用户名: 密码: 验证码:
基于细观结构的液体橡胶基混凝土破坏机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体橡胶基混凝土(LRBC)是一种新型混凝土材料,其中液体橡胶基质取代了传统的水泥砂浆。液体橡胶具有很好的机械性能,与骨料之间的力学性能差异远小于普通沥青与骨料之间的差异,因此LRBC将是一种极具潜力的高性能桥面铺装材料。目前,对于LRBC材料的研究还处于探索阶段,要将之作为工程应用材料还需要进行大量的机理研究、测试和优化设计。
     宏观的均一方法被广泛地运用来描述混凝土类材料的性能,比如弹性模量和泊松比等等,但是,这种宏观的均一方法很难用来描述材料破坏的产生及扩展过程,因此,从细观尺度描述材料的变形和破坏特性是了解混凝土类材料破坏机理和进行材料最优化设计的关键。混凝土类材料的破坏过程是一个非常复杂而又富有挑战的课题,研究LRBC试件的变形与破坏过程对揭示混凝土类材料的力学行为及破坏机理,以及开展该新型混凝土材料性能的优化设计,具有重要的学术价值和工程价值。
     本文从细观结构出发,将LRBC视为由碎石骨料、液体橡胶基质及二者之间界面组成的三相复合材料,视界面层为环绕于每颗骨料表面的独立材料。通过实验测定橡胶与石料之间的粘结性能,确定界面材料的破坏参数。通过研究界面厚度值对LRBC试件力学性能的影响,确定合理的界面厚度值,建立了LRBC试件的细观结构模型。应用LS-DYNA对LRBC试件进行准静态及动态破坏分析。通过改变准静态加载速度,并将各种加载速度下得到的结果与实验结果相对比,分析了加载速度对模拟计算结果的影响,确定了合理的加载速度,为细观分析LRBC材料的破坏机理提供了途径。
     针对混凝土类材料宏观力学性能离散性的问题,文中从细观结构出发,通过对同等参数下一系列LRBC试件的仿真计算,研究了LRBC试件性能的离散度。指出骨料在试件内部位置分布的随机性是造成该材料试件宏观力学性能离散性的因素之一,并根据各试件的破坏方式,分析了骨料的位置分布对LRBC材料性能的影响。同时,通过改变骨料多边形边数概率统计参数,研究了骨料几何性质对LRBC材料力学性能的影响,指出了骨料多边形的几何性质对LRBC材料性能影响的规律性。
     在相同的配合比下,本文分别对含有不同粒径的LRBC材料试件进行了数值计算,分析了骨料粒径对LRBC材料力学性能的影响特性,证实了骨料级配的改变对混凝土类复合材料的力学性质将产生影响。此外,基于传统的级配理论,本文尝试了一系列级配设计,初步分析了级配对LRBC材料力学性能影响的规律,用数值模拟的方式代替传统的配合比实验,为该材料的优化设计打下基础。
     对LRBC的冲击行为,本文从细观尺度模拟仿真LRBC试件在冲击荷载作用下的变形、破坏过程。分别对惯性效应以及应变率效应对该材料试件的冲击压缩强度、冲击压缩切线模量以及试件的冲击损伤行为等特征给予了分析。
The liquid rubber based concrete (LRBC) is a new kind of concrete-like composite in which the matrix is the liquid rubber substituting the conventional cement mortar. Comparing with asphalt concrete or cement concrete, LRBC has significantly different mechanical properties, which induces it to be a great potential high-performance pavement material. Currently, the investigation of the new concrete is just beginning, and plenty of testing and optimization works should be done before it present in engineering applications.
     The uniformization method has been widely used for depicting the material properties such as elastic modulus, Poisson's ratio etc. Anyhow such uniformization method is hardly used to predict the failure properties. The deformation and failure features of the meso-structure under loading are keys for the investigations of the failure mechanism and the further improvement of mechanical properties of the new material. The study of the failure process of the concrete-like materials is a very complex and challenging task, the investigation of the deformation and failure fectures of the LRBC specimen has significant academic and engineering values not only for investigating the failure process and mechanism of concrete-like materials but also for the optimization of the new concrete.
     In the present paper, the new concrete is modelled as a three-phase composite consisting of aggregate, liquid rubber matrix and interface between the aggregate and the liquid rubber matrix. The interface is regarded as an independent material with given geometry and mechanical properties. The bonding properties between liquid rubber and stone are given by tests. The influence of the interfacial thickness on the mechanical properties were studied and compared with experimental results to give a reasonable value of the thickness of the interfacial transition zone. Commercial procedure LS-DYNA is used and the effects of the loading rates on the numerical simulation results were investigated and compared with the experimental results to identify the just one of the loading speed which ensure the simulation results accurately and increase calculation efficiency at the same time.
     For the discreteness of macroscopic mechanical properties of concrete-like material, six samples with same meso statistical parameters of the aggregate geometry were investigated to study the discreteness of the macro properties of the material. From the study it is found that the random distribution of aggregates is one of the reasons why different specimens have different mechanical properties while they have same aggregate ratio, same grading and even same meso-statistical parameters. Besides, the failure process and fracture features were compared among the samples with different meso-statistical parameters of aggregate geometry. The numerical results derived the influences of the aggregate geometry on the tensile and compressive strength, the meso-scopic deformation and failure features of the LRBC. By the numerical analyzes, for LRBC, clearly, it has a group of meso-statistical parameters of aggregate geometry which will lead to the best material properties.
     Specimens with same aggregate ratio but different aggregate sizes were tested, and the influences of the aggregate size on the mechanical properties were investigated. It confirmed the effects of the gradation on the macro-properties of the concrete-like materials. Based on the traditional grading theory, a series of aggregate gradations were designed and for each grading three specimens were constructed. Static tensile and compressive tests carried out and the influences of the aggregate grading on the mechanical properties were studied. This method should give some help for the grading optimization of the new contrete.
     The deformation and failure factures of the meso-structure of the new concrete under dynamic compression were simulated successfully, and the failure factures, inertial confinement effects and strain rates effects were investigated simultaneously.
引文
[1]湛江海湾大桥钢桥面铺装研究报告.分报告一,分报告二,分报告三.华南理工大学道路工程研究所,2004,10.
    [2]罗立峰,钟鸣,黄成造.钢桥面铺装概述[J].国外公路,2000,20(4),16-19.
    [3]Raghavand, Huynh H., Ferraris C.F. Workability, mechanical properties, and chemical stability of a recycled type rubber-filled cementitious composite [J]. Journal of Materials Science,1998,33:1745-1752.
    [4]汤立群,陈爱民,邱燕红等.液体橡胶基新型混凝土材料的动态性能研究.第四界全国爆炸学实验技术会议论文集[C],中国,武夷山,2006,183-187.
    [5]陈爱民.新型钢桥面铺装材料的宏观力学性能研究[D].广州:华南理工大学,2007.
    [6]朱国何.液体橡胶混凝土材料的疲劳与损伤特性研究[D].广州:华南理工大学,2008.
    [7]邱燕红.基于数字图像分析的混凝土材料的二维细观模型及有限元分析[D].广州:华南理工大学,2010.
    [8]张亚梅,陈胜霞,高岳毅.浸-烘循环作用下橡胶水泥混凝土的性能研究[J].建筑材料学报,2005,8(6):665-671.
    [9]俞茂宏.混凝土强度理论及应用[M].北京:高等教育出版社,2002.
    [10]Zaitsev J.V., Wittmann F.H. Crack Propagation in a two-Phase material such as concrete [C].in fracture, Vol.3, ICF4, waterloo, Canada,1977,1197-1203.
    [11]唐春安,傅宇方,朱万成.界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析[J].复合材料学报,1999,16(4):112-120.
    [12]Pisarenko D., Gland N. Modeling of scale effects of damage in cemented granular rocks [J]. Physics and Chemistry of the Earth:Part A,2001,26 (1-2):83-88.
    [13]陈永强,姚振汉,郑小平.非均匀脆性材料本构关系统计解析解[J].清华大学学报(自然科学版),2002,42,No.11:1512-1518.
    [14]朱万成,唐春安,滕锦光,赵文.混凝土细观力学性质对宏观断裂过程的数值试验[J].三峡大学学报(自然科学版),2004,26(1):22-26.
    [15]Bazant Z.P., Tabbara M.R., Kazemi M.T., et al. Random particle model for fracture of aggregate of fiber composites [J]. Journal of Engineering Mechanics-ASCE,1990,116 (8):1686-1705 AUG 1990.
    [16]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报(自然科学版),1996,36(1):84-89.
    [17]Zohdi T., Feucht M., Gross D., et al. A description of macroscopic damage through micro-structural relaxation [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING,1998,43 (3):493-506.
    [18]Wang Z.M., Kwan A.K.H., Chan H.C. Mesoscopic study of concrete I:generation of random aggregate structure and finite element mesh [J]. Comput Struct,1999,70(5): 533-44.
    [19]马怀发,书贞,陈厚群.一种混凝土随机凸多边形骨料模型生成方法[J].中国水利水电科学研究院学报,2006,4(3):196-201.
    [20]高巧红,关振群,顾元宪,尹艳辉.混凝土骨料有限元模型自动生成方法[J].大连理工大学学报,2006,46(5):641-646.
    [21]刘光廷,高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报(自然科学版),2003,43(8):1120-1123
    [22]Stroeven M., Askes H., Sluys L.J. Numerical determination of representative volumes for granular materials [J]. Computer Methods in Applied Mechanics and Engineering,2004, 193 (30-32):3221-3238
    [23]Hafner S., Eckardt S., Luther T., et al. Mesoscale modeling of concrete:Geometry and numerics [J]. COMPUTERS & STRUCTURES,2006,84(7):450-461.
    [24]Wriggers P., Moftah S.O. Mesoscale models for concrete:Homogenisation and damage behaviour [J]. Finite Elements in Analysis and Design,2006,42:623-636.
    [25]李运成,马怀发,陈厚群,胡晓.混凝土随机凸多面体骨料模型生成及细观有限元剖分[J].水利学报,2006,37(5):588-592.
    [26]杜成斌,孙立国.任意形状混凝土骨料的数值模拟及其应用[J].水利学报,2006,37(6):662-673.
    [27]党发宁,田威,韩文涛,陈厚群.混凝土破裂过程三维数值模拟及CT验证[J].水利学报,2006,37(6):674-680.
    [28]Wittmann F.H., Roelfstra P.E., Sadouki H. Simulation and analysis of composite structures [J]. Materials Science and Engineering,1985,68(2):239-248.
    [29]Sadouki H.S., Wittmann F.H. On the analysis of the failure process in composite materials by numerical simulation [J]. Materials Science & Engineering A:Structural Materials:Properties, Microstructure and Processing,1988, A104:9-20.
    [30]Wittmann F.H. Structure of concrete with respect to crack formation. In:Wittmann F H, Ed [J]. Fracture Mechanics of Concrete. Elsevier Science Publishers,1989.
    [31]吴科如,周建华.增强硬化水泥浆体-粗骨料界面结合对混凝土断裂能的影响[D].上海:同济大学,1987.
    [32]Van Mier J.G.M. Fracture process of concrete:assessment of material parameters for fracture models. Florida:CPC Press,1997.
    [33]Horsch T., Wittmann F.H. Three-dimensional numerical concrete applied to investigate effective properties of composite materials [A]. In:Proceeding of the fourth international conference on fracture mechanics of concrete and concrete structures [C], Cachan, France, 2001.
    [34]Schlangen E., Van Mier J.G.M. Lattice model for numerical simulation of concrete fracture [A]. In:International conference on dam fracture [C], Denver, Colorado, USA, 1991.
    [35]Schlangen E., Garbocai F.J. Fracture simulations of concrete using lattice models: computational aspects [J]. Engineering Fracture Mechanics,1997,57(2P3):319-322.
    [36]Cervenka J., Kishen J.M.C., Saouma V.E. Mixed mode fracture of cementitious bimaterial interfaces; Part II:Numerical simulation [J]. Engineering Fracture Mechanics, 1998,60(1):95-107.
    [37]Chandra Kishen J.M., Saouma V.E. Fracture of rock-concrete interfaces:Laboratory tests and applications [J]. ACI Structural Journal,2004,101 (3):325-331.
    [38]Slowik V, Kishen J.M.C., Saouma V.E. Mixed mode fracture of cementitious bimaterial interfaces; Part I:Experimental results [J]. Engineering Fracture Mechanics,1998,60(1): 83-94.
    [39]夏蒙棼,韩闻生,柯孚久等.统计细观损伤力学和演化诱致突变(Ⅰ)[J].力学进展,1995,25(1):1-23.
    [40]夏蒙棼,韩闻生,柯孚久等.统计细观损伤力学和演化诱致突变(Ⅱ)[J].力学进展, 1995,25(2):145-159.
    [41]白以龙,汪海英,夏蒙棼等.固体的统计细观力学-连接多个耦合的时空尺度[J].力学进展,2006,36(2):286-305.
    [42]董聪,杨庆雄.细观损伤力学新进展[J].强度与环境,1993,92(4):1-10.
    [43]杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1-9.
    [44]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [45]尚岩,杜成斌.基于细观损伤的混凝十力学性能模拟研究进展[J].水利与建筑工程学报,2004,2(1):23-28.
    [46]冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社,2002.
    [47]Schlangen E., Van Mier J.G. Simple lattice model for numerical simulation of fracture of concrete materials and structures [J]. Material and Constructions,1992,25 (1):534-542.
    [48]王宗敏.不均质材料(混凝土)裂隙扩展及宏观计算强度与变形[D].北京:清华大学,1995.
    [49]Wittmann F.H., Roelfstra P.E., Sadouki H. Simulation and analysis of composite structures [J]. Materials Science and Engineering,1984,68 (2):39-48.
    [50]高政国.不均质材料(混凝土)数值模型与计算强度问题研究.[博士后研究报告].北京:清华大学,2003.
    [51]高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报(自然科学版),2003,43(5):710-714.
    [52]李有云,崔俊芝.具有大量椭圆颗粒/孔洞随机分布区域的计算机模拟及其改进三角形自动网格生成算法[J].计算力学学报,2004,21(5):540-545.
    [53]De Schutter G, Taerwe L. Random particle model for concrete based on Delaunay triangulation [J]. Material Structure,1993,26 (2):67-73.
    [54]王宝庭,宋玉普.混凝土随机骨料模型的网格自动剖分方法[J].大连理工大学学报,1999,39(3):445-450.
    [55]Feito F.R., Torres J.C. Inclusion test for general polyhedra [J]. Computers & Graphics (Peramon),1997,21(1):23-30.
    [56]Feito F.R., Torres J.C. A Urena:Orientation, simplicity, and inclusion test for planarpolygons [J]. Computers & Graphics (Pergamon),1995,19 (4):595-600.
    [57]Chiaia B., Vervuurt A., Van Mier J.G.M. Lattice model evaluation of progressive failure in disordered particle composites [J]. Engineering Fracture Mechanics,1997,57(2-3): 301-318.
    [58]Lilliu G., Van Mier J.G.M.3D lattice type fracture model for concrete [J]. Engineering Fracture Mechanics,2003,70:927-941.
    [59]Prado E.P., Van Mier J. G.M. Effect of particle structure on mode I fracture process in concrete [J]. Engineering Fracture Mechanics,2003,70:1793-1807.
    [60]Schlangen E., Garboczi E.J. Fracture simulation of concrete using lattice models: computational aspects [J]. Engineering Fracture Mechanics,1997,57(2/3):319-332.
    [61]Schlangen E., Koenders E.A.B, K. Van Breugel. Influence of internal dilation on the fracture behaviour of multi-phase materials [J]. Engineering Fracture Mechanics, 2007,74(1-2):18-33.
    [62]杨强,张浩,周维垣.基于格构模型的岩石类材料破坏过程的数值模拟[J].水利学报,2002,4:46-50.
    [63]杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟[J].工程力学,2003,20:117-120.
    [64]Mohamed A.R., Hansen W. Mesomechanical modelling of concrete response under static loading-part Ⅰ:model development and validation [J]. ACI Materials Journal,1999,96(2): 196-203.
    [65]Mohamed A.R., Hansen W. Mesomechanical modelling of concrete response under static loading—part Ⅱ:model predictions for shear and compressive loading [J]. ACI Materials Journal,1999,96(3):354-358.
    [66]Mohamed A.R., Hansen W. Mesomechanical modeling of crack-aggregate interaction in concrete materials [J]. Cement & Concrete Composites,1999,21:349-359.
    [67]彭一江,黎保琨,刘斌.碾压混凝土细观结构力学性能的数值模拟[J].水利学报,2001,6:19-22.
    [68]黎保琨,彭一江.碾压混凝土试件细观损伤断裂的强度与尺寸效应[J].华北水利水电学院学报,2001,22(3):50-53.
    [69]唐春安,朱万成.混凝土损伤与断裂-数值试验.北京:科学出版社,2003.
    [70]Teng J.G., Zhu W.C., Tang C.A. Mesomechanical model for concrete. Part Ⅱ: Applications [J]. Magazine of Concrete Research,2004,56 (6):331-345.
    [71]Zhu W.C., Tang C.A., Wang S.Y. Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete [J]. Structural Engineering and Mechanics, 2005,19(5):519-533.
    [72]Zhu W.C., Teng J.G., Tang C.A. Mesomechanical model for concrete. Part I:Model development [J]. Magazine of Concrete Research,2004,56 (6):313-330.
    [73]Zhu W.C., Wang S.H., Tang C.A. Modelling the shear fracture process of concrete using a mesomechanical model. In, Dunhuang, China,2003
    [74]王宗敏.混凝土应变软化与局部化的数值模拟.应用基础与工程科学学报,2000,8(2):187-194.
    [75]Han Z. Adding Crumb Rubber into Exterior Wall Materials [J]. Waste Management and Research,2003,20:407-413.
    [76]Han Z. Rubber Crumbs in Concrete [J]. Concrete Technology Today,2003,135(8): 30-33.
    [77]Zhu H. Crumb Rubber Concrete, Rapra Handbook on Polymers Use in Construction, Rapra Technology, Shawbury, UK, edited Gune Ri AKOVLI,2004,
    [78]刘春生,朱涵,李志国等.橡胶集料砂浆基本性能研究[J],混凝土,2005,(7):38-42.
    [79]Eldin N.N., Senouci A.B. Rubber-tired Particles as Concrete Aggregate [J] Journal of Materials in Civil Engineering.1993,5(4):478-496.
    [80]Savas B.Z., Ahmad S., Fedroff D. Freeze-Thaw Durability of Concrete with Ground Waste Tire Rubber [J]. Transportation Research Record,1997,1574:80-88.
    [81]Khatib Z.K., Bayomy F.M. Rubberized Portland Cement Concrete [J]. Journal of Materials in Civil Engineering, August,1999,206-213.
    [82]Fattui N.I., Clark L.A. Cement-based Materials Containing Shredded Scrape Truck Tyre Rubber [J]. Construction and Building Materials,1996,10(4):229-236
    [83]Schimizze R.R., Nelson J.K., Amirkhanian S.N., et al. New Materials and Methods of Repair Infrastructure [A]. Proceedings of the Third Material Engineering Conference, San Diego, CA:1994.367-374.
    [84]Hernandez-Olivares F., Barluenga G., Bollati M. et al. Static and dynamic behavior of recycled tyre rubber-filled concrete [J]. Cement and Concrete Research,2002,32 (10):1587-1596.
    [85]袁琳,朱涵.橡胶微粒钢筋混凝土梁受弯性能初探[J].混凝,2005,(6): 77-81.
    [86]Zhu H., Thong-On A., Zhang X., Adding Crumb Rubber Into Exterior Wall Materials [J]. Waste Management and Research,2002,20:407-413.
    [87]Zhu H. Recent development in Crumb Rubber Application in noise reduction and PCC [A]. The Conference of Crumb Rubber in Road Construction, Dallas, Texas, USA.2002.
    [88]Zhu, H. Slump, Workability, Air content and Compressive Strength of Rubber Concrete [J]. Cement and Concrete Research, submitted.2003.
    [89]Zhu, H. Rubber Concrete:A Preliminary Engineering and Business Prospective [J], Scrap Tire News,2001,6:16-17.
    [90]Zhu H. New Development in Crumb Rubber Research [A]. First International Symposium on Rubberized Asphalt Pavement, Tempe, AZ. USA.2000.
    [91]钱觉时,邹定祺,数值砼—混凝土材料细观结构的模拟[J].重庆建筑工程学院学报,1994,16(2):37-45.
    [92]Thong-On N. Crumb Rubber in Mortar Cement Application [D]. Arizona State University, 2001.
    [93]宋少民,轲红娟,金树新.橡胶粉改性的高韧性混凝土研究[J].混凝土与水泥制品,1997,(1):10-12.
    [94]岳林春,严勇.端羟羧聚丁二烯液体橡胶的研制[J].石化技术与应用,2000,18(1):9-12.
    [95]湖南橡胶网http://www.hunanrubber.com
    [96]王绍民,朱佳虹.国内外液体聚硫橡胶生产现状及应用进展[J].化工新型材料,2000,28(8):10-12.
    [97]刘建铭,陈文伟.液体聚硫橡胶的性能与应用[J].云南化工,2000,27(4):4-5,19.
    [98]罗延龄,薛丹敏.活性端基液体橡胶增韧环氧树脂研究概况[J],石化技术与应用,2001,19(5):316-320.
    [99]张小华,徐伟箭,欧卫华,齐建永.端羟基聚丁二烯液体橡胶的环氧化研究[J].热固性树脂,2004,19(2):14-16.
    [100]罗延龄.活性端基液体橡胶合成技术[J].合成橡胶工业,2001,24(2):119-122.
    [101]董松等.端羟基聚丁二烯的应用、合成方法与表征手段[J].弹性体,2003,13(3):53-59.
    [102]于清溪.20世纪末21世纪初全球橡胶工业概况(二)-世界橡胶工业新动向[J], 2003,31(2):40-48.
    [103]赵钢,王正平.浇注型橡胶合成工艺[J].应用科技,2001,28(4):31-33.
    [104]王作龄.最新橡胶工艺原理(二)[J].世界橡胶工业,2002,29(5):50-58.
    [105]傅明源,孙酣经,傅进军.橡胶塑胶铺面材料[M].化学工业出版社,2003.
    [106]赵国藩,彭少民,黄承逵等著.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999.
    [107]陈波,张亚梅,陈胜霞等.橡胶混凝土性能的初步研究[J].混凝土,1002-3550(2004)12-0037-03.
    [108]李悦,王玲.橡胶集料混凝土研究进展综述[J].混凝土,2006,4:91-95.
    [109]秦克诚.统计物理学中的蒙特卡罗模拟方法[M].北京大学出版社,1994,2.
    [110]田砾,杨明,孙雪飞.钢纤维混凝土细观结构数值模拟自动生成技术—多边形骨料生成与有限元网格的剖分[J].青岛建筑工程学院学报,1998,4(19).
    [111]SCHLANGEN E. VAN MIER J.GM. Micromechanical Analysis of Fracture of Concrete [J]. International Journal of Damage Mechanics,1992,1:435-454.
    [112]Zhu W.C., Tang C.A. Mechanical Model and Numerical Simulation of Fracture Process of concrete [J]. Construction and Building Materials,2002,16(8):453-463.
    [113]GAO Zhengguo, LIU Guangting. Two-dimensional random aggregate structure for concrete [J]. Journal of Tsinghua University (Science and Technology),2003,43(5): 710-714.
    [114]Zhou X.Q., Hao H. Mesoscale modelling of concrete tensile failure mechanism at high strain rates [J]. Computers and Structures,2008,86 (21-22):2013-2026.
    [115]Keyak J.H., Skinner H.B. Three-dimensional finite element modelling of bone: effects of element size, Journal of Biomedical Engineering [J],1992,14(6):483-489.
    [116]Yi Z.H. et al. Finite Element Simulation of Blast Loads on Reinforced Concrete Structures using LS-DYNA [J]. Structures Congress:New Horizons and Better Practices, 2007, doi:10.1061/40946(248)3.
    [117]Sanchez P.J., Huespe A.E., Oliver J. Et al. Mesoscopic model to simulate the mechanical behaviour of reinforced concrete members affected by corrosion [J]. International Journal of Solids and Structures,2010,47(5):559-570.
    [118]Elmarakbi A.M., Hu N., Fukunaga H. Finite element simulation of delamination growth in composite materials using LS-DYNA [J]. Composites Science and Technology, 2009,69(14):2383-2391.
    [119]Lorentz E. A mixed interface finite element for cohesive zone models [J]. Comput Methods Appl Mech Engrg,2008,198(2):302-317.
    [120]Paul W.H., Stephen R.H. Cohesive zone length in numerical simulation of composite delamination [J]. Engineering Fracture Mechanics,2008,75(16):4774-4792.
    [121]Grassl P., Rempling R. A damage-plasticity interface approach to the meso-scale modelling of concrete subjected to cyclic compressive loading [J]. Engineering Fracture Mechanics,2008,75 (16):4840-4818.
    [122]Rene de Borst. Numerical aspects of cohesive-zone models [J]. Engineering Fracture Mechanics,2003,70 (14):1743-1757.
    [123]Tang C.A., Fu Y.F., Zhu W.H. Numerical Approach to Effect of Interface Properties on Failure Modes in Particle Composite [J], ACTA Materiae Composites Sinica,1999,16 (4).
    [124]Guinea G.V., El-Sayed K., Rocco C.G. et al. The effect of the bond between the matrix and the aggregates on the cracking mechanicsm and fracture parameters of concrete [J]. Cement and Concrete Research,2002,32:1961-1970.
    [125]Meddah M.S., Zitouni S., Belaabes S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete [J]. Construction and Building Materials,2010,24:505-512.
    [126]Feng W.W., Hallquist J.O. Method and System for Numerically Simulating Foam-like Material in Finite Element Analysis [P]. United States Patent, US7308387-B1, Dec 11,2007.
    [127]Feng W.W., Hallquist J.O. Hallquist. Biaxial test device for determining material properties for Mullins effect of elastomer used in e.g. aerospace application, has elastomer membrane arranged between top and bottom plates, covering opening of top plate [P]. United States Patent, US7533577-B1, May 19,2009.
    [128]Feng W.W., Hallquist J.O. Hallquist. A Failure Criterion for Polymers and Soft Biological Materials [A].5th European LS-DYNA Users Conference, Birmingham Material Technology,2b-15.
    [129]Hallquist J.O. LS-DYNA Theoretical manual. Livermore Software Technology Corporation,2006.
    [130]Hallquist J.O. LS-DYNA Keyword user's manual. Livermore Software Technology Corporation,2007.
    [131]Crisfield M.A. Non-linear Finite Element Analysis of Solids and Structures. Volume 2, Advanced Topics, John Wiley, New York (1997).
    [132]王青春.利用Ls-Dyna计算结果准静态压溃的改进方法[J].力学与实践,2003,25:20-23.
    [133]Abah L. et al. Upon the effects of cutouts on the behavior of axially crushed tubes [J]. Structure under Extreme Loading Conditions ASME,1998, PVP-361.
    [134]Zhou F.P., Lydon F.D., Barr B.I.G. Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete [J]. Cement and Concrete Research, 1995,25(1):177-186.
    [135]Wu K.R., Chen B., Yao W. et al. Effect of coarse aggregate type on mechanical properties of high-performance concrete [J]. Cement and Concrete Research,2001,31: 1421-1425.
    [136]Torgal F.P., Castro-Gomes J.P. Influence of physical and geometrical properties of granite and limestone aggregates on the durability of a C20/25 strength class concrete [J]. Construction and Building Materials,2006,20:1079-1088.
    [137]Elices M., Rocco C.G. Effect of aggregate size on the fracture and mechanical properties of a simple concrete [J]. Engineering Fracture Mechanics,2008,75: 3839-3851.
    [138]Kwan A.K.H., Mora C.F., Chan H.C. Particle shape analysis of coarse aggregate using digital image processing [J]. Cement and Concrete Research,1999,29:1403-1410.
    [139]Mora C.F., Kwan A.K.H., Chan H.C. Particle size distribution analysis of coarse aggregate using digital image processing [J]. Cement and Concrete Research,1998,28 (6):921-932.
    [140]Jamkar S.S., Bao C.B.K. Index of Aggregate Particle Shape and Texture of coarse aggregate as a parameter for concrete mix proportioning [J]. Cement and Concrete Research,2004,34:2021-2027.
    [141]Rocco C.G., Elices M. Effect of aggregate shape on the mechanical properties of a simple concrete [J]. Engineering Fracture Mechanics,2009,76:286-298.
    [142]Saouma V.E., Broz J.J., Bruhwiler E.et al. Effect of aggregate and specimen size on fracture properties of dam concrete [J]. J Mater Civil Engng,1991,3:204-218.
    [143]Li Q., Deng Z., Fu H. Effect of aggregate type on mechanical behaviour of dam concrete [J]. ACI Mater J,2004,101 (6):483-492.
    [144]Donza H., Cabrera O. The influence of kinds of fine aggregate on mechanical properties of high strength concrete [A]. In:Proceedings of 4th international symposium of high-strength/high-performance concrete [C], Paris, France,1996,2:153-60.
    [145]Guinea G.V., El-Sayed K.M., Rocco C.G. et al. The effect of the bond between the matrix and the aggregates on the cracking mechanism and fracture parameters of concrete [J]. Cement and Concrete Research,2002,32:1961-1970.
    [146]刘崇熙.混凝土骨料韦毛氏级配法及其应用的商讨[J].人民长江,1956,12:34-38.
    [147]张登良.沥青路面工程手册.人民交通出版社[M],2003,344-350.
    [148]严家伋.道路建筑材料(第三版)[M].北京:人民交通出版社,1996.
    [149]吕伟民.沥青混合料设计原理与方法[M].山海:同济大学出版社,2001.
    [150]林绣贤.沥青混凝土合理集料组成的计算公式[J].华东公路,2003,140(1):82-84.
    [151]de Larrard F.著廖欣,叶枝荣,李启令.译混凝土混合料的配合[M].化学工业出版社,2004.
    [152]Barr B.I.G., Hasso E.B.D., Weiss V.J. Effect of specimen and aggregate sizes upon the fracture characteristics of concrete [J]. The International Journal of Cement and Composites and Lightweight Concrete,1986,8(2):109-119.
    [153]Wolinski S., Hordijk D.A., Reinhardt H.W. et al. Influence of aggregate size on fracture mechanics parameters of concrete [J]. The International Journal of Cement and Composites and Lightweight Concrete,1987,9(2):95-103.
    [154]Keru W., Bing C., Wu Y. Study of the influence of aggregate size distribution on mechanical properties of concrete by acoustic emission technique [J]. Cement and Concrete Research,2001,31:919-923.
    [155]Akcaoglu T., Tokyay M., Celik T. Effect of coarse aggregate size on interfacial cracking under uniaxial compression [J]. Materials Letters,2002,57:828-833.
    [156]Chen B., Liu J. Investigation of effects of aggregate size on the fracture behavior of high performance concrete by acoustic emission [J]. Construction and Building Materials, 2007,21:1696-1701.
    [157]Grassl P., Wong H.S., Buenfeld N.R. Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar [J]. Cement and Concrete Research,2010,40:85-93.
    [158]Xie P., Beaudion J.J., Brousseau R. Effect of aggregate size on transition zone properties at Portland cement paste interface [J]. Cement and Concrete Research,1991, 21:999-1005.
    [159]Elsharief A., Cohen M.D., Olek J. Influence of aggregate size, water cement ratio and age on the micro structure of the interfacial transition zone [J]. Cement and Concrete Research,2003,33:1837-1849.
    [160]Moseley M.D., Ojdrovic R.P., Petroski H.J. Influence of aggregate size on fracture toughness of concrete [J]. Theoretical and Applied Fracture Mechanics,1987,7:207-210.
    [161]Tasdemir C., Tasdemir M.A., Lydon F.D. et al. Effect of silica fume and aggregate size on the brittleness of concrete [J]. Cement and Concrete Research,1996,26:63-68.
    [162]Mihashi H., Nomura N., Niiseki S. Influence of aggregate size on fracture process zone of concrete detected with three dimensional acoustic emission technique [J]. Cement and Concrete Research,1991,21:737-744.
    [163]Khaloo A.R., Shooreh M.R.M., Askari S.M. Size Influence of Specimens and Maximum Aggregate on Dam Concrete:Compressive Strength [J]. JOURNAL OF MATERIALS IN CIVIL ENGINEERING ASCE AUGUEST,2009,349-355.
    [164]Newtson C.M., Turner J.P. Effect of aggregate top size on bituminous concrete [J]. Journal of Materials in Civil Engineering,1993,5:531-544.
    [165]Saouma V.E., Broz J.J., Bruhwiler E., et al. Effect of aggregate and specimen size on fracture properties of dam concrete [J]. Journal of Materials in Civil Engineering,1991,3: 204-218.
    [166]Tsiskreli G.D., Dzhavakhidze A.N. The effect of aggregate size on strength and deformation of concrete [J]. Gidrotekhnicheskoe Stroitel'stvo,1970,5:42-45.
    [167]Ibragimov A.M. Effect of the maximum size of coarse aggregate on the main parameters of concrete [J]. Gidrotekhnicheskoe Stroitel'stvo,1989,3:22-24.
    [168]Sizov V.P. Effect of sand content in concrete and aggregate size on cement consumption and strength of concrete [J]. Gidrotekhnicheskoe Stroitel'stvo,1997,3: 47-48.
    [169]Bochenek A., Prokopski G. The investigation of aggregate grain size effect on fracture toughness of ordinary concrete structures [J]. International Journal of Fracture, 1989,41:197-205.
    [170]Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society, Section B,1949,62(11): 676-700.
    [171]Bischoff P.H., Perry S.H. Compression behaviour of concrete at high strain rates [J]. Materials and Structures,1991,24:425-450.
    [172]Ross C.A., Thompson P.Y., Tedesco J.W. Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression[J]. ACI Materials Journal,1989,86-M43: 475-481.
    [173]Grote D.L., Park S.W., Zhou M. Dynamic behaviour of concrete at high strain rates and pressure:I. Experimental characterization [J]. International Journal of Impact Engineering,2001,25:869-886.
    [174]Tedesco J.W., Hughes M.L., Ross C.A. Numerical simulation of high strain rate concrete compression tests [J]. Computers and Structures,1994,51 (1):65-77.
    [175]Georgin J.F., Reynouard J.M. Modeling of structures subjected to impact:concrete behaviour under high strain rate [J]. Cement and Concrete Composites,2003,25: 131-143.
    [176]Li Q.M., Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures,2003,40:343-360.
    [177]Comite Euro-International du Beton. CEB-FIP Model Code,1990, Redwood Books, 1993, Trowbridge, Wiltshire, UK.
    [178]Tedesco J.W., Ross C.A. Strain-rate-dependent constitutive equations for concrete [J]. Journal of Pressure Vessel Technology-Transactions of the ASME,1998,120 (4): 398-405.
    [179]Grote D.L., Park S.W., Zhou M. Dynamic behaviour of concrete at high strain rates and pressure:I. Experimental characterization [J]. International Journal of Impact Engineering,2001,25:869-886.
    [180]Katayama M., Itoh M., Tamura S., et al. Numerical analysis method for the RC and geological structures subjected to extreme loading by energetic materials [J]. International Journal of Impact Engineering,2007,34 (9):1546-1561.
    [181]Ma G.W., Dong A., Li J. Modeling strain rate effect for heterogeneous brittle materials. In:First International Conference on Analysis and Design of Structures against Explosive and Impact Loads, September 15-17,2006, Tianjin, China. Transaction of Tianjin University,12 (Suppl.):79-82.
    [182]Cotsovos D.M., Pavlovic'M.N. Numerical investigation of concrete subjected to high rates of uniaxial tensile loading [J]. International Journal of Impact Engineering [J], 2008,35(5):319-335.
    [183]Georgin J.F., Reynouard J.M. Modeling of structures subjected to impact:concrete behaviour under high strain rate [J]. Cement and Concrete Composites,2003,25: 131-143.
    [184]Rabczuk T., Eibl J. Modelling dynamic failure of concrete with meshfree methods [J]. International Journal of Impact Engineering,2006,32:1878-1897.
    [185]Zhou X.Q., Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate [J]. International Journal of Solids and Structures,2008,45:4648-4661.
    [186]Cotsovos D.M., Pavlovic M.N. Numerical investigation of concrete subjected to high rates of uniaxial tensile loading [J]. International Journal of Impact Engineering,2008,35: 319-335.
    [187]Bresler B., Bertero V.V. Influence of high strain rate and cyclic loading of unconfined and confined concrete in compression [A]. Heidebrecht A.C., Emery J.J., Speirs J.W., et al. Proceedings of Second Canadian Conference on Earthquake Engineering [C]. Ontario, Hamilton:Mcmaster University,1975:1-13.
    [188]Takeda J., Tachikawa H. The mechanical properties of several kinds of concrete at compressive, tensile, and flexural tests in high rates of loading [J]. Transactions of the Japan Architect Institute,1962,77:1-6.
    [189]Hughes B.P., Gregory R. Concrete subjected to high rates of loading in compression [J]. Magazine of Concrete Research,1972,24 (78):25-36.
    [190]Hughes B.P., Watson A.J. Compressive strength and ultimate strain of concrete under impact loading [J]. Magazine of Concrete Research,1978,30 (105):189-199.
    [191]Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete [J]. ACI Materials Journal,1953,49 (8):729-744.
    [192]Malvern L.E., Jenkins D.A., Tang T., et al. Dynamic compressive testing of concrete [A]. Ross, C. A., Thompson, P.Y, ed. Proceedings of Second Symposium on the Interaction of Non2Nuclear Munitions with Structures [C]. Florida:U. S. Department of Defense,1985:194-199.
    [193]Ross C.A., Tedesco J.W., Kuennen S.T. Effects of strain rate on concrete strength [J]. ACI Materials Journal,1995,92 (1):37-47.
    [194]Ross C.A., Jerome D.M., Tedesco J.W., et al. Moisture and strain rate effects on concrete strength [J]. ACI Materials Journal,1996,93(3):293-300.
    [195]Grot D.L., Park S.W., Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I Experimental characterization [J]. International Journal of Impact Engineering,2001,25 (3):869-886.
    [196]Lee O.S, et al. Dynamic deformation behavior of rubber under high strain rate compressive loading [J]. Int J Mod Phys B,2003,17(8-9):1415-20.
    [197]Kakavas P.A. Mechanical properties of bonded elastomer discs subjected to triaxial stress [J]. J Appl Polym Sci,1996,59(2):251-61.
    [198]Jones J.W. Tensile testing of elastomers at ultra-high strain rates [J]. J Appl Polym Sci,1960, Ⅳ (12):284-90.
    [199]Bergstrom J.S.,Boyce M.C. Constitutive modeling of the large strain time-dependent behavior of elastomers [J]. J Mech Phys Solids,1998,46(5):931-54.
    [200][32] Gray Ⅲ.G.T., et al. Influence of temperature and strain rate on the mechanical behaviour of Adiprene L-100,1997, In:C3 EURODYMAT 97.
    [201]Oliver A.S., Norman A. F., Darren R. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates [J]. International Journal of Impact Engineering,2006,32:1384-1402.
    [202]Zejia Liu, Liqun Tang, Chenzao Huang, et al. The study of Meso Structure and Failure Feature of Liquid rubber concrete basing on the random aggregate model [A].2nd Int. Conf. on Heterogeneous Material Mechanics, June 3-8,2008, Huangshan, China.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700