用户名: 密码: 验证码:
压载荷对铝合金疲劳裂纹扩展影响的有限元建模及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在进入21世纪的今天,随着断裂力学、损伤力学的深入研究,人们对传统的静载、无缺陷材料强度的认识已相当深刻,因此,疲劳成为导致金属零、构件失效的主要因素之一。对于航空航天领域广泛使用的铝合金材料,其疲劳寿命主要是裂纹稳定扩展寿命,因此,如何准确预报铝合金疲劳裂纹在实际载荷下的稳定扩展寿命是工程中必需解决的问题。但是,长期以来,通常认为疲劳裂纹在压载荷的作用下会导致闭合,裂纹不扩展,从而忽略压载荷对疲劳裂纹扩展寿命的影响,而已有的研究表明,疲劳载荷谱中的压载荷对金属疲劳裂纹的扩展是有影响的,对于铝合金材料,压载荷对裂纹扩展有促进作用,忽略其影响是危险的。因此,研究压载荷对铝合金疲劳裂纹扩展的影响具有很大的工程实用价值。
     疲劳裂纹扩展寿命问题十分复杂,难以建立解析的、普遍的寿命预测模型,因此,用有限元模型模拟疲劳裂纹扩展的方法广泛地使用在疲劳研究中,有限元方法可以大大节省试验成本,缩短研究周期。通过对铝合金材料疲劳裂纹形成和扩展机理的研究可知,裂纹的形成和扩展与裂尖附近材料的塑性变形紧密相关,裂尖附近的材料在疲劳载荷作用下发生塑性变形,远离裂尖的材料只有弹性变形。依据裂尖附近材料的不同力学响应,结合弹塑性力学和断裂力学的相关理论和公式,建立可描述铝合金疲劳裂纹裂尖参数变化的二维静态弹塑性有限元模型。经过对动态疲劳与静态疲劳裂纹模型相比较,同时比较三维与二维疲劳裂纹模型可知,二维静态弹塑性有限元模型计算的结果是保守的,符合工程精度要求的,建模方法简单,计算高效,适合工程应用。
     本文通过对裂尖应力、裂纹张开位移、等效塑性应变和裂尖前方塑性区尺寸等参数的弹塑性有限元结果的分析,验证了疲劳载荷中的压载荷对铝合金疲劳裂纹扩展的促进作用,得出材料的破坏主要集中在裂尖前1μm内的结论。在预报铝合金疲劳寿命时,其影响不可忽略。并且利用有限元计算结果,重新定义了新参数一有效应力强度因子范围ΔK′_(eff),建立了以ΔK′_(eff)为扩展参数的可定量描述在R=0~-1条件下铝合金疲劳裂纹稳定扩展的模型,结合铝合金疲劳裂纹扩展机理,分析了参数ΔK′_(eff)的工程合理性。经7049-UA和2A12-T4铝合金材料的实验数据验证,以AK'eff为扩展参数的模型与以K_(max)、ΔK、或K_(eff)作为扩展参数的模型相比较,能够更准确地反映出压应力对铝合金疲劳裂纹扩展的影响,预报的疲劳寿命是偏安全的。
     由于高频疲劳试验机薄板试件夹具的刚度对试验的频率和试验的精度有很大影响,因此,本文利用有限元方法对高频疲劳实验机薄板试件夹具的联接结构进行了模态分析,分析结果表明,选用圆弧凹槽结构联接的夹具整体刚度较高;同时圆弧凹槽的半径和对夹具与试验机联接的螺纹长度对夹具的整体刚度都有影响,圆弧凹槽半径的合理范围应在(0.17~0.25)倍的板厚之间,螺纹长度的合理范围应在(1.43~1.55)倍的螺纹公称直径之间,此外还需要考虑螺纹副的自锁性和耐磨性来合理确定螺距。经实验检验,满足高频疲劳试验的要求。
Today, traditional strength design of static loading condition and non-defects material has been studied deeply with the development of fracture mechanics and damage mechanics. So the fatigue has become one of the main factors which induced failure of metal components. The aluminum alloy is used in aviation field widely and its fatigue life is crack steady propagation life. So, it is a big engineering problem to predict the real propagation life accurately of aluminum alloy under applied fatigue loading. But the knowledge of fatigue crack can not grow under compressive loading for the closure of crack for a long time. The compressive stress will be omitted in the fatigue strength design. From the research result, it has been found that the compressive stress affects fatigue crack propagation of metal materials. For the aluminum alloy, it is very dangerous to ignore it. Compressive stress promotes crack growth. So, the study of the effects of compressive stress on crack growth in the aluminum alloy under tensile-compressive loading spectrum will satisfy engineering application.
     Neither analytical nor universal models have been found, because of the complexity of fatigue life. Now, finite element method is used widely in modeling fatigue crack growth. It is a good way to cut down the cost of fatigue test and shorten the period of fatigue study. From the mechanism research of aluminium alloy fatigue crack initiation and propagation, we know that crack initiation and propagation is closely connected to the plastic deformation in front of the crack tip. The plastic deformation which caused by the fatigue loading is adjacent to the crack tip. However, the elastic deformation occurred away from crack tip. According to the different mechanical responses of materials around crack tip, combined with the expressions of the elastic-plastic mechanics and the fracture mechanics, a two-dimensional static elastic-plastic finite element model which describe the change of the aluminium alloy crack tip mechanical parameters has been set up. Through the comparison of the difference and similar between static crack model and dynamic crack model, as well as the 2D model and 3D model at the same time, the computation results of two dimensional static elastic-plastic finite element model are conservative. It is a simple modeling method with high calculation efficiency, and suits for engineering application.
     After analyzing elastic-plastic finite element results, such as crack tip stress analysis, crack opening displacement analysis, equivalent plastic strain analysis and the analysis of plastic zone size in front of the crack tip, it proved that compressive loading promoted crack growth in aluminium alloy, and the effects mainly occurred in the zone beyond crack tip less than 1μm. It is dangerous to neglect the effects of compressive loading when predicting fatigue life of aluminium alloy. Based on the finite element analysis results, a new parameter has been redefined, named effective stress intensive factor range-△K'_(eff). Based on this new parameter, a model has been set up which can calculate the fatigue crack propagation rate of aluminium alloy under stress ratio R=0~-1. According to the fatigue crack growth mechanism of aluminium alloy, engineering rationality of△K'_(eff) has been analyzed. The test datum of aluminium alloys 7049-UA and 2A12-T4 have been verified that the model based on the parameter△K'_(eff) can accurately described the effects of compressive stress on fatigue crack propagation of aluminium alloy. Compared with the computation results of the model based propagation parameter K_(max),△K, and K_(eff), fatigue life predicted by the model based parameter△K'_(eff) is safer.
     Rigidity of plate specimen fixture used on the high frequency fatigue test machine can deeply affect the test frequency and test precision. So, we analyzed the joining structure of the plate specimen fixture by the finite element method. The analysis results showed that the whole rigidity of fixture with circular groove joining structures is higher than those of other types of joining structure, the radius of circular groove and screw length connecting the fixture and test machine are also affect whole rigidity. The reasonable magnitude of circular groove radius is about (0.17-0.25) times of the board thickness, and screw length is about (1.43-1.55) times of screw nominal diameter, furthermore, the reasonable magnitude of screw pitch determined by self-locking performance and wear resistance of screw pairs.
引文
1 袁熙,李舜酩.疲劳寿命预测方法的研究现状与发展[J].航空制造技术,2005,12:80-84.
    2 高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2000:1-8.
    3 王泓.材料疲劳裂纹扩展和断裂定量规律的研究[D].西安:西北工业大学(博士学位论文),2002:1-5.
    4 陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002:1-192.
    5 吴欢,赵永庆,曾卫东.疲劳裂纹扩展行为的研究现状及钛合金的疲劳裂纹扩展特征[J].稀有金属快报,2007,27(7):1-6.
    6 吴富民.疲劳强度在航空工业中的应用[J].航空科学技术,1994,4:10-13.
    7 郭万林.航空结构损伤容限设计中的三维问题[J].航空学报,1995,16(2):129-136.
    8 徐晓飞.飞机结构多裂纹损伤容限研究综述[J].洪都科技,2002,1:14-22.
    9 杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995:1-16.
    10 轩福贞,涂善东,王正东.含裂纹结构时间相关的疲劳断裂理论与剩余寿命评价技术[J].力学进展,2005,35(3):391-403.
    11 李荣,邱洪兴,淳庆.疲劳累积损伤规律研究综述[J].金陵科技学院学报,2005,21(3):17-21.
    12 Cui Wei-cheng.Relation between Crack Growth Rate Cure and S-N Curve for Metal Fatigue[J].Journal of Ship Mechanics,2002,6(6):93-106.
    13 刘媛,吕运冰,黄婧.疲劳裂纹扩展公式中材料常数的统计相关性及疲劳扩展寿命预测[J].武汉理工大学学报(交通科学与工程版),2004,28(6):870-872.
    14 刘立名,段梦兰,柳春图等.对裂纹扩展规律Paris公式物理本质的探讨[J].力学学报,2003,35(2):171-175.
    15 Donahue R J,Clark H M,Atanmo P,Kumble R,Mcevily A J.Crack opening displacement and the rate of fatigue crack growth[J].International Journal of Fracture Mechanics,1972,8:209-219.
    16 Forman R G,Kearney V E,Engle R M.Numerical analysis of crack propagation in cyclic- loaded structures[J].Journal of Basic Engineering,1967,89:459-464.
    17 ASTM,STP1343,Advances in Fatigue Crack Closure Measurement and Analysis[S].United States of America:1999.
    18 ASTM,STP982,Mechanics of Fatigue Crack Closure[S].United States of America:1988.
    19 伍义生,J.Schijve.2024T3铝板试件疲劳裂纹张开应力测量[J].航空学报,1994,15(3):340-343.
    20 王燕群,刘应华.考虑材料循环塑性的疲劳裂纹扩展模拟[J].力学学报,1997,29(3):296-305.
    21 Yigeng Xu,P.J.Gregson,I.Sinclair Systematic assessment and validation of compliance -based crack closure measurements in fatigue[J].MAT.SCI.& ENG.A,2000,284:114-125.
    22 Hou ChienYuan.Three-dimensional finite element analysis of fatigue crack closure behavior in surface flaws[J].International Journal of Fatigue,2004,26:1225-1239.
    23 李亚智,李雪峰.疲劳裂纹闭合的数值模拟方法[J].机械科学与技术,2006,25(10):1232-1237.
    24 McEvily A J,Bao H,Ishihara S.A Modified constitutive relation for fatigue crack growth.In proceedings of the seventh International Fatigue Congress (Fatigue 99)[C].Wu X R and Wang Z G,Beijing,China:Higher Education Press 1999:329-336.
    25 Ishihara S.McEvily A J.Analysis of short fatigue crack growth in cast aluminum alloys[J].International Journal of Fatigue,2002,24:1169-1174.
    26 李向阳,崔维成,张文明.一种改进的疲劳裂纹扩展表达式[J].船舶力学,2006,10(1):54-61.
    27 郭万林.复杂环境下的三维疲劳断裂[J].航空学报,2002,23(3):215-220.
    28 沈海军,郭万林.考虑疲劳裂纹扩展三维效应的James-Anderson修正方法[J].实验力学,2002,17(4):470-476.
    29 张田忠,郭万林,徐绯.考虑应力状态的疲劳裂纹闭合分析[J].航空学 报,2001,22(1):24-29.
    30 K.Sadananda,R.Sreenivasan.Analysis of fatigue crack growth behaviour in niobium-hydrogen alloys using the unified approach to fatigue damage[J].International Journal of Fatigue,2001,23:357-364.
    31 K.Sadananda,A.K.Vasudevan.Multiple mechanisms controlling fatigue crack growth[J].Fatigue Fract.Engng.Mater.Struct.,2003,26:835-845.
    32 K.Sadananda,Vasudevan A K.Crack tip driving forces and crack growth representation under fatigue[J].International Journal of Fatigue.2004,26:39-47.
    33 Jia-Zhen Zhang,Jia-Zhong Zhang,Z.X.Meng.Direct high resolution in-situ SEM observations of very small fatigue crack growth in the ultra fine grain aluminium alloy in 9052[J].Scripta Materialia,2004,50(6):825-828.
    34 J.Z.Zhang,X.D.He,S.Y.Du.Analyses of Fatigue Crack Propagation Process and Stress Ratio Effects Using the Two Parameter Method[J].International Journal of Fatigue,2005,27:1314-1318.
    35 Noroozi AH,Glinka G,Lambert S.A two parameter driving force for fatigue crack growth analysis[J].International Journal of Fatigue,2005,27:1277-1296.
    36 许忠勇,强群.疲劳裂纹扩展力学理论研究(Ⅱ)-实验验证[C].疲劳与断裂,北京:气象出版社,2000:300-304.
    37 许忠勇,王利君,余和存.疲劳裂纹扩展的影响因素分析[J].机械强度,2004,26(5):202-204.
    38 李华,杨水龙.循环J积分作为疲劳裂纹扩展驱动力的研究[J].应用理论学学报,1996,13(4):80-87.
    39 EL Haddad,M.H.,Dowling,N.E.,Topper,T.H.J integral applications for short fatigue cracks at notches[J].International Journal of Fracture,1980,16:15.
    40 Dover W D.Fatigue crack growth under COD cycling[J].Eng.Frac.Mechanics,1973,5:11-21.
    41 Hardt S.Maier H.J.Christ H.-J.High-temperature fatigue damage mechanisms in near-α titanium alloy IMI 834[J].International Journal of Fatigue,1999,21(8):779-789.
    42 张文孝,郭成壁.铝合金的热疲劳特性及断裂力学计算分析[J].固体力 学学报,2002,23(3):361-365.
    43 MCclung R.C.Finite-element analysis of specimen geometry-effects on fatigue-crack cloure[J].FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES,1994,17(8):861-872.
    44 Radon,J.C.,Nikbin,K.Influence of specimen geometry on the random load fatigue crack growth[J].ASTM Special Technical Publication,2001,1406:88-104.
    45 Hsu,Kuei-Chang,Lin,Chih-Kuang.Influence of frequency on the hightemperature fatigue crack growth behavior of 17-4 PH stainless steels[J].Materials Transactions,2007,48(3):490-499.
    46 Holper,B.,Mayer,H.,Vasudevan,A.K.,Stanzl-Tsehegg,S.E.Near threshold fatigue crack growth at positive load ratio in aluminium alloys at low and ultrasonic frequency:Influences of strain rate,slip behaviour and air humidity[J].International Journal of Fatigue,2004,26(1):27-38.
    47 Chan,Kwai S.A microstrueture-based fatigue-crack-initiation model[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2003,34,(1):43-58.
    48 Enright,Michael P.,Chan,Kwai S.Extension of a microstructure-based fatigue crack growth model for predicting fatigue life variability[J].ASTM Special Technical Publication,2004,1450:87-103.
    49 秦剑波,王生楠,刘亚龙,等.腐蚀环境下2024-T3铝合金疲劳裂纹扩展和剩余强度实验研究[J].材料工程,2006,3:14-17.
    50 鲍蕊,董彦民,张建宇,费斌军.腐蚀条件下铝合金疲劳裂纹扩展试验及模型[J].航空材料学报2006,26(6):12-16.
    51 赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003,2:91-178.
    52 GB/T 6398-2000.金属材料疲劳裂纹扩展速率试验方法[S].中国:2001.
    53 ASTM E 647-95a.Standard Test Method for Measurement of Fatigue Crack Growth Rates[S].United States of America:1995.
    54 J.E.LaRue.Predicting the effect of residual stress on fatigue crack growth [J].International Journal Fatigue,2007,29:508-515.
    55 Tanaka K.Akiniwa Y.Fatigue crack propagation behaviour derived from S-N data in very high cycle regime[J].Fatigue & Fracture of Engineering Materials & Structures,2002,25(8-9):775-784.
    56 李航月,胡奈赛,何家文等.残余压应力场中裂纹扩展的闭合模型[J].金属学报,1998,34(8):847-851.
    57 曹智强,由宏新,丁信伟.含缺口结构压疲劳失效研究[J].机械设计与制造,2005,10:155-156.
    58 耿小亮,张克实,郭运强.循环压缩应力作用下的疲劳裂纹扩展机制研究[J].机械强度,2004,26(2):227-230.
    59 贺斌,傅祥炯.循环压载下缺口旁疲劳裂纹扩展[J].机械强度,1997,19(3):51-54.
    60 孙守光,缪龙秀,袁祖贻.压应力对疲劳裂纹闭合的影响[J].北方交通大学学报,1995,19(3)-368-372.
    61 张常青.压缩循环载荷下疲劳裂纹萌生与扩展机理分析[J].电力学报,1997,12(3):25-28.
    62 Hermann R.Fatigue crack growth in ductile materials under cyclic compressive loading[J].International Journal of Fatigue,1995,17(5):378-378.
    63 A.K.Vasudevan K.Sadananda.Analysis of fatigue crack growth under compression-compression loading[J].International Journal of fatigue,2001,23:365-374.
    64 Shabanov,A.Mechanism of Fatigue-Crack Growth under Compressive External Stresses[J].Journal of Applied Mechanics and Technical Physics,2005,46(6):861-866.
    65 Sadananda K,Vasudevan A K,Holtz R L,Lee E U.Analysis of overload effects and related phenomena[J].International Journal of Fatigue,1999,21:S233-S246.
    66 陈瑞峰,王利生,任明法等.压载对裂纹超载迟滞作用的影响[J].大连理工大学学报,1997,37(1):24-28.
    67 伍义生,J.Zuidema.负超载对Al-2024疲劳裂纹扩展的影响[J].力学学报,1993,25(2):232-236.
    68 Makabe C.Purnowidodo A.Mcevily AJ.Effects of surface deformation and crack closure on fatigue crack propagation after overloading and underloading[J].Int.J.of Fatigue,2004,24(12):1341-1348.
    69 Silva FS.Fatigue crack propagation after overloading and underloading at negative stress ratios [J]. International Journal of Fatigue, 2007, 29:1757-1771.
    
    70 Yu MT, Topper TH, and Au P. The effect of stress ratio, compressive load and underload on the threshold behaviour of a 2024-T351 aluminium alloy[C]. Fatigue 84, 2nd International Conference on Fatigue and Fatigue Threshold. Birmingham, United Kingdom: Chamelon Press, 1984:179-190.
    
    71 Halliday M D, Zhang J Z, Poole P, Bowen P. In-situ SEM observations of the contrasting effects of an overload on small fatigue crack growth at two different load ratios in 2024-T351 Aluminium alloy [J]. International Journal of Fatigue, 1997, 19(3):273-282.
    
    72 Pommier S, Prioul C, Bompard P. Influence of a negative R ratio on the creep fatigue behaviour of the N18 nickel base superalloy [J]. Fatigue Fracture of Eng. Materials and Structure, 1997, 20(1):93-107.
    
    73 Pommier S. Cyclic plasticity and variable amplitude fatigue [J]. International Journal of Fatigue, 2003, 25:983-997.
    
    74 Fonte Mda, Romeiro F, Freitas Mde, Stanzl-Tschegg S E, Tchegg E K, Vasudevan A K. The effect of micro-structure and environment on fatigue crack growth in 7049 alloy at negative stress ratios [J]. International Journal of Fatigue, 2003, 25:1209-1216.
    
    75 J. Z. Zhang. A shear band decohesion model for small fatigue crack growth in an ultra-fine grain aluminium alloy [J]. Engineering Fracture Mechanics, 2000,65:665-681.
    
    76 Zhang J, He X D, Du S Y. Analysis of the effects of compressive stresses on fatigue crack propagation rate [J]. International Journal of Fatigue, 2007, 29:1751-1756.
    
    77 Silva F S. Crack closure inadequacy at negative stress ratios [J]. International Journal of Fatigue, 2004, 26:241-252.
    
    78 Silva F S. The importance of compressive stresses on fatigue crack propagation rate [J]. International Journal of Fatigue, 2005, 27:1441-1452.
    
    79 A.K. Vasudevan, K. Sadananda. Application of unified fatigue damage approach to compression-tension region [J]. International Journal of Fatigue, 1999,21:S263-S273.
    
    80 高东宇,林日新.飞机机翼疲劳断裂过程的有限元分析[J].哈尔滨理工 大学学报,2006,11(3):35-37.
    81 杜平安,甘娥忠,于亚婷.有限元法-原理、建模及应用[M].北京:国防工业出版社,2005:1-6,99-231.
    82 俞树荣,严志刚,曹睿,陈剑虹.有限元软件模拟裂纹扩展的方法探讨[J].甘肃科学学报,2003,15(4):15-21.
    83 吴志学.表面裂纹疲劳扩展的数值模拟(Ⅰ)[J].应用力学学报,2006,23(4):563-567.
    84 吴志学.表面裂纹疲劳扩展的数值模拟(Ⅱ)[J].应用力学学报,2007,24(1):42-46.
    85 林晓斌.Rode rick A.Smith.形状不规则裂纹的疲劳寿命预测技术[J].中国机械工程,1998,9(11):43-45.
    86 吴志学.估算裂纹应力强度因子的新方法[J].力学学报2006,38(3):414-420.
    87 杨庆生,杨卫.断裂过程的有限元模拟[J].计算力学学报,1997,14(4):407-412.
    88 Shephard MS,Yehlan A.B.Computational strategies for nonlinear and fracture mechanics problem[J].Computer & structure,1955,20:211-223.
    89 Bittencourt T.N,Wawrzynek PA.Quasi automatic simulation of crack propagation for 2D LEFM problem[J].Engineering Mechanics,1996,55(2):21-33.
    90 李学锋.疲劳裂纹闭合效应数值模拟方法研究[D].西安:西北工业大学(硕士论文),2005:15-17.
    91 汤玄春.用弹塑性有限元法求解脉动循环载荷有超载时裂尖前方的应力、应变分布及塑性区的大小[J].航空学报,1985,6(6):538-547.
    92 汤玄春,刘元镛.用弹塑性有限元法分析静止裂纹的开、闭现象[J].西北工业大学学报,1987,5(3):327-333.
    93 Jia-Zhen,Zhang,Jia-Zhong,Zhang S.Y.Du.Elastic-plastic Finite Element Analysis and Experimental Study of Small and Long Fatigue Crack Growth[J].Engng.Fract.Mech.,2001,68:1591-1605.
    94 索滨,宋欣,张嘉振.拉压载荷对疲劳裂纹扩展影响的有限元分析[J].机械工程师,2007,1:79-82.
    95 索滨.拉压载荷下高强铝合金疲劳裂纹扩展参数有限元研究[D].哈尔滨:哈尔滨理工大学(硕士学位论文),2007:18-24.
    96 Jiang Y,Feng M,Ding F.A reexamination of plasticity-induced crack closure in fatigue crack propagation.Int.J.Plasticity.2005,21:1720-1740.
    97 Zhiqiang Wang,Toshio Nakamura.Simulations of crack propagation in elastic-plastic graded materials[J].Mechanics of Materials,2004,36:601-622.
    98 J.Z.Zhang,P.Bowen.On the Finite Element Simulation of Three-Dimensional Semi-Circular Fatigue Crack Growth and Closure[J].Engng.Fract.Mech.,1998,60:341-360.
    99 J.Z.Zhang,M.D.Halliday,P.Bowen,P.Poole.Three Dimensional Elastic-Plastic Finite Element Modeling of Small Fatigue Crack Growth Under A Single Tensile Overload[J].Eng.Fract.Mech.,1999,63:229-251.
    100 Chien-Yuan Hou.Three-dimensional finite element analysis of fatigue crack closure behavior in surface flaws[J].International Journal of Fatigue,2004,26:1225-1239.
    101 Joo-Sung Kim,Jae Youn Kang,Ji-Ho Song.Elucidation of fatigue crack closure behaviour in surface crack by 3-D finite element analysis[J].International Journal of Fatigue,2007,29:168-180.
    102 朱先奎.弹塑性材料动态裂纹尖端场研究[D].北京:清华大学(博士学位论文),1995:2-6.
    103 卓卫东.应用弹塑性力学[M].北京:科学出版社,2005:1-6.
    104 陈明祥.弹塑性力学[M]北京:科学出版社,2007:3-400.
    105 王泓.材料疲劳裂纹扩展和断裂定量规律的研究[D].西安:西北工业大学(博士学位论文),2002:25-55.
    106 吴学仁,刘建中.基于小裂纹理论的航空材料疲劳全寿命预测[J].航空学报,2006,27(2):219-226.
    107 党朋,许晓嫦,刘志义等.强塑性变形在铝合金中的研究进展[J].材料导报,2007,21(4):60-64.
    108 GB 7732-87.金属板材表面裂纹断裂韧度K_(Ie)试验方法[S].中国:1988.
    109 庄茁,张帆,岑松.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005:52-343.
    110 石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006:51-207.
    111 J.Z.Zhang,M.D.Halliday,P.Bowen.High Resolution In Situ SEM Observations of Early Stages of Fatigue Crack Growth in IN 9052 Aluminum Alloy[J].International Journal of Materials Science and Technology,1998,14:193-200.
    112 F.S.Silva.The Bauschinger Effect and Fatigue Crack Growth,10th Portuguese Conference on Fracture,22-24 Feb,Portugal,2006:1-12.
    113 朱亦钢.一种用于金属薄板轴向拉压疲劳试验的防弯夹具[J].实验力学,2005,20(2):241-247.
    114 贾玉双.三万吨模锻水压机立柱螺纹联接的优化设计[J].机械设计,2002,2:19-20.
    115 杜洪奎,袁昌明.螺栓疲劳寿命预测[J].机械设计,2008,25(2):10-12.
    116 徐灏.机械设计手册[M].北京:机械工业出版社,1991,2(15):44-45.
    117 成大先.机械设计手册(第1卷)材料.北京:化学工业出版社,1993:3-9.
    118 田秀云,杜洪增,孙智强.金属材料疲劳裂纹扩展曲线的拟合方法研究[J].工程力学,2003,20(4):136-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700