用户名: 密码: 验证码:
非局部多尺度方法及其在混凝土重力坝细观分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是典型的复合材料,复杂的宏观力学性能与混凝土材料的细观结构密切相关。混凝土细观结构一般认为是由骨料、砂浆以及界面过渡区等三相介质组成。此外,在砂浆和界面中存在大量微裂缝和孔洞,在荷载作用下这些初始缺陷发生扩展、弯折和汇合,对混凝土材料的宏观性质产生显著影响,导致材料性能逐渐劣化直至破坏。从细观上建立材料模型,并用于宏观结构分析,可以揭示宏观各种复杂现象,为此,本文对混凝土细观数值模型和多尺度方法进行了探讨,建立了基于弹脆性材料的细观数值模型和非局部多尺度方法,并应用于混凝土重力坝模型的数值研究,从细观上分析了引起重力坝模型试验尺寸效应的原因。
     论文首先研究了基于弹脆性材料的细观数值模型,考虑到混凝土中存在许多微裂缝和孔洞的结构特点,提出了用含初始缺陷的细观结构来模拟混凝土宏观性能,其中假设初始缺陷位于界面上。针对弹脆性破坏,根据应力集中与应力强度因子之间的关系,建立了等效断裂强度准则。利用该细观模型模拟的混凝土单轴拉压结果与试验吻合的较好。通过分析不同含量的初始缺陷对混凝土细观模型性能的影响,结果表明初始缺陷是混凝土非线性细观模拟的关键。
     其次,论文利用递进多尺度方法分析了弯拉试验的破坏过程,讨论了不同材料性能与细观结构尺寸的关系,研究了递进多尺度法的尺寸敏感性。根据宏观非局部理论和体积耦合法,建立了非局部多尺度方法,该方法的计算结果与细观直接分析非常接近。对于断裂破坏问题,基于修正的Voigt-Reuss模型,提出了简化的非局部多尺度方法,通过算例验证了简化后的有效性。
     论文假定宏观断裂破坏的方向可以用最大拉应力表征,利用裂缝扩展路径算法,对重力坝模型进行了非局部多尺度分析。与宏观数值结果的对比表明,非局部多尺度方法可以更好的模拟重力坝模型试验中的尺寸效应。根据相似准则,建立了细观上满足相似性的不同比尺的模型,研究了宏观尺寸效应与细观相似性的关系,初步解释了引起重力坝模型尺寸效应的原因。
The macro-level behavior of concrete, one of the typical composites, is associated with the meso-level structure. Generally speaking, meso-level structure of concrete is composed of aggregate, mortar and interface transition zone. Lots of cracks and pores in the mortar and ITZ have been found existed before loading. The propagation, kink and converge of these initial defects have eminent influence on the macro-level behavior of concrete and cause concrete deterioration. Accordingly, the complicated behavior of the macro-level structure can be studied by the numerical model established on the meso-level. In this dissertation, the meso-level numerical model with brittle phases and the nonlocal multiscale method are developed and applied to the analysis of the failure behavior of prenotched gravity dam models. Based on the results, the size effect of dam models is discussed on the meso-level.
     According to the characteristic of meso-level structure, the meso-level structure including initial defects on the ITZ is recommended in the simulation of the macro-level behavior of concrete. By means of the relationship between stress concentration and stress intensity factor, an equivalent fracture criterion is proposed for checking the brittle failure. The simulation results for the cubic concrete specimen in the uniaxial tension and compression tests by using the proposed model conform to the physical tests. Moreover, the influence of different content of initial defects on the simulation is analyzed; the results show the nonlinear behavior simulated on the meso-level relies on existing of the initial defects.
     By means of multiscale analysis of bending tests, the relations between different behavior of material and the size of meso-level structure are discussed, and the size dependency is studied. On the basis of the nonlocal constitutive theory and couple volume multiscale model, the nonlocal multiscale method is developed. In simulation of the bending test, the results from the nonlocal multiscale analysis are in agreement with those from the direct meso-level analysis. Based on the modified Voigt-Reuss model, the simplified nonlocal multiscale method is proposed for the fracture analysis of concrete.
     Combined with the fracture tracking method in which the direction of fracture is assumed to be characterized by the maximum principal stress, the nonlocal multiscale analysis of the prenotched gravity dam model is in accordance with the tests. Contrast to the macro-level analysis, the nonlocal multiscale analysis can obtain more accurate results for the size effect of the dam models. Based on the virtual dam model conforming with Buckinghan’s theorem on the meso-level, the size effect of dam models is explained via meso-structure.
引文
[1] Drago A, Pindera M. Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures. Composites Science and Technology, 2007, 67(6): 1243-1263.
    [2] Zohdi T I, Oden J T, Rodin G J. Hierarchical modeling of heterogeneous bodies. Computer Methods in Applied Mechanics and Engineering, 1996, 138(1-4): 273-298.
    [3] Moes N, Oden J T, Zohdi T I. Investigation of the interactions between the numerical and the modeling errors in the Homogenized Dirichlet Projection Method. Computer Methods in Applied Mechanics and Engineering, 1998, 159(79-101)
    [4] Zohdi T I, Wriggers P, Huet C. A method of substructuring large-scale computational micromechanical problems. Computer Methods in Applied Mechanics and Engineering, 2001, 190(43-44): 5639-5656.
    [5] Zohdi T, Wriggers P. Domain decomposition method for bodies with heterogeneous microstructure based on material regularization. International Journal of Solids and Structures, 1999, 36(17): 2507-2525.
    [6] Prudhomme S, Oden J T. On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors. Computer Methods in Applied Mechanics and Engineering, 1999, 176: 313-343.
    [7] Vemaganti K S, Oden J T. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials Part II: A computational environment for adaptive modeling of heterogeneous elastic solids. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46-47): 6089-6124.
    [8] Fish J, Wagiman A. Multiscale finite element method for a periodic and nonperiodic heterogeneous medium. Anaheim, CA, USA: Publ by ASME, New York, NY, USA, 1992.
    [9] Toledano A, Murakami H. A high order mixture model for periodic particulate composites. International Journal of Solids and Structures, 1987, 23(7): 989-1002.
    [10] Guedes J, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2): 143-198.
    [11] Tong P, Mei C C. Mechanics of composites of multiple scales. Computational Mechanics, 1992, (9): 195-201.
    [12] Hassani B, Hinton E. A review of homogenization and topology optimization III - Topology optimization using optimality criteria. Computers and Structures, 1998, 69(6): 739-756.
    [13] Hassani B, Hinton E. Review of homogenization and topology optimization II - analytical and numerical solution of homogenization equations. Computers and Structures, 1998, 69(6): 719-738.
    [14] Hassani B, Hinton E. Review of homogenization and topology optimization I - homogenization theory for media with periodic structure. Computers and Structures, 1998, 69(6): 707-717.
    [15] Chung P W, Tamma K K, Namburu R R. Asymptotic expansion homogenization for heterogeneous media: Computational issues and applications. Composites - Part A: Applied Science and Manufacturing, 2001, 32(9): 1291-1301.
    [16] Moes N, Oden J T, Vemaganti K, et al. Simplified methods and a posteriori error estimation for the homogenization of representative volume elements (RVE). Computer Methods in Applied Mechanics and Engineering, 1999, 176(1-4): 265-278.
    [17] Cao L Q, Cui J Z, Zhu D C, et al. Multiscale finite element method for subdivided periodic elastic structures of composite materials. Journal of Computational Mathematics, 2001, 19(2): 205-212.
    [18] Chen J, Cui J. A multiscale finite element method for elliptic problems with highly oscillatory coefficients. Applied Numerical Mathematics, 2004, 50(1): 1-13.
    [19] Li Y Y, Cui J Z. The multi-scale computational method for the mechanics parameters of the materials with random distribution of multi-scale grains. Composites Science and Technology, 2005, 65(9 SPEC ISS): 1447-1458.
    [20] Feyel F. Multiscale non linear FE2 analysis of composite structures: Fiber size effects. Delft: EDP Sciences, 2001.
    [21] Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structures. Computational Materials Science, 1999, 16(1-4): 344-354.
    [22] Feyel F. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28-30): 3233-3244.
    [23] Feyel F, Chaboche J. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering, 2000, 183(3-4): 309-330.
    [24] Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media. Computer Methods in Applied Mechanics and Engineering, 2001, 190(40-41): 5427-5464.
    [25] Terada K, Saiki I, Matsui K, et al. Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain. Computer Methods in Applied Mechanics and Engineering, 2003, 192(31-32): 3531-3563.
    [26] Terada K, Hori M, Kyoya T, et al. Simulation of the multi-scale convergence in computational homogenization approaches. International Journal of Solids and Structures, 2000, 37(16): 2285-2311.
    [27] Miehe C, Koch A. Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Archive of Applied Mechanics, 2002, 72(4-5): 300-317.
    [28] Miehe C. Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. International Journal for Numerical Methods in Engineering, 2002, 55(11): 1285-1322.
    [29] Dvorak G J, Wafa A M, Bahei-El-Din Y A. Implementation of the transformation field analysis for inelastic composite materials. Computational Mechanics, 1994, 14(3): 201-228.
    [30] Fish J, Shek K, Pandheeradi M. Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Comput. Methods Appl. Mech. Engrg., 1997, 148: 53-73.
    [31] Michel J C, Suquet P. Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Computer Methods in Applied Mechanics and Engineering, 2004, 193(48-51): 5477-5502.
    [32] Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method. International Journal of Solids and Structures, 1995, 32(1): 27-62.
    [33] Ghosh S, Lee K, Moorthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Computer Methods in Applied Mechanics and Engineering, 1996, 132(1-2): 63-116.
    [34] Lee K, Ghosh S. Small deformation multi-scale analysis of heterogeneous materials with the Voronoi cell finite element model and homogenization theory. Computational Materials Science, 1996, 7(1-2): 131-146.
    [35] Ghosh S, Lee K, Raghavan P. A multi-level computational model for multi-scale damage analysis in composite and porous materials. International Journal of Solids and Structures, 2001, 38(14): 2335-2385.
    [36] Lee K, Moorthy S, Ghosh S. Multiple scale computational model for damage in composite materials. Computer Methods in Applied Mechanics and Engineering, 1999, 172(1-4): 175-201.
    [37] Fish J, Belsky V. Multi-grid method for periodic heterogeneous media Part 2: Multiscale modeling and quality control in multidimensional case. Computer Methods in Applied Mechanics and Engineering, 1995, 126(1-2): 17-38.
    [38] Fish J, Zheng Y. Multiscale enrichment based on partition of unity. International Journal for Numerical Methods in Engineering, 2005, 62(10): 1341-1359.
    [39] Ghosh S, Bai J, Raghavan P. Concurrent multi-level model for damage evolution in microstructurally debonding composites. Mechanics of Materials, 2007, 39(3): 241-266.
    [40] Raghavan P, Ghosh S. Concurrent multi-scale analysis of elastic composites by a multi-level computational model. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6-8): 497-538.
    [41] Ladeveze P. Multiscale modelling and computational strategies for composites. International Journal for Numerical Methods in Engineering, 2004, 60(1): 233-253.
    [42] Ladeveze P, Neron D, Gosselet P. On a mixed and multiscale domain decomposition method. Computer Methods in Applied Mechanics and Engineering, 2007, 196(8): 1526-1540.
    [43] Ladeveze P, Nouy A. On a multiscale computational strategy with time and space homogenization for structural mechanics. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28-30): 3061-3087.
    [44] Ibrahimbegovic A, Markovic D. Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28-30): 3089-3107.
    [45] Markovic D, Ibrahimbegovic A. On micro-macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 2004, 193(48-51): 5503-5523.
    [46] Fish J, Yu Q, Shek K. Computational damage mechanics for composite materials based on mathematical homogenization. International Journal for Numerical Methods in Engineering, 1999, 45: 1657-1679.
    [47] Oden J T, Vemaganti K, Moes N. Hierarchical modeling of heterogeneous solids. Computer Methods in Applied Mechanics and Engineering, 1999, 172(1-4): 3-25.
    [48] Gitman I M, Askes H, Sluys L J. Coupled-volume multi-scale modelling of quasi-brittle material. European Journal of Mechanics - A/Solids, 2008, 27(3): 302-327.
    [49] Gitman I M, Gitman M B, Askes H. Quantification of stochastically stable representative volumes for random heterogeneous materials. Archive of Applied Mechanics, 2006, 75(2): 79-92.
    [50] Belytschko T, Loehnert S, Song J. Multiscale aggregating discontinuities: A method for circumventing loss of material stability. International Journal for Numerical Methods in Engineering, 2008, 73(6): 869-894.
    [51] Massart T J, Peerlings R H J, Geers M G D. An enhanced multi-scale approach for masonry wall computations with localization of damage. International Journal for Numerical Methods in Engineering, 2007, 69(5): 1022-1059.
    [52] Massart T J, Peerlings R H J, Geers M G D. A dissipation-based control method for the multi-scale modelling of quasi-brittle materials. Comptes Rendus Mecanique, 2005, 333(7): 521-527.
    [53] Hund A, Ramm E. Locality constraints within multiscale model for non-linear material behaviour. International Journal for Numerical Methods in Engineering, 2007, 70(13): 1613-1632.
    [54] Forest S, Sab K. Cosserat overall modeling of heterogeneous materials. Mechanics Research Communications, 1998, 25: 449-454.
    [55] Kouznetsova V G, Geers M G D, Brekelmans W A M. Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Computer Methods in Applied Mechanics and Engineering, 2004, 193(48-51): 5525-5550.
    [56] Kouznetsova V, Geers M G D, Brekelmans W A M. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 2002, 54(8): 1235-1260.
    [57]岳中琦,陈沙,郑宏,等.岩土工程材料的数字图像有限元分析.岩石力学与工程学报, 2004, (06): 889-897.
    [58]李晓军,张金夫,刘凯年,等.基于CT图像处理技术的岩土材料有限元模型.岩土力学, 2006, (08): 1331-1334.
    [59]姜袁,柏巍,戚永乐,等.基于CT扫描数据的混凝土细观结构的三维重建.三峡大学学报(自然科学版), 2008, (01): 52-55.
    [60]郝书亮,党发宁,陈厚群,等.基于CT图像的混凝土三维微观结构在ANSYS中的实现.混凝土, 2009, (03): 13-15.
    [61] Bentz D P, Mizell S, Satterfield S, et al. The Visible Cement Data Set. NIST Journal of Research, 2002, 107(2): 137-148.
    [62] Garboczi E J, Martys N S, Saleh H H, et al. Acquiring, analyzing, and using complete three-dimensional aggregate shape information: Proceedings of the Ninth Annual Symposium for the International Center for Aggregate Research. 2001
    [63]明德斯,杨J.弗朗西斯,达尔文.混凝土.吴科如,张雄,姚武,等.北京:化学工业出版社, 2005: 197-198.
    [64]王宗敏.不均质材料(混凝土)裂隙扩展及宏观计算强度与变形[博士学位论文].清华大学, 1996.
    [65] Hafner S, Eckardt S, Luther T, et al. Mesoscale modeling of concrete: Geometry and numerics. Computers & Structures, 2006, 84(7): 450-461.
    [66] Bazant Z P, Tabbara M R, Kazemi M T, et al. Random Particle Model for Fracture of Aggregate or Fiber Composites. Journal of Engineering Mechanics, 1990, 116(8): 1686-1705.
    [67] Schlangen E, van Mier J G M. Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement and Concrete Composites, 1992, 14(2): 105-118.
    [68] Ragab Mohamed A, Hansen W. Micromechanical modeling of crack-aggregate interaction in concrete materials. Cement and Concrete Composites, 1999, 21(5-6): 349-359.
    [69]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂.清华大学学报(自然科学版), 1996, (01)
    [70] Wittmann F H, Roelfstra P E, Sadouki H. simulation and analysis of composite structures. Materials Science and Engineering, 1985, 68(2): 239-248.
    [71]高政国,刘光廷.二维混凝土随机骨料模型研究.清华大学学报(自然科学版), 2003, (05)
    [72]刘光廷,高政国.三维凸型混凝土骨料随机投放算法.清华大学学报(自然科学版), 2003, (08): 1120-1123.
    [73]孙立国,杜成斌,戴春霞.大体积混凝土随机骨料数值模拟.河海大学学报(自然科学版), 2005, (03): 291-295.
    [74] De Schutter G, Taerwe L. Random particle model for concrete based on Delaunay triangulation. Materials and Structures, 1993, 26(2): 67-73.
    [75] Carol I, Lopez C M, Roa O. Micromechanical analysis of quasi-brittle materials using fracture-based interface elements. International Journal for Numerical Methods in Engineering, 2001, 52(1-2): 193-215.
    [76] Burt N J, Dougill J W. Progressive failure in a model heterogeneous medium. Journal of Engineering Mechanics Division, ASCE, 1977, 103(3): 365-376.
    [77] Schlangen E, Garboczi E J. Fracture simulations of concrete using lattice models: Computational aspects. Engineering Fracture Mechanics, 1997, 57(2-3): 319-332.
    [78] van Mier J G M, van Vliet M R A. Experimentation, numerical simulation and the role of engineering judgement in the fracture mechanics of concrete and concrete structures. Construction and Building Materials, 1999, 13(1-2): 3-14.
    [79] Mohamed A R, Hansen W. Micromechanical Modeling of Concrete Response under Static Loading—Part 1: Model Development and Validation. ACI Materials Journal, 1999, 96(2): 196-203.
    [80] Lilliu G, van Mier J G M. 3D lattice type fracture model for concrete. Engineering Fracture Mechanics, 2003, 70(7-8): 927-941.
    [81] Schlangen E, Garboczi E J. New method for simulating fracture using an elastically uniform random geometry lattice. International Journal of Engineering Science, 1996, 34(10): 1131-1144.
    [82]马怀发,陈厚群,黎保琨.混凝土细观力学研究进展及评述.中国水利水电科学研究院学报, 2004, (02)
    [83]马怀发,陈厚群,吴建平,等.大坝混凝土三维细观力学数值模型研究.计算力学学报, 2008, (02)
    [84]马怀发,陈厚群,周永发,等.大坝混凝土试件三维细观力学并行计算研究.工程力学, 2007, (10)
    [85] Wriggers P, Moftah S O. Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elements in Analysis and Design, 2006, 42(7): 623-636.
    [86] Caballero A, Carol I, Lopez C M. A meso-level approach to the 3D numerical analysis of cracking and fracture of concrete materials. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29(12): 979-991.
    [87] Caballero A, Carol I, Lopez C M. 3D meso-mechanical analysis of concrete specimens under biaxial loading. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(9): 877-886.
    [88] Tijssens M G A, Sluys L J, van der Giessen E. Simulation of fracture of cementitious composites with explicit modeling of microstructural features. Engineering Fracture Mechanics, 2001, 68(11): 1245-1263.
    [89]王宝庭,宋玉普,张燕坤.基于刚体─弹簧模型的混凝土微裂纹行为模拟.工程力学, 1999, (02)
    [90] Xu X P, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids, 1994, 42: 1397-1434.
    [91] Vervuurt A, Schlangen E, Van Mier J. Tensile cracking in concrete and sandstone: Part 1—Basic instruments. Materials and Structures, 1996, 29(1): 9-18.
    [92] Chiaia B, Vervuurt A, Van Mier J G M. Lattice model evaluation of progressive failure in disordered particle composites. Engineering Fracture Mechanics, 1997, 57(2-3): 301-309.
    [93] Zhong X, Chang C S. Micromechanical Modeling for Behavior of Cementitious Granular Materials. Journal of Engineering Mechanics, 1999, 125(11): 1280-1285.
    [94]唐春安,朱万成.混凝土损伤与断裂--数值试验.北京:科学出版社, 2003:
    [95]朱万成,黄明利,唐春安.混凝土试件裂纹扩展及破坏过程的计算机模拟.辽宁工程技术大学学报(自然科学版), 2000, (03): 271-274.
    [96] Zhu W C, Tang C A. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model. Construction and Building Materials, 2002, 16(8): 453-463.
    [97] Hsu T T C, Slate F O, Sturman G M, et al. Microcracking of Plain Concrete and the Shape of the Stress-Strain Curve. ACI Materials Journal, 1963, 60(2): 209-224.
    [98]王海龙.自由水细观作用机理及其对混凝土宏观力学性能影响分析[博士学位论文].北京:清华大学, 2006.
    [99] Ollivier J P, Maso J C, Bourdette B. Interfacial transition zone in concrete. Advanced Cement Based Materials, 1995, (2): 30-38.
    [100] Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams. Journal of the American Concrete Institute, 1967, 67: 152-163.
    [101] Rashid Y R. Analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design, 1968, 7: 334-344.
    [102] Li J, Zhang X B. A criterion study for non-singular stress concentrations in brittle or quasi-brittle materials. Engineering Fracture Mechanics, 2006, 73(4): 505-523.
    [103] Leguillon D, Quesada D, Putot C, et al. Prediction of crack initiation at blunt notches and cavities - size effects. Engineering Fracture Mechanics, 2007, 74(15): 2420-2436.
    [104]于骁中.岩石和混凝土断裂力学.长沙:中南工业大学出版社, 1991:
    [105] Lee X, J W J. Micromechanical damage models for brittle materials II compressive loadings. Journal of Engineering Mechanics, 1991, 117: 1515-1536.
    [106]杨木秋,林泓.混凝土单轴受压受拉应力-应变全曲线的试验研究.水利学报, 1992, (06)
    [107] Bazant Z P, Jirasek M. Damage nonlocality due to microcrack interactions:statistical determination of crack influence function: fracture and damage in quasibrittle structures. Bazant Z P, Bittnar Z, Jirasek M, et al. E&FN Spon, 1994
    [108] Ru C Q, Aifantis E C. A simple approach to solve boundary-value problems in gradient elasticity. Acta. Mechanica, 1993, 101: 59-68.
    [109] Peerlings R H J, de Borst R, Brekelmans W A M, et al. Gradient-enchaned damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 1996, 39: 3391-3403.
    [110] Peerlings R H J, Fleck N A. Computational evaluation of strain gradient elasticity constants. International Journal for Multiscale Computational Engineering, 2004, 2: 599-619.
    [111] Simone A, Askes H, Peerlings R H J, et al. Interpolation requirements for implicit gradient-enchanced continuum damage model. Communications in Numerical Methods in Engineering, 2003, 19: 563-572.
    [112]陈惠发,萨里普A. F.混凝土和土的本构方程.余天庆,王勋文,刘西拉,等.北京:中国建筑工业出版社, 2004: 281-283.
    [113] Barpi F, Valente S. Numerical simulation of prenotched gravity dam models. Journal of Engineering Mechanics, 2000, 126(6): 611-619.
    [114]杜效鹄.基于单位分解的富集方法及其在混凝土断裂分析中的应用[博士学位论文].北京:清华大学, 2005.
    [115] Carpinteri A, Valente S, Ferrara G, et al. Experimental and numerical fracture modelling of a gravity dam: fracture mechanics of concrete structures. Bazant Z P. Amsterdam, The Netherlands: Elsevier Science, 1992
    [116] Renzi R, Ferrara G, Mazza G. Cracking in a concrete gravity dam: a centrifugal investigation: dam fracture and damage. Bourdarot E, Mazars J, Saouma V. Rotterdam, The Netherlands: 1994
    [117] Rilem. Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 1985, 18: 287-290.
    [118] Valente S, Barpi F, Ferrara G. Numerical simulation of centrifuge tests on prenotched gravity dam models: Bourdarot E, Mazars J, Saouma V. Balkema, Rotterdam, The Netherlands: 1994: 111-119.
    [119] Cervera M, Chiumenti M. Smeared crack approach: Back to the original track. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(12): 1173-1199.
    [120] Oliver J, Huespe A E, Pulido M D G, et al. From continuum mechanics to fracture mechanics: the strong discontinuity approach. Engineering Fracture Mechanics, 2002, 69: 113-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700