展的因素以及水力机械内空化监测和定位的方法,提出采用(托马)空化系数判定轴流泵内空化程度、摄像法和振动法相结合的手段研究泵内空化流动细节的思路。
     2、结合轴流泵叶轮内液体运动规律的分析,阐述了变环量设计方法的实质,推导出了满足泵能量性能的环量分布系数表达式,并以此为基础设计了轴流式模型泵。通过泵性能试验,验证了设计方法的有效性。
     3、通过对不同湍流模型下计算结果的对比分析,确定了轴流泵内空化流动的合适计算模型。基于上述模型,对模型泵内的空化两相流场进行了全流道、三维定常计算,初步揭示了不同空化程度下泵内空化发生位置、空泡团形态的演变规律及对泵性能、空蚀破坏的影响,揭示了轴流泵叶顶间隙产生的空化流动的结构及特征。
     4、运用高速摄像技术和图像处理技术对不同空化程度下的非稳态空化流动细节进行捕捉、显示和测量分析,获得了空化初生、发展和恶化阶段空化流动的时空特性,从空泡团形态特征的角度提出了泵临界汽蚀的判定依据。研究中得到了空化初生空泡团的大致生命周期、旋涡空化的涡径尺寸分布规律以及空化发生区域随空化系数的演变过程等重要信息,基本掌握了轴流泵内空化流动的形态变化特性。
     5、提出了适合于模型泵的振动信号测量及分析方法,运用LMS多通道振动噪声测试与动力学分析系统对模型泵内水力因素诱发的振动进行了较为全面的测量,详细分析了能量工况、空化工况及不同调节方式下的振动特性,并从理论上分析了空化对振动的激励和阻尼的关系,基本掌握了模型泵振动随工况的变化规律。提出了利用振动法识别泵最优工况点、判断空化的不同发展阶段的方法。研究结果为有低振动传递要求的泵的安全运行提供了有益的参考。
     本文的研究成果、研究方法在一定程度上可以推广应用于其它类型水力机械内的空化流动的研究。
The cavitation phenomenon exists widely in many domains with liquid transporting process. The occurrence of cavitation will decrease the performance of conveying machinery and cause cavitation erosion, lead to additional vibration. The uncontrollable cavitation will cause serious or even disastrous consequences. The study of cavitating flow belongs to categories of multidiscipline crossing. Revealing the mechanism of cavitation and then controlling the degree of cavitation effectively are the urgent need for academy and engineering. At present, researches on the cavitation two-phase flow theory are still on exploration road, especially in the internal field of hydraulic machinery. Under the support of National Natural Science Fund (No.50776040), the self-designed model axial-flow pump is adopted as the study object. Systematic study on cavitation evolution and cavitating flow mechanism in model pump has been done. The major works and achievements are as following.
     1. Based on the basic theories of cavitating flow in hydraulic machinery, detailed descriptions about influencing factors of cavitation and methods of cavitation monitoring and positioning were given. The idea of using Thomas-coefficient and combination research methods of vibration and photograph to study the cavitating flow in axial-flow pump was put forward.
     2. Combined with the analysis of flow mechanism in axial-flow pump, the nature of variable circulation design was discussed. The formula of distribution coefficient about outlet circulation meeting pump energy performance was derived. The axial-flow pump was designed with above method. The validity of design was verified by pump performance tests.
     3. According to comparative analysis of calculation results of four turbulence models, the adaptive simulation model of cavitating flow in axial-flow pump was determined. Based on conformed method, the three-dimensional steady turbulent cavitating flow in the pump was simulated. The preliminary study on location and evolution law of cavitation was carried out. The influence of cavitation on pump performance and erosion was alos given. The structure and features of cavitating flow through blade tip clearance was revealed.
     4. The details of unsteady cavitating flow under different cavitation coefficient were captured and measured by using high speed imaging and image processing technology. The time and space characteristics of cavitating flow in different stages were obtained. A judging basis for detecting pump's cirtical cavitation point was proposed form perspective of cavitation shape. The lifecycle of incipient cavitation, distributation of vortex cavitation, occurrence region of cavitation were obtained. The variation characteristic of cavitating flow in the pump was basically grasped.
     5. The suitable measurement and analysis methods of vibration signal were proposed. The vibration induced by hydraulic factors was measured by using LMS sound&vibration measurement. The vibration characteristics of model pump under different situations were analysised and the relationship between vibration and pump running condition was approximately masted. The judging methods of best efficiency point and cavitation degrees of the pump were proposed. The research results provide an effective reference for safe operation of pump.
     Research achievements and methods form this paper can be extended and applied on study of cavitating flow in other types of hydraulic machinery.
引文
[1]Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine,1917,6:94-98.
    [2]Plesset M S. The dynamics of cavitation bubbles. Journal of Applied Mechanics,1949,16: 228-231.
    [3]Poritsky H. The collapse or growth of a spherical bubble or cavity in a viscous fluid. Proc. First, U.S. Nat. Congress Applied Mech, ASME,1952:813-821.
    [4]Dergarabedian P. The rate of growth of vapor bubbles in superheated water, [Ph.D.]. California:California Institute of Technology,1952.
    [5]Herring C. Theory of the pulsations of the gas bubble produced by an underwater explosion, [Ph.D.]. Columbia:Columbia University,1941.
    [6]Trilling L. The collapse and rebound of a gas bubble. Journal of Applied Physics, 1952,23(1):14-17.
    [7]Gilmore F R. The growth and collapse of a spherical bubble in a viscous compressible liquid[Ph.D.]. California:California Institute of Technology,1952.
    [8]Kirkwood J G, Seeger R J. Surface wave from an underwater explosion. Journal of Applied Physics,1948,19(4):346-360.
    [9]Mellen R H. An experimental study of the collapse of a spherical cavity in water. Journal of the Acoustical Society of America,1956,28(3):447-454.
    [10]Flynn H G. The collapse of a transient cavity in a compressible liquid, [Ph.D.]. Cambridge: Harvard University,1956.
    [11]Hickling R, Plesset M S. Collapse and rebound of a spherical bubble in water. Physics of Fluids,1964,7:7-14.
    [12]赵键,汪鸿振,朱物华.关于空泡动力学方程精确度的分析.中山大学学报(自然科学版),1994,33(1):13-18.
    [13]刘小兵,程良俊.空泡在任意流场中的运动研究.水动力学研究与进展,1994,A,9(2):150-162.
    [14]Vogel A. Dynamics of laser-induced cavitation bubbles near an elastic boundary. Fluid Mechanics,2001,433:251-281.
    [15]Ohl CD, Lindau O, Lauterborn W. Details of asymmetric bubble collapse. Michel JM, Kato H, Third International Symposium on Cavitation, Grenoble, France,1998:39-44.
    [16]陶文铨.计算传热学的近代进展.北京:科学出版社,2001.
    [17]车得福,李会雄.多相流及其应用.西安:西安交通大学出版社,2007.
    [18]Rapaport D C. The art of molecular dynamics simulation. Cambridge:Cambridge University Press,2004:1-5.
    [19]Meier K, Laesecke A, Kabelac S. A molecular dynamics simulation study of the self-diffusion coefficient and viscosity of the Lennard-Jones fluid. International Journal of Thermophysics,2001,22(1):161-173.
    [20]Meier K, Laesecke A, Kabelac S. Transport coefficients of the Lennard-Jones model fluid. The Journal of Chemical Physics,2004,121(19):9526-9535.
    [21]Marek R, Straub J. Analysis of the evaporation coefficient and the condensation coefficient of water. International Journal of Heat and Mass Transfer,2001,44:39-53.
    [22]Meland R. Molecular exchange and its influence on the condensation coefficient. The Journal of Chemical Physics,2002,117(15):7254-7258.
    [23]Nagayama G, Tsuruta T. A general expression for the condensation coefficient based on transition state and molecular dynamics simulation. The Journal of Chemical Physics,2003,118(3):1392-1399.
    [24]Thompson P A, Troian S M. A general boundary condition for liquid flow at solid surfaces. Nature,1997,389:360-362.
    [25]何雅玲,王勇,李庆,等.格子Boltzmann方法的理论及应用.北京:科学出版社,2011.
    [26]Hardy J, Pomeau Y, Pzaais Od. Time evolution of two-dimensional model system. I:Invarient states and time correlation functions. Journal of Mathematical Physics,1973,14:1746-1759.
    [27]Hardy J, Pzaais Od, Pomeau Y. Molecular dynamics of a classical lattice gas:Transport properties and time correlation functions. Physical Review A,1976,13:1949-1961.
    [28]Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equations. Physical Review Letters,1986,2:291-297.
    [29]Qian Y H, Succi S, Orszag S A. Recent advances in lattice Boltzmann computing. Annual Reviews of Computational Physics,1995,3:195-242.
    [30]Nourgaliev R R, Dinh T N, Theofanous T G, et al. The lattice Boltzmann equation method: Theoretical interpretation, numerics and implications. International Journal of Multiphase Flow,2003,29:117-169.
    [31]Bird G A. Molecular gas dynamics and the direct simulation of gas flows. Clarendon:Oxford, 1994.
    [32]Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface. Fluid Mechanics,1981,111:123-140.
    [33]Blake J R, Taib B B, Doherty G Transient cavities near boundary. Fluid Mechanics,1993, 245:137-154.
    [34]Best J P, Kucera A. A numerical investigation of non-spherical rebounding bubbles. Fluid Mechanics,1986,170:479-497.
    [35]Blake J R, Robinson P B, Shima A, et al. Interaction of two cavitation bubbles with a rigid boundary. Fluid Mechanics,1993,255:707-721.
    [36]Best J P. The formation of toroidal bubbles upon the collapse of transient cavities. Fluid Mechanics,1993,251:79-107.
    [37]戚定满,鲁传敬.单空泡演化及辐射噪声.上海交通大学学报,1998,32(12):50-54.
    [38]蔡悦斌,鲁传敬,何友声.瞬态空化泡的成长与渍灭.水动力学研究与进展,1995A辑,10(6):654-660.
    [39]戚定满,鲁传敬,何友声.两空泡运动特性研究.力学季刊,2000,21(1):16-20.
    [40]冷海军,鲁传敬.轴对称体的局部空泡流研究.上海交通大学学报,2002,36(3):1395-398.
    [41]张阿漫,姚熊亮.近壁面气泡的运动规律研究.物理学报,2008,75(3):1662-1671.
    [42]张振宇,王起隶,张惠生.表面张力对近壁面二空化泡影响的数值模拟.力学学报,2005,37(1):100-104.
    [43]Delannoy Y, Kueny J L. Cavity flow predictions based on the Euler equations. ASME Cavitation and Multiphase Flow Forum,1990,109:153-158.
    [44]Edwards J R, Franklin R K, Liou M S. Low-diffusion flux-splitting methods for real fluid flows with phase transitions. Journal of American Institute of Aeronautics and Astronautics, 2000,38:1624-1633.
    [45]Ventikos Y, Tzabiras G A numerical method for the simulation of steady and unsteady cavitating flows. Comput Fluids,2000,29:63-68.
    [46]王国玉,方韬,曹树良,等.非定常粘性空化流动模型及其数值计算.工程热物理学报,2004,25:783-789.
    [47]Merkle C L, Feng J, Buelow P E O. Computational modeling of the dynamics of sheet cavitation. Michel JM, Kato H, Third International Symposium on Cavitation, Grenoble, France,1998:307-313.
    [48]Kunz R F, Boger D A, Stinebring D R, et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Computers & Fluids,2000,29(8): 849-875.
    [49]Senocak I, Shyy W. A pressure-based method for turbulent cavitating flow computations. Journal of Computational Physics,2002,176(2):363-383.
    [50]Singhal A K, Athavale M M, Li H, et al. Mathematical basis and validation of the full cavitation model. Journal of Fluid Engineering,2002,124(3):617-624.
    [51]Knapp R T, Hollander A. Laboratory investigations of the mechanism of cavitation. Trans. ASME,1948,70:419-435.
    [52]Florschuetz L W. On the mechanics of vapor bubble collapse theoretical and experimental investigation, [Ph.D.]. Champaign:University of Illinois,1963.
    [53]Kling C L, Hammitt F G. A photograph study of spark induced cavitation bubble collapse. Journal of Basic Engineering,1972,94(4):825-833.
    [54]Gibson D C. Cavitation adjacent to plane boundaries. Hydraulics and Fluid Mechanics, 1968:210-214.
    [55]Ohl C, Kurz T, Geisler R, et al. Bubble dynamics, shock waves and sonoluminescence. Phil. Trans. R. Soc.1999,357:269-294.
    [56]黄继汤.液体粘性对空泡生存过程的影响.北京建筑工程学院学报,1994,10(2):124-131.
    [57]黄继汤,陈嘉范,丁彤,等.表面张力对单空泡运动特性的影响.水力学报,1996,12:1-7.
    [58]刘秀梅,侯有夫,贺杰,等.液体温度对空泡生长和溃灭过程的影响.光电子-激光,2010,21(5):791-794.
    [59]刘瑞韬,徐忠.离心叶轮机械内部流动的研究进展.力学进展,2003,33:518-532.
    [60]陈海生,谭青春.叶轮机械内部流动研究进展.机械工程学报,2007,43:1-12.
    [61]Senocak I, Shyy W. A pressure-based method for turbulent cavitating flow computations. Journal of Computational Physics,2002,176(2):363-383.
    [62]Lindau J W, Boger D A. Propeller cavitation breakdown analysis. Journal of Fluids Engineering,2002,124:617-624.
    [63]黄彪,王国玉,张博,等.云状空化流动数值模拟的空化模型评价.北京理工大学学报,2009,29(9):785-789.
    [64]陈庆光,吴墒锋,吴玉林,等.轴流式水轮机内部空化流动的数值预测.工程热物理学报,2006,27(5):769-771.
    [65]甘加业,薛永飞,吴克启.混流泵叶轮内部空化流动的数值计算.工程热物理学报,2007,28(增刊1):165-168.
    [66]刘宜,陈建新,宋怀德,等.离心泵内部空化流动的定常数值模拟及性能预测.西华大学学报(自然科学版),2010,29(6):80-84.
    [67]Coutier-Delgosha O, Jean-Luc R, Regiane F P. Numerical study of the effect of the leading edge shape on cavitation around inducer blade sections. JSME International Journal. Series B,2002,45(3):678-685.
    [68]Coutier-Delgosha O, Fortes-Patella J, Reboud J L, et al. Stability of preconditioned Navier-Stokes equations associated with a cavitation model. Computers & Fluids,2005,34: 319-349.
    [69]钱忠东,黄社华.四种湍流模型对空化流动模拟的比较.水科学进展,2006,17(2):203-208.
    [70]李向宾,王国玉,张博RNG k-ε模型在超空化流动计算中的应用评价.水动力学研究与进展,2008,A辑,23(2):181-188.
    [71]Christopher E. A review of cavitation uses and problems in medicine. Invited Lecture. Cavitation:Turbo-machinery & Medical Applications. Wimrc Forun, UK,2006.
    [72]Ausoni P. Farhat M. Cavitation effects on fluid structure interaction in the case of a 2D hydrofoil.2005 ASME Fluids Engineering Division Sumer Conference. Houston:ASME FEDSM2005,2005:19-23.
    [73]Funess R A, Hutton S P. Experimental and theoretical study of two-dimensional fixed-type cavities. Journal of Fluid Engineering,1975,97(4):515-522.
    [74]时素果,王国玉,王复峰,等.绕三维水翼云状空化现象的实验研究.应用力学学报,2011,28(2):105-110.
    [75]Friedrichs J, Kosyna G. Rotating cavitation in centrifugal pump impeller of low specific speed. Journal of Fluid Engineering,2002,124(2):356-362.
    [76]Coutier-Delgosha O, Fortes-Patella J, Reboud J L, et al. Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition. Journal of Fluid Engineering,2003,125:970-978.
    [77]张敏第,宋晓峰,王国玉,等.空化流动图像处理程序设计及应用.北京理工大学学报,2006,26(11):983-986.
    [78]Chudina M. Noise as an indicator of cavitation in a centrifugal pump. Acoustical Physics, 2003,49(4):463-474.
    [79]Xavier E, Eduard E, Mohamed F, et al. Detection of cavitation in hydraulic turbines. Mechanical System and Signal Processing,2006,20(4):983-1007.
    [80]苏永生,王永生,段向阳.离心泵空化监测阙值确定方法研究.农业机械学报,2010,41(5):68-71.
    [81]古梁梁,张勇传,周建中,等.轴流转桨式水轮机空化振动监测的试验研究.水力发电学报,2008,27(5):142-146.
    [82]李忠,杨敏官,高波,等.空化诱发的轴流泵振动特性实验研究.中国工程热物理学会流体 机械分会(已录用).
    [83]黄彪,王国玉,袁海涛,等.绕轴对称体三维非定常空化流动的数值与实验研究.水动力学研究与进展,2011,26(6):837-844.
    [84]Knapp R T, Daily J W, Haminitt F G. Cavitation. New York:McGraw-Hill,1970.
    [85]Dixon H H. Note on the tensile strength of water. Sci. Proc. Royal Dublin Soc.,1909,12: 60-65.
    [86]Dixon H H. On the tensile strength of sap Sci. Proc. Royal Dublin Soc.,1914,14:229-234.
    [87]Havey E N, Whiteley A H, Mcelroy W D, et al. Gas nuclei and their distribution in blood and tissues. Jr. Cellular and Comp. Physiol.,1944,24(1):23-24.
    [88]Havey E N, Mcelroy W D, Whiteley A H. On cavity formation in water. Jr. Appl. Phys.,1947,18(2):162-172.
    [89]Havey E N, Barnes D K, Mcelroy W D, et al. Bubble formation in animals. Jr. Cellular and Comp. Physiol.,1944,24(1):1-22.
    [90]Fox F E, Herzfeld K F. Gas bubbles with organic skin as cavitation nuclei. Jr. Acoust. Soc. Am.,1954,26:984-989.
    [91]Medwin H. Acoustical determination of bubble-size spectra. Jr. Acoust. Soc. Am.,1977,15:7-13.
    [92]Commander K W, Prospereti A. Linear pressure waves in bubbly liquids:Comparison between theory and experiments. Jr. Acoust. Soc. Am.,1989,85:723-746.
    [93]Johnson V E, Hsieh T. The influence of trajectories of gas nuclei on cavitation inception. Proc.6th Naval Hydrodynamics Symposium, Washington D.C.,1966.
    [94]Besant W H. Hydrostctics and hydrodunamics. London:Cambridge University Press,1859.
    [95]弗·亚·卡列林.离心泵和轴流泵中的汽蚀现象(吴达人,文培仁).北京:机械工业出版社,1985.
    [96]柯乃普.空化与空蚀(水力水电科学研究院).北京:水力出版社,1981.
    [97]王献孚.空化泡和超空化泡流动理论及应用.北京:国防工业出版社,2009.
    [98]杨琼方,王永生,张明敏.舰艇螺旋桨水下噪声预测.船舶力学,2011,15(4):435-442.
    [99]关醒凡.现代泵理论与设计.北京:中国宇航出版社,2011.
    [100]李春.水泵现代设计方法.上海:上海科学技术出版社,2010.
    [101]Li Zh, Yang M G A research of axial-flow pump design with method of variable circulation. CECNet 2011, xiannin, China.2011:3859-3862.
    [102]Hinze J O. Turbulence. Michigan:McGraw-Hill,1975.
    [103]陶文铨.数值传热学.西安:西安交通大学出版社,2001.
    [104]Chou P Y. On the velocity correlations and the equations of turbulent vorticity fluctuation. Quart. Appl. Math.,1945,1:33-54.
    [105]Chen C J, Jaw S Y. Fundamentals of turbulence modeling. Washington D C:Taylor & Frances,1998. x i:91-92,119,69,71,63,64.
    [106]Medvitz R B, Kunz R F, Boger D A, et al. Performance analysis of cavitating flow in centrifugal pumps using multiphase. Journal of Fluids Engineering,2002,124(2):377-383.
    [107]Dular M, Bachert R, Bernd S, et al. Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. European Journal of Mechanics B Fluids, 2005,24:522-538.
    [108]杨敏官,姬凯,李忠.轴流泵叶轮内空化流动的数值计算.农业机械学报,2010,41:10-14.
    [109]罗先武,刘树红,绍杰,等.微型泵半开式离心叶轮的空化性能.清华大学学报(自然科学版),2006,46(8):1451-1454.
    [110]谭磊,曹树良,桂绍波,等.带有前置导叶离心泵空化性能的试验及数值模拟.机械工程学报,2010,46(18):177-182.
    [111]杨敏官,高波,李辉,等.旋流泵内盐析两相流场的计算及试验研究.机械工程学报,2008,44(12):42-48.
    [112]杨策,马朝臣,王廷生,等.透平机械叶尖间隙流场研究的进展.力学学报,2001,31(1):70-83.
    [113]Furukawa M, Saiki K, Nagayoshi K, et al. Effects of stream surface inclination on tip leakage flow fields in compressor rotors. ASME Journal of Tuobomachinery,1998,120(4): 683-694.
    [114]Hoeger M, Fritsch, Bauer D. Numeical simulation of the shock-tip leakage vortex interaction in a HPC front stage. ASME Journal of Turbomachinery,1999,121(3):456-468.
    [115]李杨,欧阳华,杜朝辉.周向弯曲低压轴流风机叶顶泄漏流动数值模拟.工程热物理学报,2005,26(2):240-242.
    [116]杨吕明,陈次吕,王金诺,等.轴流泵端壁间隙流动特性的数值研究.机械工程学报,2003,39(9):49-51.
    [117]梁开洪,张克危,许丽.轴流泵叶顶间隙流动的计算流体动力分析.华中科技大学学报(自然科学版),2004,32(9):36-38.
    [118]张三喜,姚敏,孙卫平.高速摄像及其应用技术.北京:国防工业出版社,2006.
    [119]章毓晋.图像处理和分析基础.北京:高等教育出版社,2003.
    [120]Cudina M. Detection of cavitation phenomenon in a centrifugal pump using audible sound. Mechanical Systems and Signal Processing,2003,17(6):1335-1347.
    [121]Alfayez L, Mba D. Detection of incipient cavitation and determination of the best efficiency point for centrifugal pumps using acoustic emission. Journal of Process Mechanical Engineering,2005,219:327-344.
    [122]Wen Y, Henry M. Time frequency characteristics of the vibroacoustic signal of hydrodynamic cavitation. Journal of Vibration and Acoustics,2002,14:469-475.
    [123]段向阳,王永生,苏永生,振动分析在离心泵空化监测中的应用.振动与冲击,2011,30(4):161-165.
    [124]林建刚.旋转机械振动分析与工程应用.北京:中国电力出版社,2007.
    [125]王佐民.噪声与振动测量.北京:科学出版社,2009.
    [126]张正松.旋转机械振动监测及故障诊断.北京:北京大学出版社,2009.
    [127]Nuttall A H. Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech and Signal Processing,1981,29(1):84-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700