用户名: 密码: 验证码:
细编穿刺C/C复合材料热物理性能的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细编穿刺织物具有良好的整体结构和较高的纤维体积含量,是制作高性能防热隔热用C/C复合材料的优良基材。本文研究了从室温到1200℃材料热膨胀性能和热扩散性能随温度的变化规律,数值模拟了0°/90°正交铺设和0°/90°/±45°铺设材料的热物理性能,分析了材料热膨胀性能和热扩散性能的影响因素,研究了材料热物理性能与材料结构之间的相互关系。本文的主要研究内容及结果如下:
     热膨胀性能的实验结果表明:从室温至1200℃,0°/90°正交铺设和0°/90°/±45°铺设材料xy向的热膨胀系数均高于z向的,由于材料中的孔洞和间隙的作用,热膨胀系数先随着温度的升高急剧降低,然后随着温度的升高总体上呈上升的趋势。0°/90°/±45°铺设材料的结构整体性强,所以材料的热膨胀系数先随温度的升高而降低,降低的趋势较激烈,然后随温度的升高而增大,增大的趋势较平稳。
     模拟了0°/90°正交铺设和0°/90°/±45°铺设材料热膨胀性能,模拟误差均在20%以内,说明了模型的合理性。基体和纤维的相对含量决定了材料最终的热膨胀系数,所以纤维束椭圆横截面模拟得到的z向和xy向热膨胀系数比相应的方形横截面的大;材料随着纤维体积分数的增大,z向和xy向的热膨胀系数减小;材料的z向和xy向热膨胀系数随着铺设方式的不同,产生规律性的变化。
     热扩散性能的实验结果表明:0°/90°正交铺设和0°/90°/±45°铺设材料xy向的热扩散系数和热导率大于z向的,热扩散系数和热导率均随着温度的升高不断下降,这是由材料的显微结构变化引起的,材料的z向和xy向热扩散系数随温度升高差别逐渐变小,材料的比热随温度升高而增大。0°/90°/±45°铺设材料的结构整体性强,材料z向和xy向的热扩散系数随温度的升高差别逐渐变小,差别变小的趋势比0°/90°正交铺设的明显。
     模拟了0°/90°正交铺设和0°/90°/±45°铺设材料热扩散性能,模拟的边界条件和实验不一致使模拟出现误差,误差均在-20%之内。纤维束椭圆横截面形状相对方形横截面的来说,热扩散系数和比热增大,导致热导率也增大;材料热扩散系数和比热随着纤维的体积分数增加而减小,热导率减小。
Fine weave pierced fabric has good overall structure and high fiber volume fraction. It’s an excellent basic material to produce high-performance thermal insulation C/C composite. This paper studies the law of coefficients of thermal expansion (CTEs) and thermal diffusibility with temperature changes from room temperature to 1200℃, the numerical simulation on the thermal physical properties of the 0°/90°cross-ply and 0°/90°/±45°paving composites, the influence factor of composite coefficients of thermal expansion and thermal diffusibility, the interrelationship between composite thermal physical properties and structure. The main research and the results are as follows:
     The experiment results of CTEs show that xy-direction’s of 0°/90°cross-ply and 0°/90°/±45°paving composites CTEs are higher than z-directional from the room temperature to 1200℃. Because of the holes, cracks and gaps in the material, firstly CTEs sharply lower as the temperature increase, then CTEs trend upward with increasing temperature on the whole. 0°/90°/±45°paving composites are stronger structural integrity, CTEs change more intense with the increase of temperature firstly, then change more smoothly with the increase of temperature.
     CTEs are simulated on 0°/90°cross-ply and 0°/90°/±45°paving composites. The simulation error is in 20 percent, this explains that the models are rationality. The relative content of matrix and fiber decides the composite CTEs, so the simulated xy-directional and z-directional CTEs of the elliptical cross-section model are higher than the corresponding square-section’s. With the increase of fiber volume fraction, composite xy-directional and z-directional CTEs reduce. The xy-directional and z-directional CTEs change regularly with the paving of the different ways.
     The experiment results of thermal diffusibility show that xy-directional of 0°/90°cross-ply and 0°/90°/±45°paving composites thermal diffusion coefficients and thermal conductivities are higher than z-directional. Because of the microstructure changes, they go lower as the temperature increased. The differences of thermal diffusion coefficients between xy-directional of 0°/90° cross-ply and 0°/90°/±45°paving composites become smaller and smaller. The specific heat goes greater as the temperature increased. 0°/90°/±45°paving composites are stronger structural integrity, xy-directional and z-directional thermal conductivities become closer and closer as the temperature increased.
     Thermal diffusivity properties are simulated on 0°/90°cross-ply and 0°/90°/±45°paving composites. The inconsistencies of boundary conditions between simulations and experiments appear errors. Compared the elliptical cross-section model with the square cross-section, thermal diffusion coefficients increase, specific heat increases, thermal conductivities increase. With the increase of fiber volume fraction, composite coefficients of thermal diffusion and thermal conductivities decrease, heat specific decreases.
引文
1 Hino, Akiba M. Japanese development of fusion reaction plasma components. Fusion Engineering and Design, 2000,49~50: 97
    2 Mutakami M, Nishkin K, Knakamura K, et al. High-quality and highly oriented graphite block from poly condensation polymer films. Carbon, 1992, 30(2): 255
    3 Guo Quangui, Liu Lang, Song Jinren, et al. Research activities on carbon based materials for plasma facing components of the HT-7U superconducting tokamak device in China. New Carbon Mater, 2001,16(3):64
    4张光普,郭全贵,刘古军,等.掺杂石墨导热性能的研究.新型炭材料,2001,15(1): 1
    5李崇俊,马伯信,金志浩.炭/炭复合材料的新发展.材料科学与工程, 2002, 18(3):135
    6邓海金,李明,孙立,等.短切纤维炭/炭复合材料磁电阻特性研究.新型炭材料, 2004, 19(3):219
    7韩海梅,张秀莲,李贺军,等.炭/炭复合材料高稳力学性能研究.新型炭材料, 2003, 18(1):20
    8邓海金,李明,孙立,等.石墨化处理对炭/炭复合材料磁电阻特性影响的研究.新型炭材料, 2003, 18(2):89
    9 Xiao Min, et al. The influence of thermal treatment conditions on the structures and electrical conductives of graphiteoxide. New Carbon Mater, 2004, 19(2): 92
    10郭领军,李贺军,薛晖,等.短切炭纤维增强沥青基C/C复合材料的组织特征.新型炭材料, 2004, 19(2): 92
    11 Luo R Y. Friction performance of C/C composites prepared using rapid directional diffused CVI processes. Carbon, 2002, 40:1279
    12 Siron O, Chollon G, Tsuda H, et al. Microstructural and mechanical properties of filler-added coal-tar pitch-based C/C composites: the damage and fraction process in correction with AE wave form parameters. Carbon, 2000, 28:1369
    13奚同庚,谢华清.热物理性能性质测试技术研究现状和发展趋势,上海计量测试, 2002, 29(5):56
    14 Xi Tong Geng, et al. Ist ATPC Proceedings, P100(1986)
    15 Xi Tong Geng, et al. J. Appl. Phys. Vol.71, No.1 (1992)
    16 Siboni G, Benveniste Y A. Micromechanics model for the effective thermomechanical behaviour of multiphase composite media. Mechanics of Materials, 1991, 11:107~123
    17 Takao Y, Taya M. Thermal expansion coefficients and thermal stresses in an aligned short fiber composite with application to a short carbon fiber aluminum. Journal of Applied Mechanics, 1985, 52:806~810
    18 Nilanjan Mukherjee, Sinha P K. Three-dimensional thermo-structural analysis of multi-directional fibrous composite plates. Composite Structures, 1994, 28:333~346
    19聂荣华,矫桂琼,等.二维编织C/SiC复合材料的热膨胀系数预测.复合材料学报, 2008, 25(2):109~114
    20宛琼,李付国,等.三维四向编织复合材料基本性能的有限元模拟.航空材料学报, 2005, 25(1):30~35
    21程伟,赵寿根,等.三维四向编织复合材料等效热特性数值分析和试验研究.航空学报, 2002, 23(2):102~105
    22 Meallister L E, Taverna A R.A study of composition construction variation in
    3D carbon/carbon composites. International Conference on Composite Material, 1975, 1:307~326
    23朱建勋.细编穿刺织物的结构特点及性能.宇航材料工艺, 1998(1):42
    24 M Trinquecoste, J L Carlier, et al. High temperature thermal and mechanical properties of high tensile carbon single filaments[J]. Carbon, 1996, 34:923~929
    25李崇俊,郑金煌,等.二维C/C复合材料高温力学、热物理性能研究[J].宇航材料工艺, 2004(1):33~37
    26 Seong Su Kim, Dong Chang Park. Characteristics of carbon fiber phenolic composite for journal bearing materials[J]. Composite Structures, 2004, 66:359~366
    27 Luo R Y, Liu Tao, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon. 2004, 42:2887~2895
    28张光晋,郭全贵,刘占军,等.掺杂石墨热导性能的研究.新型炭材料.2001, 16(1):27
    29奚同庚.无机材料热物性学.上海:上海科学技术出版社, 1981
    30 Savage G. Carbon-carbon composites . London: Chapman&Hall, 1993
    31李圣华.炭和石墨制品(上册) .北京:冶金工业出版社, 1983
    32 Hishiyama Y, Inagaki M, et al. Graphitization of carbon fiber/glassy carbon composites. Carbon, 1974, 12: 249~258
    33曾竟成,罗青,等.复合材料理化性能.北京国防科技大学出版社, 1998.17~62
    34赵稼祥.日本GRAFIL公司的炭纤维现况与发展.高科技纤维与应用, 2001, 26(1):17~26.
    35 J W Klett, D D Edie. Flexible towpreg for the fabrication of high thermal conductivity carbon/carbon composites.Carbon, 1995, 23:1485~1503
    36 J德尔蒙特.炭纤维和石墨纤维复合材料技术.北京:科学出版社, 1987.424~445
    37 Luo R Y, Liu Tao, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and conductivity. Carbon, 2004, 42:2887~2895
    38 Pierson H O, Northrop D A. Carbon felt, carbon matrix composites: dependence of thermal and mechanics properties on fiber precursor and matrix structure. J Composites Materials, 1974, 9:118~137
    39 Savage G Carbon carbon Composites.London: Chapman&Hall, 1993.309~317
    40 Craig W Ohlhorst, Wallance L Vaughn, et al. Thermal conductivity database of various structural carbon-carbon composite materials. NASA TM 4787, 1997
    41汤中华,张海波,等.热梯度CVI C/C材料的结构与性能.中国有色金属学报.2003.3:651~655
    42张福勤,黄伯云,等.碳布叠层/热解炭复合材料导热系数与石墨化度的关系.功能材料, 2003.4:464~467
    43 Kuntz M,Meier Ii, Grathwohl G. Residual stresses in fiber-reinforced ceramics due to thermal expansion mismatch. J. Am Ceram Soc, 1993, 76(10):2607~2612
    44 Bobet J L,Lamon J .Study of thermal residual stresses in ceramic matrix composites. J Alloys Compd,1997, 259:260~264
    45张钧.二维碳/碳化硅复合材料基体裂纹演化规律.西安:西北工业人学硕士学位论文, 2003
    46喻学斌,陈军,徐耕等. C/Al复合材料热膨胀与内应力研究.复合材料学报, 1997, 11(1):43~47
    47牟宗花,刘钧,王德尊. SiC/Al复合材料零残余应力温度的分析.材料科学与工艺. 1997, 5(1)
    48 Gladysz G M,Chawla K K. Coefficients of thermal expansion of some laminated ceramic composites. Composites, 2001(32), Part A:173 ~178
    49 Tawil H, Larry D, Bentsen, et al. Thermal diffusivity of chemically vapour deposited silicon carbide reinforced with silicon carbide or carbon fibres. J Mater Sci.1985.20:3201~3212
    50 Luo R Y, Liu T, Li J S, et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon, 2004, 42: 2887~2895
    51 Dalmaz A, Reynaud P Rouby D, et al. Mechanical behavior and damage development during cyclic fatigue at high-temperature of a 2.5D carbon/SiC composite. Compos Sci Technol,1998, 58: 693~699
    52易法军,张巍等. C/C复合材料高温热物理性能实验研究.宇航学报, 2002, 23(5):85~88
    53赵建国,李克智,李贺军等.碳/碳复合材料导热性能的研究.航空学报, 2005, 26(4):501~504
    54闰联生,宋麦丽,邹武等.高温处理对碳纤维及其复合材料性能的影响.宇航材料工艺, 1998, 1:18~21
    55 McDonald K, Dryden J, Zok F. Effects of matrix cracks on the thermal diffusivity of a fiber-reinforced ceramic composite. J Am Ceram Soc, 2001, 84(9): 2015~2021
    56宫尚宝. LFA激光导热仪的测试原理与误差分析.安徽冶金, 2007, 3:28
    57陈洁,熊翔,肖鹏.高导热C/C复合材料的研究进展.材料导报, 2006, 11(20):434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700