用户名: 密码: 验证码:
灌浆压力控制系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌浆是国内外大坝基础施工中常用的加固手段,灌浆压力是影响灌浆质量的关键参数之一。由于灌浆过程中存在非线性、地层变化的不确定性及参数耦合等特性,现行的手动控制方式控制精度差,工程的安全性、经济性无法得到保证。因此,开展灌浆压力自动控制的关键技术研究具有很高的理论价值和应用意义。
     以贵州省科技计划重点项目“LJ系列灌浆压水测控系统在乌江水电开发中的开发及应用(2005J-069)”为依托,围绕灌浆系统中压力参考曲线的设计、主参量压力的软测量、灌浆压力的优化控制及灌浆控制系统研制开展研究,实现了灌浆压力的自动控制。主要研究内容及创新点如下:
     1.提出了混合支持向量T-S(Takagi-Sugeno)模型的灌浆地层智能识别方法。
     在支持向量机统计学习理论、核函数、嵌入式优化核参数及T-S模糊模型的研究基础上,分析四大类地层的压水试验数据分布特征,提出了基于压水试验数据和混合支持向量T-S模型的地层识别新方法,结合地层识别类别和灌浆规范设计压力曲线。该算法中利用优化RBF核的支持向量机训练已知地层样本获取支持向量,基于支持向量构造新型支持向量模糊T-S规则模型,并引入t-uninorm算子来提高识别准确率。对比仿真表明,该方法识别准确率高,运算时间短,且决策安全性好。实践证明该方法比常规地层检测方法更能应对地层的不确定性变化。
     2.建立了灌浆压力的自适应T-S(Takagi-Sugeno)模糊软测量模型。
     提出了灌浆压力的新型T-S模糊软测量方法,解决了深孔中灌浆压力直接测量难的问题。以返浆管道流体为对象,利用有限元软件分析不同参数对管道摩擦损失压力的影响,并结合灌浆压力简化数学模型,为软测量模型选择合适的辅助变量。模糊T-S模型的规则根据实际输入输出数据和辩识精度要求自适应产生,模糊模型结论参数的辩识采用卡尔曼递推算法,避免了后件参数辨识过程矩阵求逆的复杂性。与模糊聚类算法和误差反馈学习算法对比仿真,该模糊模型兼有建模精度高、运算速度快、自适应能力强,解决了在工况变化、地层变化下灌浆压力及时、准确测量。已在实际工程验证该模型的有效性,可以为控制系统提供反馈主参量。
     3.提出了基于多模型自适应微粒群优化的灌浆压力控制新策略。
     在软测量估计主反馈灌浆压力参数的基础上,提出了基于多模型的控制器参数优化新策略。该方法中将串级控制、前馈控制与多模型控制器参数优化方法整合后,解决了控制系统压力波动大和地层变化时控制器参数整定难的问题。该控制系统外环采用模糊控制器稳定灌浆压力,增加内环流量的PID控制,抑制了灌浆密度的干扰。而灌浆密度根据规范采取模糊前馈控制技术,达到既进行压力控制又能节约工程成本的目的。控制器参数根据不同地层吸浆流量基准模型采用自适应微粒群算法离线计算。仿真结果表明,该控制策略下压力跟踪效果好,抗干扰能力强,满足了系统在地层环境变化时的控制要求。
     4.研制了灌浆压力硬件控制系统和设计了相应的软件平台,首次实现了灌浆压力的多模型优化控制。
     研究灌浆控制系统中压力、流量和密度的高精度大循环灌浆检测方式并研制了带高压胶套隔离器的压力传感器和非接触密度检测计,为灌浆压力的自动控制提供了可靠的数据来源。在此基础上,结合灌浆规范和前一章控制结构与优化算法,开发了灌浆压力控制系统试验台及配套灌浆压力软件系统,首次实现了灌浆压力的串级优化控制。试验表明串级自动控制系统在控制精度、稳定性及抗干扰能力上优于人工控制系统。
Pressure grouting is an ordinary process in which pressure is an important factor to the quality of dam. Traditionally, the low-precision manual control style can not guarantee the security, economical efficiency of grouting project. Aiming at the nonlinear, uncertainty, strong coupling and time-varied of grouting process, research on key technologies of pressure control system has high theoretical value and applied significance.
     Supported by the key scientific project of Guizhou(2005J-069), the author carried out the study in four areas:the design of pressure reference curve, soft sensing of grouting pressure, optimal control and developing the control system and realized the automatic operation for grouting system. The main content of study and innovation are ordered as follows:
     1. An new intelligent identification method was developed based on hybird support vector Takagi-Sugeno)(SVMTS) for grouting stratum.
     Based on the study of SVM theory, SVM kenerl function, SVM parameters optimization algorithm, T-S model and analysis the dis-tributing rules of water pressure test statistical data for different stratum, a new method of fuzzy-rule decision through SVM learning was proposed using pressurized water experimental data. Firstly, fuzzy rules through optimizational RBF SVM training model was obtained, next the "black-box" SVM decision function was expressed as the T-S fuzzy rules model and t-uninorm was adopted. Simulation results show that the new method improves identification accuracy, computing speed and decision process security, which is superior to RBF-NN method. The method has been applied to real project, which demonstrates the method can provide more scientific grouting pressure curve for control system.
     2. Grouting pressure soft-sensor model was established based on an adaptive T-S fuzzy method.
     T-S fuzzy soft-sensor model of pressure grouting was established to resolve the deep hole pressure measurement. The major auxiliary were selected using the finite element analysis software to study fluid dynamics pressure friction loss factors, combined with simplified mathematical model. The numbers of fuzzy rules are matched to the actual identification accuracy, and the parameters identification of fuzzy model are adopted as Kalman recursive algorithm. Simulation results show that the adaptive fuzzy algorithm is superior to fuzzy clustering algorithm and the error feedback learning in the modeling accuracy and computational speed. The soft sensing model has been by real project, which can provide the effective feedback pressure parameter.
     3. A new control strategy was proposed based on adaptive particle swarm optimization(APSO) for multi-models of the grouting pressure control system.
     On the basis of pressure soft sensing, a hybrid control strategy was proposed, which the controller parameters were optimized by APSO on multi-model of control system. Cascade control, feedforward contol and optimization were integrated in the new control method to avoid pressure fluctuation and parameter re-tuning. The outer loop was adopted fuzzy controller, inner loop adopted PID controller, grouting density is tuned by fuzzy feedforward method on the purpose of saving the project cost. controller parameters are optimized with APSO. Simulation results show that the control strategy obtain good tracking control effect in different stratum environment.
     4.Hardware system and software system of control system were firstly developed to realize the pressure automatic control.
     Research on the high-precision measurement ways of grouting pressure, flow and density parameters of control system, and design pressure sensor with high-pressure plastic isolator and non-contact density detector, which provide accurate data for control system. The algorithm above was firstly used to the grouting control experimental system, the results demonstrate the control strategy is superior to manual control ways in control accuray, stability and antijamming capability.
引文
[1]王培军,王玉青,秦强.静压灌浆技术在路基沉陷修复工程中的应用[J].山东水利,2007,6:18-19.
    [2]闻生.软基注浆加固技术研究综述山西建筑[J].山西建筑,2005,31(20):102-103.
    [3]张景秀.坝基防渗与灌浆技术(第二版)[M],北京:中国水利水电出版社,2002,8.
    [4]Yujian Liu,Hongwei Huang,Jianfu Shao.Research of GPR non-damaged test of grouting behind lining of shield tunnel Ground Penetrating Radar,2004. GPR 2004. Proceedings of the Tenth International Conference on Volume 1,2004:419-422.
    [5]Zhao Yu, Wang Tiecheng, Wang Yong. Analysis of influencing factors for impervious effects of the high pressure circular jet grouting concrete anti-seepage wall of the earth-rock dam[J]. ITESS 2008(1):178-181.
    [6]林栋材.浅谈岩体灌浆压力的选择[J].广西水利水电,2005(3):5-10.
    [7]李小青,高金川.试论灌浆压力对灌浆效果的影响[J].地质科技情报,1999,6(18):66-68.
    [8]M.Eriksson, H.Stille, J.Andersson. Numerical Calculations for Prediction of Grout Spread with Account for Filtration and varying Aperture[J].Underground Space Technology(s0886-7798),2000,15(4):353-364.
    [9]徐力生,陈伟,彭环云.三参数、大循环灌浆自动记录仪的技术特点及发展趋势[J],水利规划与设计,2004.7:79-82.
    [10]鲍颖纲,傅周东.一种典型灌浆自动记录仪软件系统的设计及实现[J],水利水电技术,2000,2:47-50.
    [11]夏可风,龙达云,肖恩尚.使用灌浆自动记录仪几个问题的讨论[J].水利水电工程设计,1999,2:59-62.
    [12]张凤玲,王英贤,宋相国等.GJY Ⅱ型灌浆自动记录仪初步应用[J].长江科学院院报,1996,4(13):54-56.
    [13]夏可风,张志良.J31智能灌浆记录仪和J31-D多路灌浆监测系统[J].水利水电技术进展,2000,1(20):58-59.
    [14]王英贤,张凤玲,GJY Ⅱ型灌浆自动记录仪及其在三峡工程的应用[J],长江科学院院报,1998,1:54-56.
    [15]U.S.A. the state art-soil grouting.final report,1978.
    [16]水利部工程技术咨询中心.SL 62-94水工建筑物水泥灌浆施工技术规范[s].北京:水利电力出版社,1994.
    [17]李凤玲.自动录入数据转存器的硬件设计及灌浆资料管理软件的开发:[硕士学位论文].长沙:中南大学,2002.
    [18]赵存厚,韩伟.四参数灌浆自动监测系统的开发与应用[J].工程地质计算,2006,2:23-27.
    [19]缪志荣,韩伟.GMS2006灌浆数据采集和处理系统的功能和特点[J].科技咨询导报,2006,9,47.
    [20]灌浆设备的自动化与控制系统,水信息,1999,6.
    [21]刑永良.可调型超压保护自动控制器在灌浆施工中的应用[J].实用技术,2006,7.
    [22]张冬梅,周文,毛晓园.YJ-自动压力灌浆器的开发与应用[J].施下技术,2001,3(30):36-37.
    [23]徐力生,叶松源,陈伟等.新型自控调节阀的研制[J].贵州水力发电,2006,20(2):77-78.
    [24]徐力生,郭定明,彭环云等.LJ-Ⅱ型灌浆压水测控系统的研制与应用[J],水利水电技术,2003,34(11):67-69.
    [21]Hernqvist L, et al. Analyses of the grouting results for a section of the APSE tunnel at Aspo Hard Rock Laboratory. Int. J. Rock Mech Mining Sci (2008), doi:10.1016/j.ijrmms.2008.02.003.
    [22]Funehag J, Gustafson GDesign of grouting with silica sol in hardrock-new design criteria tested field [J].Tunneling and underground technology, 2007,doi:10,1016.
    [24]Nilsson X, Axelsson, M., Nilssonl, J., Sealing of narrow fractures in rock with use of silica sol:an introductory study on material characteristics and behaviour as a grout.2002, Department of Geology, Chalmers University of Technology, Gteborg, Sweden.
    [25]Funehag J, Gustafsona A G. Design of grouting with silica sol in hard rock-New methods for calculation of penetration length, Part I [J]. Tunnelling and Underground Space Technology,2008,23 (1):1-8.
    [26]Maghous S, Saada Z, Dormieux L, Canou J, Dupla J C. A model for in situ grouting with account for particle filtration[J]. Computers and Geotechnics,2007, 34(3):164-174.
    [27]Barton N. The theory behind high pressure grouting-part 1[M]. Nick BARTON T & T international, Polygon Media,2004:28-30.
    [28]Andersson H, Janson T. Grouting knowledge in Sweden-a survery.Proceedings to underground construction in modern infrastruction[C].Stock holm,1998,3.
    [29]刘嘉材.裂隙注浆扩散半径的研究[C].水利水电科学院科学研究论文集,1988.
    [30]Lombardi G. The role of the cohesion on cement grouting of rock[A].In Proc of the 15th congress on large Dam[C], Lausanne,International commission on large Dam(ICOLD),1985:235-261.
    [31]Gustafson, G, Herbert H. Stop criteria for cement grouting[M]. Germany,2005, 62-68.
    [32]Chau-Ping Yang.Estimating cement take and grout efficiency on foundation improvement for Li-Yu-Tan dam[J].Engineering Geology,2004,75:1-14.
    [33]李保平.GIN灌浆理论的意义及灌浆参数的确定[J],西部探矿工程,2002,76(3):10-11.
    [34]Brantberger M, Stille H. Eriksson M. Controlling Grout Spreading in Tunnel Grouting-Analyses and Developments of the GIN-method[J].Tunnelling and underground space technology,2000,15(4):343-332.
    [35]Youqing Chen, Takashi Nishiyama, Michinao Terada, Yoshiaki Iwamoto.A fluorescent approach to the identification of grout injected into fissures and pore spaces[J].Engineering Geology,2000,56(3-4):395-401.
    [36]Zettler A H, Poisel R, Stadler G. Behaviour of Visco-Plastic Fluids in Narrow Joints with Non-Parallel Surfaces[C]. Investigations of a Rock Grouting Process. "2nd Int.Conf. on Mechanics ofJointed and Faulted Rock",1995,393-397.
    [37]Zettler A H, Poisel R, Stadler G. A New System of a Grouting Control Proces using a Fuzzy Logic Approach[J]. Proc. Eurock 96 Turin,1996,1417-1424.
    [38]Zettler A H, Poisel R, Reichl I, Stadler G. Pressure sensitive grouting (PSG) using an artifical neural network combined with fuzzy logic[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4),358.e1-358.e14.
    [39]Zettler A H, Poisel R, Stadler G, Pressure sensitive grouting (PSG) in tunnelling using Fuzzy Logic to control the grouting process.Proc. World Tunnel Congress (ITA'97), Wien,1997,605-610.
    [40]Eriksson M, Stille H, Andersson J. Numerical calculations for prediction of grout spread with account for filtration and varying aperture [J].Tunnelling and Underground Space Technology,2000,15(4):353-364.
    [41]Rosquot F, Alexis A, Khelidj A, Phelipot A. Experimental study of cement grout: Rheological behavior and sedimentation[J].Cement and Concrete Research,2003, 33(5):713-722.
    [42]Ish-shalom M, Greenberg S A. The rheology of fresh portland cement pastes[c]. In proceeding of the 4th international symposium chemistry cement,1994, 721-726.
    [43]郑长成.岩体裂隙内稳定水泥浆液扩散范围的理论分析[J].水利与建筑工程学报,2006,4(2):1-5.
    [44]阮文军.基于浆液时变性的岩体注浆扩散模型[J].岩石力学与工程学报,2005,24(15):2709-2714.
    [45]Eriksson M, Stille H, Andersson J. Numerical Calculations for Prediction of Grout Spread with Account for Filtration and varying Aperture[J]. Underground Space Technology,2000,15(4):353-364.
    [46]Poisel R, Frhwirt T, Mlk M, Roth W. Numerical modelling of rock mass falls Lrchenberg-Galgenwald landslide [J]. In:Proc. EUROCK 2005-Impact of Human Activity on the Geological Environment, Konecn(Ed.), Brno, Czech Republic, Balkema,2005:475-481.
    [47]曾祥熹,郑长成.水泥浆的流变性及其对浆液运动的影响[J].华东地质学院学报1999,22(2):138-142.
    [48]郑长成.裂隙岩体的灌浆模拟研究[D].长沙:中南工业大学,1999.
    [49]钱学军,梁全.往复泵正排量的特征及发展趋向[J].石油矿场机械,1995,18(1):23-24.
    [50]董怀荣,王平.恒流量往复泵变化规律实验研究[J].石油学报,2004,25(06):101-104.
    [51]陈寮原.往复泵装置水力特性的仿真研究[J].安徽理工大学学报(自科版),2006(4):50-54.
    [52]陆培文.调节阀实用技术[M].北京:机械工业出版社,2006.
    [53]Hassler L. Grouting of rock-simulation and classification[Doctoral thesis].Royal Institute of technology,stockhdm,1991.
    [54]Hassler L, Hakansson U, Stille H. Classification of jointed rock with emphasis on grouting [J]. Tunnelling and Underground Space Technology,1992,7(4):447-452.
    [55]王档良,隋旺华,黄小明,杭远.Research on Law of Grouting Pressure Change in Rock Mass [J].金属矿山,2008,01:53-56.
    [56]罗平平,陈蕾;邹正盛.空间岩体裂隙网络灌浆数值模拟研究[J].岩土工程学 报,2007,29(12):1844-1848.
    [57]Grouting method and equipment[M],unified facilities criteria(UFO),2004,1.
    [58]关文洲.浅谈二参数小循环灌浆[J].科技信息(学术研究),2008,16:237-239.
    [59]吴旺宗.浅谈影响灌浆工程效果的因素[J].水力发电,2006,4,281-283.
    [60]蔡武昌.电磁流量计测量值与应用参比值不符的分析[J].自动化仪表,2001,22(5):33-35
    [61]张远曙,周一耕.水泥浆搅拌时间和凝结时间与性状关系[J].长江科学学院院报,1997,14(3):31-33.
    [62]徐蒙.灌浆工程微分压水试验法试验装置的研制[硕士学位论文].长沙,中南大学,2007,5:11-15.
    [63]Devillez A, Billaudel P. P arametric study of the fuzzy pattern matching method used in classification with a multiprototype approach[J].WSEAS Trans. Circuits,2002,1:94-99.
    [64]Devillez A.Four fuzzy supervised classification methods for discriminating classes of non-convex shape[J].Fuzzy sets and systems,2004,141:219-249.
    [65]Zhang Z,Tumay MT.Statistical to fuzzy approach toward CPT soil classi-fication[J] J Geotech Geoenv Eng, ASCE 1990,125(3):179-186.
    [66]Hegazy YA, Mayne PW.Objective site characterization using clustering of piezocone data[J].J Geoenv Eng,ASCE 2002,128(12):986-96.
    [67]Everitt B S. Cluster analysis[M].London:Edward arhold,1993.
    [68]Shahin M F, Maier H R,Jaksa M B. Data division for developing neural networks applied to geotechnical engineering [J].J Comput civil Eng,ASCE 2004,18(2): 105-140.
    [69]Rajan K, Ramalingam V, Ganesan M et al. Automatic classification of Tamil-documents using vector space model and artificial neural network[J]. Expert systems with applications,2009,36 (8):10914-10918.
    [70]Verma B, McLeod P, Klevansky A. A novel soft cluster neural network for the classification of suspicious areas in digital mammograms[J].Pattern recognition, 2009,42(9):1845-1852.
    [71]Sakim H A M, Salleh N M, Othman N H. Neural Network Inputs Selection for Breast Cancer Cells Classification[C].1st KES International Symposium on Intelligent Decision Technologies, APR,2009,Univ Hyogo Himeji JAPAN.
    [72Ekici S. Classification of power system disturbances using support vector machines[J]. Expert systems with applications,2009,36(6):9859-9868.
    [73]Kampouraki A, Manis G, Nikou C.Heartbeat Time Series Classification With Support Vector Machines[C].5th IEEE International Special Topic Conference on Information Technology in Biomedicine,2006, OCT, Ioannina GREECE.
    [74]Czajkowska J, Rudzki M, Czajkowski Z. A new fuzzy support vectors machine for biomedical data classification[J].Conf Proc IEEE Eng Med Biol Soc,2008: 4676-4679.
    [75]Polat K, Gunes S.Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals[J]. Expert systems with applications,2008,34(3):2039-2048.
    [76]Liu D M, Wang Z X. A united classification system of X-ray image based on fuzzy rule and neural networks[C].3rd International Conference on Intelligent System and Knowledge Engineering,2008, NOV 17-19,Xiamen Peoples R China.
    [77]Lin C J, Chen C H, Lee C Y. Classification and medical diagnosis using wavelet-based fuzzy neural networks[J]. International journal of innovative computing information and control,20084 (3):735-748.
    [78]Chua TW, Tan W W. GA optimisation of non-singleton fuzzy logic system for ECG classification[C].IEEE Congress on Evolutionary Computation,2007, SEP, 25-28,Singapore.
    [79]Funahashi K J.On the approximate realization of continuous mapping by neural networks[J]. Neural networks,1989,15(2):183-192.
    [80]Paliwal M, Kumar U A. Neural networks and statistical techniques:A review of application[J]. Expert system with application,2009,36:2-17.
    [81]Cheng B, Titterington D M. Neural networks:A review from a statistical perspective[J]. Statistical science,1994,9(l):2-30.
    [82]Erickson R P, Rodgers J L, Sarle W S. Statistical-analysis of neural organization[J]. Journal of neurophysiology,1993,70,(6):2289-2300.
    [83]Pang S N, Kim DJ, Bang S Y. Face membership authentication using SVM classification tree generated by membership-based LLE data partition[J] IEEE Transactions on neural networks,2005,16(2):436-446.
    [84]Pal M, Mather P M. Support vector machines for classification in remote sensing [J]. International journal of remote sensing,2005 26(5):1007-1011.
    [85]Kolman E, Margaliot M. Are neural networks white boxes? IEEE Trans. Neural Networks,2005,16(4):844-852.
    [86]Nunez H, Angulo C. Catala A. Rule exactraction from support vector machines,in:ESANN'2002 European Symp. On Artificial Neural Networks Bruges, Belgium,2002,107-112.
    [87]Sarat K D, Prabir K B. Utilization of self-organization map and fuzzy clustering for site characterization using piezocone data[J].Computer and Geotechnics, 2009,36(1-2):241-248.
    [88]秦英译,王川婴.前视井下电视和数字钻孔摄像在工程中的应用[J].岩石力学与工程学报,2007,26(1):2834-2839.
    [89]Zimmermann R W,Bodvarsson G S.Hydraulic conductivity of rock fractures [J].Transp Porous Media,1996,23:1-30.
    [90]Fransson.Characterisation of fracture geometry using specific capacities: numerical and experimental study of a fracture replica[J].Bull Eng Geol Env,2001,60:139-144.
    [91魏宁,李金都,傅旭东.钻孔高压压水试验的数值模拟[J].岩土力学与工程学报,2006,25(5):1037-1042.
    [92]刘元芳,钟作法.水压致裂法三维地应力测量成果计算与分析探讨[J].岩土力学与工程学报,2002,21(6):833-838.
    [93]赖永标,乔春生,刘开云,朱正国.支持向量机在围岩稳定性分类中的应用[J].水利学报,2006,9(37):1092-1096.
    [94]徐捷,屈昌华,李未显.岩石水泥灌浆工程可视化技术的探讨与实践[J],大坝观测与土工测试,2001,25(6):49-52.
    [95]蒋明,侯令强.Lu型压水试验数据特征分析在灌浆工程中应用[J].矿产与地质,1998,12(4):269-274.
    [96]王磊.支持向量机学习算法的若干问题研究[博士学位论文],成都:电子科技大学,2007,1-6.
    [97]邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M].科学出版社,2004.
    [98]滕月阳,唐焕文,张海霞.一种新的支持向量机增量学习算法[J]计算机工程与应用,2004,40(36):77-80.
    [99]Vapnik V N, Statistical Learning Theory, Wiley, New York (1998).
    [100]Lee Y J, Huang S Y. Reduced support vector machines[J].IEEE Trans. Neural Netw,2007,18:1-13.
    [101]Dong Yinfeng, Li Yingmin, Lai Ming, Xiao Mingkui. Nonlinear structural response prediction based on support vector machines[J].Journal of Sound and Vibration,2008,311(3-5):886-897.
    [102]赵峰,张军英,刘敬.一种改善支撑向量域描述性能的核优化算法[J].自动化学报,2008,1-7.
    [103]Scholkopf B., Smola A. Bartlett P. Trainning v-Support Vector Classifiers. Neural Computation,2000,13(9):2119-2147.
    [104]Chung K M, Kao W C, Sun CL, et al.Radius margin bounds for support vector machines with the RBF kernel[J]. Neural computation,2003,15(11):2643-2681.
    [105]Lin C F. Wang S D. Training algorithms for fuzzy support vector machines with noisy data[J]. Pattern Recognition Letter,2004 25 (14):1647-1656.
    [106]Cheng-Lung Huang, Mu-Chen Chen, Chieh-Jen Wang.Credit scoring with a data mining approach based on support vector machines[J]. Expert Systems with Applications,2007 (33):847-856.
    [107]Burges C J C, Crisp DJ. Uniqueness theorems for kernel methods[J]. Neurocomputing,2003,55(1-2):187-220.
    [108]Samanta B.Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J]. Mechanical systems and signal processing,2004,18(3):625-644.
    [109]http://dmlab 1.csie.ntust.edu.tw/downloads.
    [110]Qsuna E, Freund R,Girosi F. An improved training algorithm for support vector machines [C]. Proceedings of the IEEE workshop on neural netw. for signal processing,1997,276-285.
    [111]Platt J C.Sequential Minimal Optimization-A Fast Algorithm for Training Support Vector Machines.In:Scholkopf B, Burger C J C, Smola A J. Advances in Kernel Methods-Support Vector for Learning,MIT Press, Cambridge,M A,1998.185-208.
    [112]Keerthi s, Shevade S K,Bhattacharyya C. A fast iterative nearest point algorithm for support vector machine classifier design [J].IEEE Trans. On Netw.,2000,11(1):124-136.
    [113]Yan Z G, Wang Z Z, Xie H B.The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification[J]. Computer methods and programs in biomedicine,2008,90(3):275-284.
    [114]A B Tickle,R Andrews,M Golea,J Diederich.The truth will come to light:directions and challeges in extracting the knowledge embedded within Trained artificial neural netw.[J]. IEEE Trans. Neural Networks,1998,9(6):
    1057-1068.
    [115]Tickle A,Orlowsi M. A method for extracting rules from trained artifical Neural networks[J].advances in neural information processing systems,1996,8:90-102
    [116]http://www.rulequest.com
    [117]Diederich J, Barakat N. Hybrid rule-extraction from vector machines[J].In proc. Of IEEE conference on cybernetics and intelligent systems, Sigapore,2004:1270-1275.
    [118]刘福才,关新平,裴润.基于一种新模糊模型的非线性系统模糊辨识[J].控制理论与应用,2003,20(1):34-39.
    [119]Silvert W. Symmetric summation:a class of operations on fuzzy sets[J]. IEEE Trans. Systems Man Cybernet., SMC-9, (1979) 657-659. Reprinted in:D. Dubois, H. Prade, R.R. Yager (Eds.), Reading in Fuzzy Sets for Intelligent Systems, Morgan Kaufman, San Mateo, CA,1993:77-79.
    [120]Norkin V, Keyzer M. On Stochastic Optimization and Statistical Learning, in Reproducing Kernel Hilbert Spaces by Support Vector Machines (SVM)[J]. Informatica,2009,20(2):273-292.
    [121]Blake C L, Merz C J.UCI repository of machine learning databases,University of California[online] (www,ics. uci. edu/mlearn/ML Summary.html).
    [122]Fefferman C L. Existence & smoothness of the Navier-Stokes equation[J]. Clay Mathematics Institute,2000, available on line,http://www.claymath.org/prize problems/navier_stokes.pdf.
    [123]刘沛清,屈秋林,王志国等.内加强月牙肋三岔管水力特性数值模拟[J].水利学报2004,03:42-46.
    [124]刘沛清.Re数对细长旋成体非对称涡及气动力特性影响的实验研究[J].流体力学实验与测量,2003,04:11-16.
    [125]王玉蓉,张建民.脉动水压力沿缝隙传播的试验研究[J].水利学报,2002,12:44-48.
    [126]Nygaard G, Naevdal G. Non-linear model predictive control schemefor stabilizing annulus pressure during oil well drilling[J]. Journal of Process Control,2006,16(7):719-732.
    [127]孙涛,曹广益.软测量建模方法分析[J].机床与液压,2005,2:67-69.
    [128]李海青.软测量技术原理及应用[M].北京:化学工业出版社,2003,10.
    [129]薄翠梅,李俊,林锦国等.基于软测量技术的先进控制在精馏塔上的应用[J].化工学报,2004,55(2):331-334.
    [130]周平,柴天佑.基于案例推理的磨矿粒度软测量及其软件实现[J].自动化学报.2007,19(23):5397-5400.
    [131]Joseph B, Brosilow C B. Inferential control of process:part III Construction of optimal and suboptimal dynamic estimators[J]. AIChE Journal,1978,24(3): 500-509.
    [132]张英,苏宏业,褚健.基于ISVM的软测量建模及其在PX生产中的应用研究[J].控制与决策,2005,20(10):1102-1106.
    [133]Luo J X, Shao H H. Selecting secondary measurements for soft sensor modeling using rough sets theory[C].Proceedings of the 4th World Congress on Intelligent Control and Automation, June 10-14,2002, Shanghai, China,415-419.
    [134]黄克瑾.精馏过程的模型化及仿真:[博士学位论文].浙江,浙江大学,1992.
    [135]丁云,于静江,周春晖.原油蒸馏塔的质量估计和优化管理[J],石油炼制与化工,1994,25(5):23-28
    [136]Chen J, Liu K. Online batch process monitoring using dynamic PCA and dynamic PLS models[J]. Chem. Eng. Sci.2002,57(11):63-75.
    [137]Kourti T. Multivariate dynamic data modeling for analysis and statistical process control of batch processes start-ups and grade transitions [J]. J. Chemom. 2003,17:93-109.'
    [138]Pierantonio F, Doplicherb F,Baroloa B.Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process [J]. Chem. Eng. Sci.2006,61:6372-6384.
    [139]Benne M, Grondin-Perez B, Chabriat J P. Artificial neural networks for modelling and predictive control of an industrial evaporation process [J]. Journal of Food Engineering,2000,46 (4):227-234.
    [140]张志.人工神经网络水质预测模型研究[J].内蒙古大学学报(自然科学版),2006,37(6):703-707.
    [141]曹玉波.重整加氢汽油干点软测量应用研究[J].吉林华工学院学报,2006,23(1):78-92.
    [142]Yongfeng F, Hongye S, Jian C. MIMO Soft-sensor Model of Nutrient Content for Compound Fertilizer Based on Hybrid Modeling Technique [J]. Chinese Journal of Chemical Engineering[J],2007,15 (4):554-559.
    [143]许光,俞欢军,陶少辉,陈德钊.与机理杂交的支持向量机为发酵过程建模[J].化工学报,2005,56(4):653-658.
    [144]Gerhard Nygaard,Geir Navdal. Nonlinear model predictive control scheme for stabilizing annulus pressure during oil well drilling[J]. Process control 2006(16):719-732.
    [145]李凤玲,申群太,徐力生.灌浆压力的非线性建模预测[J].系统仿真学报,2008,20(23):6535-6538.
    [146]Zadeh L A. Fuzzy sets, In Control 8,338-353,1965.
    [147]Wang Lixin. Jerry M. Mendel fuzzy basis functions universal approximation and orthogonal least-squares learning [J].IEEE Trans. on Neural Net-works,1992,3 (5):807-814.
    [148]Wang Lixin. Fuzzy system and universal approximator[J].IEEE Conf Fuzzy Systems,San Diego,USA,1992:1163-1170.
    [149]袁平,王福利.一种T-S模糊系统建模方法[J].系统仿真学报,2006,18(4):817-820.
    [150]Hao Ying.General fuzzy systems are universal approximators[A].Pro of the 32nd Conf on Decision and Control[C].San Antonio,USA.1993:1739-1742.
    [151]曾坷,徐文立,张乃尧.特定Mamdani模糊系统的通用逼近性[J].控制与决策,2000,15(4):435-438.
    [152]刘福才,陈超,邵慧等.模糊系统万能逼近理论研究综述[J].智能系统学报,2007,2(1):25-33.
    [153]Hao Ying. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators[J].IEEE Trans. on fuzzy systems, 1998,6(4):582-587.
    [154]曾坷,徐文立,张乃尧.线性T-S模糊系统作为通用逼近器的充分条件[J]自动化学报,2001,27(5):606-612.
    [155]Ernesto Araujo,Leandro dos S. Coelho. Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system[J]. Applied Soft Computing,2008 (8):1354-1364.
    [156]曾坷,张乃尧,徐文立.典型T-S模糊系统是通用逼近器[J].控制理论与应用,2001,18(2):293-297.
    [157]Jang J S R.Adaptive-network-based fuzzy inference system.IEEE Trans. System, 1993,54(2):157-165.
    [158]Wu B L,Yu X H.Fuzzy modeling and identification with Genetic Algorithm based learning[J].Fuzzy and systems,2000,113(3):351-365.
    [159]刘福才,路平立.基于随机采样聚类和卡尔曼滤波方法的模糊辨识[J].数学实践与认识,2003,33(3):17-22.
    [160]F.Fileti A M, Antunes A J B, Silva F V. Experimental investigations on fuzzy logic for process control[J]. control Eng. Practice,2007,doi:101016.
    [161]Zettler A H, R. Poisell I, Reich P C. PRESSURE SENSITIVE GROUTING (PSG) USING AN ARTIFICAL NEURAL NETWORK COMBINED WITH FUZZY LOGIC[J].Int. J. RockMech.&Min. Sci.1997,34(3-4):358-362.
    [162]Yoshinari Y,Pedrycz W.Control of fuzzy models through clustering techniques.Fuzzy and systems,1993,54(2):157-165.
    [163]Ji Chang Lo,Chien-Hsing Yang. A Heuristic error-feedback learning Algorithm for fuzzy modeling[J].IEEE Trans. On system,man and cybernetics, 1999,29(6):686-691.
    [164]Gomez-Skarmeta A F, Delgado M, Vila M A. About the use of fuzzy clustering techniques for fuzzy model identification [J]. Fuzzy sets and systems,1999,106: 179-188.
    [165]Visioli A. Tuning of PID controllers with fuzzy logic[J]. Proc. Inst. Elect. Eng. Control Theory Application,2001,148(1):1-8.
    [166]Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system[J]. IEEE Trans. Energy Convers,2004; 19(2):384-91.
    [167]郝万君,柴庆宣,强文义等.基于多模型优化的PID参数的鲁棒整定[J].信息与控制,2006.35(6):711-714.
    [168]Kennedy J, Eberhart R. Particle swarm optimization [C].In Proceedings of IEEE International Conference on neural Networks,1995,4.
    [169]Xie X F,Zhang W J,Yang Z L.A dissipative particle swarm optimization [J].In Proc. of the IEEE Int Conf. on Evolutionary Computation.2002,1456-1461.
    [170]Patnaweera A, Halgamuge S K,Watson H C.Self-organizing hierarchical particle swarm optimizer with time-vary acceleration coefficients[J]. IEEE Trans. On Evolutionary computation,2004,8(3):240-255.
    [171]Li H, Tang H W, Guo C H. The convergence analysis of a class of evalution strategies[J]. OR Trans,1999,3(4):79-83.
    [172]Guo C H, Tang H W. Global convergence properties of evolution strategies[J].Mathematica Numerica Sinica,2001,23(1):105-110.
    [173]Ewert F K. Rock grouting with emphasis on dam site[M]. Berlin:spinger verlag,1985.
    [174]Hao Ying. The simplest fuzzy controller using different inference methods are different nonlinear proportional-integral controllers with variable gains[J].Automatic,1993,29(6):1579-1589.
    [175]Amin H A, Hao Ying. Structural analysis of fuzzy controllers with nonlinear input sets in relation to nonlinear PID control with variable gains[J]. Automatic, 2004,40:1551-1559.
    [176]王凡,邵宪辉,范秋涛.压力传感器检测系统的研制[J].传感器技术,2001,20(6):40-43.
    [177]佘新平,刘传清.γ射线密度传感器[J].传感器技术,1998,17(4):47-48.
    [178]王功庆,曾寄萍.γ射线无损检测炮弹体内炸药密度[J].核技术,1998,21(3):151-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700