用户名: 密码: 验证码:
煤层水压致裂理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气开采既可减少或消除瓦斯灾害隐患,又可为人类提供优质洁净能源,因而成为国内外学者广泛关注的热点研究课题之一。我国大部分煤田煤层的渗透性差,因而发展和开发此类条件下煤层气开采技术,对于提高煤层气的开采效率,增加能源供给具有重要意义。水压致裂法已在石油开采中得到成功应用,但在煤层气开采中的应用研究尚属起步阶段,还存在很多问题需要深入研究。本文综合利用现代力学理论、相似模拟试验和数值分析手段对煤层水压致裂机理进行了系统研究,得到了以下主要创新性成果:
     (1)利用MTS815.02电液伺服岩石力学试验系统及自行设计的破碎岩体渗透仪分别对原煤煤样、含贯穿裂缝煤样和破碎煤样进行了渗透性测试,得到了煤样的渗透系数随渗透压差、轴向载荷的变化规律,为煤层气水压致裂技术参数的确定提供参考。
     (2)在深入分析煤层气井围岩受力特征及煤岩体材料特征的基础上,将煤岩体的孔隙率作为损伤参量,结合Gurson损伤模型,给出了煤岩体损伤本构方程,针对煤岩体一维裂缝的扩展过程得到了裂缝扩展长度估算公式。
     (3)基于Palmer拟三维裂缝扩展模型,给出了煤层裂缝中流体的流动方程、连续性方程、裂缝的宽度方程,并建立了考虑流体垂向流动、材料损伤特征的裂缝高度方程及求解方法。
     (4)采用岩石损伤破裂过程渗流-应力耦合分析系统RFPA2D-Flow,分析了煤层地应力状况、注水压力对裂缝起裂及扩展规律的影响,得到了当水平方向的两个地应力不同时,数值较大的水平地应力方向为裂缝扩展的优势方向,为制定合理的煤层气井布置方案提供理论依据。
     (5)设计了煤岩体水压致裂的物理模拟试验,对原煤和型煤两种试样进行了水压致裂试验,初步得到:煤样裂缝扩展沿数值较大的压应力方向进行;裂缝的扩展长度随注水压力的增大而增加;裂缝起裂压力随注水泵排量的增大而增大。
     研究成果在晋城地区煤层气开发实践中得到成功应用,并取得了较好的社会和经济效益。
Exploitation of Coal-Bed Methane (CBM) is one of the hot research subjects caught widespread attention from domestic and international scholars in coal mining technology, which can not only reduce or eliminate the gas disaster hidden perils, but also supply a kind of high quality cleaning energy sources for human being. However, most of the CBM reservoirs in China are of low-permeability, so it is significance for improving the extract efficiency of CBM and raising the energy sources supply that to develop the technique about exploitation of CBM in this condition. The technique of hydraulic fracturing has been successfully applied to petroleum exploitation, while it is a new technique and in a beginning stage for exploitation of CBM and there are many problems need to be deeply investigated. Therefore, the mechanism of hydraulic fracturing in coal bed had been systematically studied in this dissertation by using the modern mechanics theory, similar simulation experiment and numerical analysis method, and the main innovative results are showed in the following aspects:
     (1) The permeability of standard coal sample, coal sample with through fracture and over-broken coal sample was tested respectively by using the MTS815.02 Electro-hydraulic Servo-controlled Rock Mechanics Testing System and the homemade testing instruments of over-broken rock seepage with compaction, and the change law of permeability coefficient of different coal samples with differential pressure and axial load are obtained.
     (2) Based on the deeply analysis of stress characteristics about surrounding rock of CBM well and material feature of coal, the porosity of coal is taken as the damage variable, combined with the damage model of Gurson, the damage constitutive equation of coal bed is established, and the estimated formula of propagating length of fracture in coal bed is given by the analysis of propagate process of one dimensional fracture.
     (3) The continuity equation, flow equation of fracturing fluid in fracture and the width equation of fracture in coal bed are given based on the P3D model of Palmer. Then, the fracture height equation considered the vertical flow of fracturing fluid in fracture and damage characteristic of coal material is established and the numerical solution methods are presented.
     (4) According to the damage model of fracture propagation, the seepage-flow coupled model of Realistic Failure Process Analysis system (RFPA2D-Flow) is adopted to simulate the hydraulic fracturing in coal bed, and the effects of ground stress status and injection pressure on initial fracturing and propagation law of fracture are analyzed, the results indicated that the direction of greater horizontal ground stress is the dominant orientation of fracture propagation when the two horizontal ground stresses are different, which provide a theoretical basis for the reasonable arrangement scheme of CBM wells.
     (5) Physical simulation test of hydraulic fracturing of coal had been designed, and the hydraulic fracturing test of coal samples and briquette samples had been carried out. Some results were obtained as follows: The fracture of coal samples propagate along the direction of the greater compressive stress; the propagation length of fracture increases with the increase of injection pressure and the initial fracture pressure increases with the increase of pump capacity.
     The achievements of this dissertation had been successfully applied to the CBM exploitation project in Jincheng coal mine field, and better social and economical benefits had been obtained.
引文
[1] 王泰. 论我国预防煤矿瓦斯事故的对策[J]. 矿业安全与环保, 2005, 32(3):19-21.
    [2] 樊九林. 煤矿瓦斯事故的原因及对策[J]. 煤炭科技, 2005, (2):41-42.
    [3] 柳正. 加快煤层气开发,提高我国能源自供能力[J]. 西部资源, 2006, (10):12-16.
    [4] 叶建平, 秦勇, 林大扬. 中国煤层气资源[M]. 徐州:中国矿业大学出版社, 1998.
    [5] 崔荣国. 国内外煤层气开发利用现状[J]. 国土资源情报, 2005, (11):22-26.
    [6] 由然. 国际煤层气开发各有千秋[J]. 中国石油企业, 2006, (6):51-53.
    [7] 杨陆武. 积极开发煤层气,资源保护人类生态环境[J]. 科技导报, 1999, 11:61-63.
    [8] 张国华. 本煤层水力压裂致裂机理及裂隙发展过程研究[D]. 阜新:辽宁工程技术大学, 2001.
    [9] 秦勇, 朱喜旺. 中国煤层气产业发展所面临的若干科学问题[J]. 中国科学基金, 2006, 3:148-152.
    [10] 饶孟余, 杨陆武, 冯三利等. 中国煤层气产业化开发的技术选择[J]. 特种油气藏, 2005, 12(4):1-4.
    [11] 孙茂远, 杨陆武等. 煤层气基础理论研究的关键科学问题[J]. 煤炭科学技术, 2002, 30(9):46-48.
    [12] H.Γ. 格里戈良著, 李继康等译. 用射孔枪打开油气层[M]. 北京:石油工业出版社, 1991.
    [13] 张亚蒲, 杨正明, 鲜保安. 煤层气增产技术[J]. 特种油气藏, 2006, 13(1):95-98.
    [14] Gidley J.L.,Holditch S.A.,Nierode D.E. et al. Recent advances in hydraulic fracture [J]. Society Petroleum Engineering Monograph,1989:452.
    [15] Murdoch L.C., Slack W.W. Forms of hydraulic fractures in shallow fine-grained formations [J]. Journal of Geotechnical and Geoenvironment Engineering,2002, 128(6):479-487.
    [16] 王建军. 应用水压致裂法测量三维地应力的几个问题[J]. 岩石力学与工程学报, 2000, 19(2): 229-233.
    [17] 刘允芳, 钟作武, 汪洁. 水压致裂法三维地应力测量成果计算与分析的探讨[J]. 岩石力学与工程学报, 2002, 21(6):833-838.
    [18] 郭启良, 安其美, 赵仕广. 水压致裂应力测量在广州抽水蓄能电站设计中的应用研究[J]. 岩石力学与工程学报, 2002, 21(6):828-832.
    [19] Klee G., Rummel F., Williams A. Hydraulic fracturing stress measurement in Hong Kong [J]. International Journal of Rock Mechanics and Mining Science,1999, 36:731-741.
    [20] 李自强. 水压致裂法地下绝对应力测量[A]. 见:中国诱发地震[C]. 北京:地震出版社, 1984: 61-68.
    [21] Wong. H. Y., Farmer. I. W. Hydro-fracture mechanisms in rock during pressure grouting [J]. RockMechanics, 1973, 5:21-41.
    [22] Murdoch L.C. Forms of hydraulic fractures created during a filed test in fine grained glacial draft [J]. Journal of Engineering Geology, 1995, 28:23-35.
    [23] D. Kenneth. Mahler. A review and perspective on far-field hydraulic fracture geometry studies [J]. Journal of Petroleum Science and Engineering, 1999, 24:13-28.
    [24] 刘建军, 刘先贵. 有效压力对低渗透多孔介质孔隙度渗透率的影响[J]. 地质力学学报, 2001, 7(l): 41-44.
    [25] 秦勇, 张德民, 傅雪梅等. 沁水盆地中-南部现代构造应力场与煤储层物性关系之探讨[J]. 地质评论, 1999, 45(6):576-583.
    [26] 屠厚泽, 高森. 岩石破碎学[M]. 北京:地质出版社, 1990.
    [27] [美]M.J.埃克诺米得斯等. 油藏增产措施(第三版)[M]. 北京:石油工业出版社, 2000.
    [28] 王鸿勋, 张士诚. 水力压裂设计数值计算方法[M]. 北京:石油工业出版社, 1998.
    [29] [美]J.L.吉德利等著, 蒋阗, 单文文等译. 水力压裂技术新进展[M]. 北京:石油工业出版社, 1995.
    [30] 杨秀夫, 刘希圣, 陈勉等. 国内外水压裂缝几何形态模拟研究的发展现状[J]. 石油工程, 1997, 9(6):8-11.
    [31] J. Geertsma, F. De Klerk. A rapid method of predicting width and extent of hydraulically induced fractures [J]. J.Pet.Tech. 1969, 21(12):1571-1581.
    [32] A.A. Daneshy. On the design of vertical hydraulic fractures [J]. JPT, 1973, 25: 83-97.
    [33] T.K. Perkins, L.R. Kern. Width of hydraulic fracture [J]. JPT, 1961, 13:937-949.
    [34] R.P. Nordgren. Propagation of vertical hydraulic fracture [J]. Soc. Pet. Eng. J, 1972, 12:306-314.
    [35] R.D. Carter. Derivation of the general equation for estimating the extent of the fractured area [J]. Drilling and Prod. API 1957, 261-270.
    [36] B.B. Williams. Fluid loss from hydraulically induced fractures [J]. JPT, 1970, 22:882-888.
    [37] 颜子. 水力压裂裂缝延伸三维数学模型的研究及应用[D]. 重庆:西南石油学院, 2002.
    [38] Van Eekelen. Hydraulic fracture geometry: fracture containment in layered formation [J]. Society Petroleum Engineers Journal, 1982, 22:341-349.
    [39] S.H. Advani, J.K. Lee. Finite element model simulations associated with hydraulic fracturing [J]. Society Petroleum Engineers Journal, 1982, 22:209-218.
    [40] A. Settari, M.P. Cleary. Three dimensional simulation of hydraulic fracture [J]. Journal of Petroleum Technology, 1984, 36: 1170-1190.
    [41] I.D. Palmar, H.B. Carrol, Jr. 3D hydraulic fracture propagation in the presence of stress variations [J]. Society Petroleum Engineers Journal, 1983, 870-878.
    [42] I.D. Palmer, G. T. Luiskutty. A model of hydraulic fracturing process for elongated verticalfractures and comparisons of results with other modeling [J]. SPE/ DOE, 13864.
    [43] 陈勉,陈治喜,黄荣樽等. 非均质地层水力压裂研究[J]. 东北大学学报(自然科学版), 1994, l(15): 309-312.
    [44] 陈治喜. 水力压裂裂缝启裂和扩展[D]. 北京:石油大学, 1996.
    [45] 张劲. 层状介质的三维水力压裂数值模拟研究[D]. 合肥:中国科学技术大学, 2001.
    [46] R.J. Clifton, A.S. Abou-Sayed. On the computation of three-dimensional geometry of hydraulic fractures[J],SPE 7943
    [47] M.P. Cleary, K.Y. Lam. Development of a fully three-dimensional simulator for analysis and design of hydraulic fractures[J], SPE, 11631
    [48] M.J. Bouteca. 3D analytical model for hydraulic fracturing [J]. Theory and field test, SPE 13276
    [49] E.L.Lee, A. Jantz. Three-dimensional hydraulic propagation theory coupled with tow-dimensional prop-pant transport [J]. SPE 19770
    [50] 陈勉, 陈治喜, 黄荣樽. 三弯曲水压裂缝力学模型及计算方法[J]. 石油大学学报(自然科学版), 1995, 19(sup):43-47.
    [51] 陈治喜, 陈勉, 黄荣樽等. 层状介质中水力裂缝的垂向扩展[J]. 石油大学学报(自然科学版), 1997, 21(4):23-26.
    [52] 余寿文, 冯西桥. 损伤力学[M]. 北京:清华大学出版社, 1997.
    [53] J.W. Dougill, J.C. Lau, N.J. Burt. Mechanics in Eng. [J]. AS CE EMD, 1976, 333-355.
    [54] 尤明庆, 邹友峰. 关于岩石非均质性质与强度尺寸效应的讨论[J]. 岩石力学与工程学报, 2000, 19(3):391-395.
    [55] 龙广成, 周筑宝, 谢友均. 混凝土断裂尺寸效应律的探讨[J]. 长沙铁道学院学报, 1999, 17(4): 51-54.
    [56] 谢和平. 岩石混凝土损伤力学[M]. 北京:中国矿业大学出版社, 1990.
    [57] J. Mazars. Mechanical damage and fracture of concrete structures[C]. Advances in Fractures Research (ICF5, Vol.4), Pergamum Press, 1982, 1499-1506.
    [58] 余天庆. 混凝土的分段线性损伤模型[J]. 岩石、混凝土断裂与强度, 1982, 2:14-16.
    [59] 钱济成, 周建方. 混凝土的两种损伤模型及其应用[J]. 河海大学学报, 1989, 3:40-47.
    [60] K.E. Loland. Continuous damage models for load-response estimation of concrete [J]. Cement and Concrete Research, 1980, 10:392-492.
    [61] 杨天鸿, 唐春安, 徐涛等. 岩石破裂过程的渗流特性-理论、模型与应用[M]. 北京:科学出版社, 2004.
    [62] 陈四利, 宁宝宽, 鲍文博等. 水泥土细观破裂过程的损伤本构模型[J]. 岩土力学, 2007, 28(1): 93-96.
    [63] 钟冬望, 杨军, 高文学等. 裂隙岩体的损伤本构模型探讨[J]. 工程爆破, 1999, 5(1):11-14.
    [64] 张克实, 李世辉, 郑长卿. 裂尖大应变细观断裂研究[J]. 固体力学学报, 1999, 11(1):1-10.
    [65] 刘建军, 杜广林, 薛强. 水力压裂的连续损伤模型初探[J]. 机械强度, 2004, 26(Sup):134-137.
    [66] 冯西桥. 脆性材料的细观损伤理论和损伤结构的安定分析[D]. 北京:清华大学, 1995.
    [67] 李志刚, 付胜利, 乌效鸣等. 煤岩力学特性测试与煤层气井水力压裂力学机理研究[J]. 石油钻探技术, 2000, 28(3):10-12.
    [68] 李同林. 煤岩力学物理性质及煤层水力压裂造缝机理与裂缝发育特点研究[D]. 武汉:中国地质大学, 1994.
    [69] 李同林, 乌效鸣, 屠厚泽. 煤岩力学性质测试分析与应用[J]. 地质与勘探, 2000, 36(2):85-88.
    [70] 李同林. 煤岩层水力压裂造缝机理分析[J]. 天然气工业, 1997, 17(4):53-56.
    [71] 靳钟铭, 弓培林等. 煤体压裂特性研究[J]. 岩石力学与工程学报, 2002, 21(1):70-72.
    [72] 靳钟铭, 赵阳升等. 含瓦斯煤层力学特性的实验研究[J]. 岩石力学与工程学报, 1991, 10(3):271-280.
    [73] 速宝玉, 詹美礼, 赵坚. 光滑裂隙水流模型实验及其机理初探[J]. 水利学报, 1994, (5):19-24.
    [74] C. Louis. Rock Hydraulics in Rock Mechanics [M]. York:Springer- New Verlag, 1974.
    [75] G. M. Lomize. Flow in Fractured Rocks [M]. Russian, Moscow:Gosemergoizdat, 1951.
    [76] B. Amadei, T.A. Illangasekare. Mathematical model for flow and solute transport in nonhomogeneous rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 18:719-731.
    [77] 速宝玉, 詹美礼, 赵坚. 仿天然岩体裂隙渗流的实验研究[J]. 岩土工程学报, 1995, 17(5):19-24.
    [78] 周创兵, 熊文林. 岩体节理的渗流广义立方定律[J]. 岩土力学, 1996, 17(4):1-7.
    [79] Barton, Bandiss, Bakhtark. Strength deformation and conductivity coupling of rock joints [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3):121-140.
    [80] 耿克勤, 陈凤翔, 刘光廷等. 岩体裂隙渗流水力特性的实验研究[J]. 清华大学学报(自然科学版), 1996, 36(1):102-106.
    [81] 张文杰, 周创兵, 李俊平等. 裂隙岩体渗流特性物模试验研究进展[J]. 岩土力学, 2005, 26(9):1517-1524.
    [82] T. Ito, K. Hayashi. Analysis of crack reopening behavior for hydro-crack stress measurement[C]. // Rock Mechanics in the1990s: The 34th U.S. Symposium on rock mechanics, Madison, 1993:335-338.
    [83] C.M. Kim, H.H. Abass. Hydraulic fracture initiation from horizontal well-bores: laboratory experiments[C]. //Rock Mechanics as a Multidisciplinary Science: Proceedings of the 32nd U.S. Symposium. Rotterdam: Balkema, 1991:231-240.
    [84] C.J. Pater, L. Weyers, M. Savic, et al. Experimental study of non-linear effects in hydraulic fracture propagation[C]. [S.l.]: [s.n.], 1993. 23(20):3489-3493.
    [85] 邓广哲,黄炳香,石增武等. 节理脆性煤层水力致裂技术与应用[A]. 见:中国岩石力学与工程学会. 中国岩石力学与工程学会第七次学术大会论文集[C]. 北京:科学技术出版社, 2002, 636-638.
    [86] 柳贡慧, 庞飞, 陈治喜. 水力压裂模拟实验中的相似准则[J]. 石油大学学报(自然科学版), 2000, 24(5):45-48.
    [87] 陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000, 19(增):868-872.
    [88] 王国庆, 谢兴华, 速宝玉. 岩体水力劈裂试验研究[J]. 采矿与安全工程学报, 2006, 23(4):480-484.
    [89] 谢兴华. 岩体水力劈裂机理试验及数值模拟研究[D]. 南京:河海大学, 2004.
    [90] 臧德胜, 李安琴. 真单轴压应力场下岩石的力学性质[J]. 岩石力学与工程学报, 2003, 22(7):1099-1103.
    [91] 朱万成, 赵启林, 唐春安等. 混凝土断裂过程的力学模型与数值模拟[J]. 力学进展, 2002, 32(4):597-598.
    [92] 刘建中, 刘新美等. 大尺度水压致裂模拟实验[J]. 地球物理学报, 1994, 37(supp1):161-169.
    [93] 李同林. 水压致裂煤层裂缝发育特点的研究[J]. 地球科学—中国地质大学学报, 1994, 19(4):537-545.
    [94] 乌效鸣. 煤层气井水力压裂裂缝产状和形态研究[J]. 探矿工程, 1995, 6:19-21.
    [95] 张代钧. 煤结构与煤孔隙性-弹性-强度和吸附特征关系的研究[D]. 重庆:重庆大学, 1990.
    [96] 赵阳升. 矿山岩石流体力学[M]. 北京:煤炭工业出版社, 2001.
    [97] B.R.劳恩[英], T.R.威尔肖. 脆性固体断裂力学[M]. 北京:地震出版社, 1985.
    [98] 何学秋. 含瓦斯煤岩流变力学[M]. 徐州:中国矿业大学出版社, 1995.
    [99] 单学军等. 煤层气井压裂裂缝扩展规律分析[J]. 天然气工业, 2005, 25(1):130-132.
    [100] 张平, 赵金洲, 郭大立等. 水力压裂裂缝三维延伸数值模拟研究[J]. 石油钻采工艺, 1997, 19(3): 53-59.
    [101] 乌效鸣, 屠厚泽. 煤层水力压裂典型裂缝形态分析与基本尺寸确定[J]. 地球科学—中国地质大学学报, 1995, 20(1): 112-115.
    [102] 王新民, 傅长生, 石璟等. 国外煤层气勘探开发研究实例[M]. 北京:石油工业出版社, 1998.
    [103] 苏现波. 煤层气储集层的孔隙特征[J]. 焦作工学院学报,1998, 17(1):6-11.
    [104] 王平安. 煤层甲烷赋存、输运机理及数值模拟研究[D]. 重庆:西南石油学院, 2002.
    [105] 郭大豪. 煤层气井数值模拟研究[D]. 重庆:成都理工大学, 2004.
    [106] 张群. 煤层气储层数值模拟模型及应用的研究[D]. 西安:煤炭科学研究总院西安分院, 2003.
    [107] 付玉. 煤层气储层数值模拟研究[D]. 重庆:西南石油学院,2004.
    [108] 煤和岩石物理力学性质试验规程. 中华人民共和国煤炭工业部部标准, MT 38~50-80.
    [109] 郑雨天, 傅冰骏, 卢世宗等译. 岩石力学实验建议方法(上、下)[M]. 北京:煤炭工业出版社, 1982.
    [110] 申卫兵,张保平. 不同煤阶煤岩力学参数测试[J]. 岩石力学与工程学报, 2000, (19):7-9.
    [111] 曾立新. 深层岩石力学性质的试验方法[J]. 地质力学学报, 1999, 5(1):71-75.
    [112] 李世平. 岩石力学简明教程[M]. 徐州:中国矿业大学出版社, 1986.
    [113] 陶振宇. 岩石力学的理论与实验[M]. 北京:水利出版社, 1981.
    [114] 杜庆华, 余寿文, 姚振汉. 弹性理论[M]. 北京:科学出版社, 1986.
    [115] 徐芝纶. 弹性力学[M]. 北京:高等教育出版社, 1990.
    [116] 余天堂, 卢应发, J.F. Shao. 沉积岩的一种各向异性模型 [J]. 岩土力学, 2002, 23(1):47-50.
    [117] S.Pietruszczak, Z.Mroz. Formulation of anisotropic failure criteria incorporating a microstructure tensor [J]. Comp. & Geotechnics, 2000, 26(2):105-112.
    [118] G. Duveau, J.F. Shao, J.P. Henry. Assessment of some failure criteria for strongly anisotropic materials [J]. Mech.Cohesive Frict. Materials, 1998, 3(1):1-26.
    [119] S. Pietruszczak, S.J. Jiang, F.A. Mirza. An elastoplastic constitutive model for concrete [J]. Int.J. Solids Structures, 1988, 24(7):705-722.
    [120] 凌建明. 节理岩体损伤力学及时效损伤特性的研究[D]. 上海:同济大学, 1992.
    [121] 蔡四维,蔡敏. 混凝土的损伤断裂[M]. 北京:人民交通出版社,2000.
    [122] 尹双增. 断裂损伤理论及应用[M]. 北京:清华大学出版社,1992.
    [123] H. Horii, S. Nemat-Nasser. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure [J]. J. of GeoPhysical Research, 1985, 90(B4):3105-3125.
    [124] E. Hoek, Z.T. Bieniawski. Brilltie feature propagation in rock under compression [J]. Int. J. Fract. Mech., 1965, 1:137-155.
    [125] W.H. Gerstle, L. Matha, A.R. Ingraffea. Finite and boundary element modeling of crack propagation in two-and three-dimensions [J]. Engrg. With Computers, 1987, 2:167-183.
    [126] 陈文玲, 李宁. 含非贯通裂隙岩体介质的损伤模型[J]. 岩土工程学报, 2000, 22(4):430-434.
    [127] 蒋宏伟, 翟应虎, 刘德铸. 损伤力学在粗面岩水力压裂裂缝延伸机理研究中的应用[J]. 石油钻采工艺, 2007, 29(1):44-47.
    [128] 金衍, 张旭东, 陈勉. 天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J]. 石油学报, 2005, 26(6):113-114.
    [129] 王正茂, 李治平, 雷婉. 水力裂缝模型及计算机自动识别技术[J]. 石油钻采工艺, 2003, 25(4):45-48.
    [130] 周健, 陈勉, 金衍等. 裂缝性储层水力裂缝扩展机理试验研究[J]. 石油学报, 2007,
    [131] 程益华, 刘晓明, 田晓龙等译. 煤层甲烷气井中煤层的破坏及其后果[J]. 国外油田工程, 2006, 22(4):19-25.
    [132] 卢修峰, 刘凤琴, 韩振华. 压裂裂缝垂向延伸的人工控制技术[J]. 石油钻采工艺, 1995, 17(1):82-89.
    [133] 赵阳升, 杨栋, 胡耀青等. 低渗透煤储层煤层气开采有效技术途径的研究[J]. 煤炭学报, 2001, 26(5): 455-458.
    [134] 徐涛. 煤岩破裂过程固气耦合数值试验[D]. 沈阳:东北大学, 2004.
    [135] 杨天鸿, 唐春安, 刘红元等. 水压致裂过程分析的数值试验方法[J].力学与实践, 2001, 23(5):51-54.
    [136] 唐春安, 王述红, 傅宇方. 岩石破裂过程数值试验[M]. 长春:吉林大学出版社, 2002.
    [137] 徐涛, 唐春安, 张永斌等. 单轴压缩下脆性岩石变形破坏的理论、试验和数值模拟[J]. 东北大学学报, 2003, 24(1):87-90.
    [138] 唐春安, 刘红元, 秦四清等. 非均匀性对岩石介质中裂纹扩展模式的影响[J]. 地球物理学报, 2000, 43(1):116-121.
    [139] W.C. Zhu, C.A. Tang. Micromechanical model for simulating the fracture process of rock [J]. Rock Mechanics and Rock Engineering, 2004, 37(1):25-35.
    [140] 唐春安, 朱万成. 混凝土损伤与断裂-数值试验[M]. 北京:科学出版社, 2003.
    [141] T.H. Yang, L.C. Li, L.G Tham, et al. Numerical approach to hydraulic fracturing in heterogeneous and permeable rocks [J]. Kye Engineering Materials, 2002, 47:351-356.
    [142] 杨天鸿, 谭国焕, 唐春安等. 非均质性对岩石水压致裂过程的影响[J]. 岩土工程学报, 2002, 24(6):724-728.
    [143] C.A. Tang, L.G. Tham, P.K.K. Lee, et al. Coupled analysis of flow, stress and damage (FSD) in Rock Failure [J]. Int.J.Rock Mech. & Min. Sci. 2002, 39:477-4892.
    [144] 唐春安, 刘红元, 刘建新. 瓦斯突出过程的数值模拟研究[J]. 煤炭学报, 2000, 25(5):501-505.
    [145] 杨天鸿. 岩石破裂过程渗透特性及其与应力耦合作用的研究[D]. 沈阳:东北大学, 2001.
    [146] 杨天鸿, 唐春安, 芮勇勤等. 不同围压作用下非均匀岩石水压致裂过程的数值模拟[J]. 计算力学学报, 20040, 21(4):419-424.
    [147] 冷雪峰, 杨天鸿, 国怀专等. 单孔岩石水压致裂过程的数值模拟分析[J]. 世界有色金属, 2002, 10:32-34.
    [148] 申晋 , 赵阳升 , 段康廉 . 低渗透煤岩体水力压裂的数值模拟 [J]. 煤炭学报 , 1997, 22(6):501-505.
    [149] 单学军, 张士诚, 李安启. 煤层气井压裂裂缝扩展规律分析[J]. 天然气工业, 2005, 25(1):130-132.
    [150] J. Adachia, E. Siebritsb. Computer simulation of hydraulic fractures [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44: 739-757.
    [151] R. Wagner, V. Meyn, H. Pape, et al. Numerical simulation of pore space clogging in geothermal reservoirs by precipitation of anhydrite[J]. International Journal of Rock Mechanics & Mining Sciences, 2005, 42:1070-1081.
    [152] M.M. Rahman, M.K. Rahman, S.S. Rahman. An integrated model for multi-objective design optimization of hydraulic fracturing [J]. Journal of Petroleum Science and Engineering 2001, 31:41-62.
    [153] 顾大钊. 相似材料和相似模型[M]. 徐州:中国矿业大学出版社,1995.
    [154] 李鸿昌. 矿山压力的相似模拟试验[M]. 徐州:中国矿业大学出版社,1988.
    [155] 林韵梅. 实验岩石力学——模拟研究[M]. 北京:煤炭工业出版社, 1984.
    [156] B. Bohloli, C.J. de Pater. Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress [J]. Journal of Petroleum Science and Engineering, 2006, 53:1-12.
    [157] 寺河煤矿地质构造与地应力的关系研究,项目研究报告,2006, 11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700