用户名: 密码: 验证码:
冷挤压组合凹模失效分析及挤压过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷挤压作为一种高精、高效、优质低耗的先进生产工艺技术,已被广泛应用于工业生产。冷挤压金属在三向压应力作用下变形,使得挤压模具承受的挤压力非常大,模具寿命短,因此研究挤压过程中凹模的应力变化对分析模具失效、提高模具寿命起到了重要作用。
     本文通过螺钉挤压成形实验,观察冷挤压组合凹模模具的失效现象;同时基于弹塑性有限元模拟技术,采用有限元软件DEFORM-2D对螺钉挤压过程进行模拟,改变凹模的挤压半锥角、长径比及挤压比,分析冷挤压组合凹模应力的分布及变化情况,对冷挤压组合凹模的疲劳破坏机理进行探讨,并建立了模具疲劳寿命估算模型,得出以下主要结论:
     (1)冷挤压组合凹模的失效主要是疲劳失效,疲劳裂纹主要出现在挤压锥角附近。在挤压锥角入口处和挤压锥角出口附近,裂纹主要沿与凹模内表面成45°方向产生并向模具外表面扩展,而在挤压锥角入口后方数毫米处,内表面裂纹主要沿90°方向产生并向模具外表面扩展。
     (2)由DEFORM-2D软件对组合凹模的挤压过程模拟的结果可知,在组合凹模的挤压过程中,凹模的切向受力由压应力逐渐变化成拉应力,切向拉应力和最大等效应力主要发生在挤压锥角入口到入口后方数毫米之间和挤压锥角出口前方数毫米处,与实验中裂纹出现的位置相一致。
     (3)凹模挤压半锥角、长径比及挤压比对模具应力产生影响,当挤压半锥角和模具长径比减小时,凹模挤压锥角处的最大等效应力增大;当挤压比减小时,挤压锥角处的最大等效应力减小。
     (4)将有限元模拟结果与局部应力-应变法相结合,建立模具疲劳寿命估算模型,为挤压凹模的优化设计提供新的方法和途径。
As a high-precision, high-efficiency, high quality and low cost advanced production technology, cold extrusion has been widely used in the industrial. The extrusion die’s life short when the unit extruding force is very large because of the cold extrusion metal deformed under the three-dimensional compressive stress. Analyzing the stress’s distribution and change of the cold extrusion combination concave die is very important to improve the die’s life.
     The cold extrusion combination concave die’s failure was observed through the experiment of the screw cold extrusion forming. At the same time we based on the elastic-plastic finite element model (FEM) simulated the cold extrusion process of screw by using DEFORM-2D. Analyzed the stress’s distribution and change and discussed the mechanism of the die’s fatigue failure when we changed the die’s semi-cone angle, aspect ratio and the extrusion ratio, then established the die fatigue life prediction model. We can get some conclusions as follows:
     (1)The fatigue crack was the main failure form of the cold extrusion combination concave die and the crack generated mainly in the extrusion cone angle. In the entrance of the extrusion cone angle and near exit of the extrusion cone angle the crack along the 45 degrees expanded to outward and a few millimeters after the entrance of the extrusion cone angle the crack along the 90 degrees expanded.
     (2)The simulation results by using of the DEFORM-2D software was consonant with the experiment. In the process of the extrusion the die’s tangential force gradually changes from compressive stress into tensile stress, the tangential tensile stress and maximum equivalent stress occured mainly between the entrance and a few millimeters after the entrance and before the exit of the extrusion cone angle.
     (3)The semi-cone angle, aspect ratio and the extrusion ratio influenced the stress of the die. When the semi-cone angle and aspect ratio decreased the maximum equivalent stress increased and the extrusion ratio decreased the maximum equivalent stress decreased.
     (4)The finite element simulation results and local stress-strain method were combined to establish the die life prediction model. This provided new ways to optimizing the design of extrusion die.
引文
[1]邱建新,李发根,李国禄.模具工业发展趋势综述[J]. CAD/CAM制造业信息化, 2003, (11): 3-7.
    [2]丁洁,姜超,陈林.国内外模具钢生产现状及发展[J].山西冶金, 2006, 29(02): 7-10.
    [3]李大鑫,张秀棉.模具技术现状与发展趋势综述[J].模具制造,2005, (02): 1-4.
    [4]黄荣学.冷挤压组合凹模的应力场数值模拟及疲劳寿命估算研究[D][硕士论文].四川大学, 2005.
    [5]李志刚.中国模具设计大典(第1卷)[M].南昌:江西科学技术出版社, 2003.
    [6]王佞,苏慧,王锐.模具工业技术的发展趋势[J].装备制造技术, 2008, (04): 112-113.
    [7]林新波. DEFORM-2D和DEFORM-3D CAE软件在模拟金属塑性变形过程中的应用[J].模具技术, 2000, (03): 75-80.
    [8]刘庆斌.直齿轮挤压成形数值模拟及实验研究[D][硕士学位论文],山东工业大学, 1994.
    [9]陈拂晓,姜开宇,杨永顺,等.直齿轮径向挤压过程变形力规律的数值模拟[J].中国机械工程, 1998, 9(9): 12-15
    [10] N.R.Chitkara, M.A.Bhutta. Forging and heading of hollow spur gear forms:an analysis and some experiments[J]. Intemational Journal of Meehanical Seienees, 1999, (41): 1159-1189.
    [11] Jongung Choi, Hae- Yong Cho, Chang- Yong Jo. An upper-bound analysis for the forging of spur gears[J]. Journal of Materials proeessing Technology. 2000, (104): 67-73.
    [12] Jongung Choi, Hae-Yong Cho, Chang-Yong Jo. Forging of spur with internal serrations and design of the dies[J]. Journal of Materials Proeessing Teehnology. 2000, (104): l-7.
    [13] Jens Groenbaek, Torben Birker. Innovation in cold forging die design[J]. Materials Processing Technology, 2000, 98 (2): 155-161.
    [14] Kocanda. On performance and strength of metal forming tools subjected to local plastic strains under loading[C]. In:Advanced Technology of Plasticity, Proceedings of the 6th ICTP, 1999, 281-290.
    [15] Conor MacCormack, John Monaghan. Failure analysis of cold forging dies using FEA[J]. Journal of Materials Processing Technology, 2001 (117):209-215.
    [16]苏冬云.飞壳内棘齿冷挤压工艺模拟分析及模具设计[D][硕士学位论文].河海大学, 2007.
    [17]陈友鹏.冷挤压模具结构与预应力组合凹模实用设计方法研究[D][硕士学位论文].青岛建筑工程学院, 2003.
    [18]洪慎章编.冷挤压实用技术[M].北京:机械工业出版社, 2005.
    [19]杨煜.国内外冷挤压技术发展综述[J].锻压机械, 2001, 36(1): 3-6.
    [20] C.Cosenza, L.Fratini, A.Pasta, et al. Damage and fracture study of cold extrusion dies[J]. Engineering Fracture Mechanics, 2004, 71(7): 1021-1033
    [21]陈霞.齿轮轴冷挤压模具的设计与研究[D][硕士学位论文].西安理工大学, 2004.
    [22]雨慧.模具生产技术国内外发展动态[J].金属成形工艺, 1991, 9(2): 6264.
    [23]杨长顺.冷挤压模具设计[M].北京:国防工业出版社, 1994.
    [24]洪深泽.冷挤压工艺及模具设计[M].合肥:安徽科学技术出版社, 1985.
    [25]陈友鹏,孙令强,田福祥.挤压加工新技术[J].青岛建筑工程学院学报, 2003, (1): 101-103.
    [26]周波.节套体挤压成形工艺研究[D][硕士学位论文].中北大学, 2008.
    [27]翟德梅.挤压工艺及模具[M].北京:化学工业出版社, 2001.
    [28]高汉华.冷挤压模受内压作用应力分布规律的研究[J].中国制造业信息化,2006,35(7): 62-65.
    [29] A.E. Tekkaya, A. Sons?z, K. Lange. Life Estimation of Extrusion Dies[J]. CIRP Annals Manufacturing Technology, 1995, 44(1): 231-234.
    [30]刘春玲,张连耀.冷挤压模具寿命探讨[J].河北建筑科技学院学报, 2004, 21(04): 83-85.
    [31]孟令先,宋学进,张元国.冷作模具的失效分析与预防措施[J].锻压技术, 2007, 32(3): 134-136.
    [32]何晓辉,高锦张.冷挤压组合凹模的寿命估算[J].金属成型工艺, 2003, (6): 35-36.
    [33]邹十践等.疲劳分析方法及应用[M].北京:国防工业出版社, 1991, 2
    [34]陈传饶.疲劳与断裂[M].武汉:华中科技大学出版社, 2002.
    [35]郑修麟.工程材料的力学行为[M].西安:西北工业大学出版社, 2004, 10
    [36]周敬恩,冉广. A356铸造铝合金的疲劳裂纹萌生及短裂纹扩展研究[J].金属热处理, 2008, 33(01): 34-42.
    [37]黄明志.金属力学性能[M].西安:西安交通大学出版社,1986.
    [38]徐建兵.芯辊疲劳全寿命和裂纹扩展的数值模拟[D][硕士学位论文].武汉理工大学, 2007.
    [39]曾珊琪,丁毅.模具寿命与失效[M].北京:化学工业出版社, 2004.
    [40]赵少汁,王忠保.抗疲劳设计-方法与数据[M].北京:机械工业出版社, 1997.
    [41]李玉春,姚卫星,温卫东.应力场强法在多轴疲劳寿命估算中的应用[J].机械强度, 2002, 24(2): 258-261.
    [42]尚德广,王大康,李明,等.随机疲劳寿命预测的局部应力应变场强法[J].机械工程学报, 2002, 38(1): 67-70.
    [43]李朝霞,张雷,熊守美,等.镁合金压铸用模具的应力场和变形数值模拟[J].铸造, 2004, 53(6): 465-468.
    [44]肖方红.基于小裂纹扩展的疲劳全寿命计算方法研究[D][硕士论文].西北工业大学, 2001.
    [45]徐荣珍.反挤压凹模内压力的有限元模拟及组合凹模优化[D][硕士论文].合肥工业大学, 2003.
    [46]肖红生.温锻精密成形数值模拟关键技术及实验研究[D][博士学位论文].上海交通大学, 2000.
    [47] lee Young-Seon, Lee jung-Hwan, Choi jong-Ung, et al. Experimental and analyticalevaluation for elastic defomration behaviors of cold foging tool[J]. Jounral of Mateirals Processing Technology, 2002 , (127): 73-82.
    [48] LeeYoungseon,Lee junghwan,Ishikawa T.Analysis of the elastic characteristics at forging die for the cold fogred dimensional accuracy[J] . Journal of Materials Processing Technology, 2002, (130-131): 532-539.
    [49] Pedersen Thomas Orts. Numerical modeling of cyclic plasticity and fatigue damage in cold forging tools[J]. Intenraitoaln jounra1of Mechanical Sciences, 2000, 42(4): 799-818.
    [50] Gadala M S, Wang J. Computaional implementation of stress integration in FEM analysis of elasot-plastic lagre defomration problems[J]. Finiet Elements in Analysis and Design, 2000, 35(4): 379-396.
    [51] Sun J. S, Lee K. H, Lee H. P. Effects of geometry and fillet radius on die stresses in stamping pcoreses[J]. Jounral of Materials Porcessing Technology, 2000,104(3):254-264.
    [52]黄德海,陈国学.多层组合预应力模具失效分析及优化设计[J].塑性工程学报, 2003,10(4):58-60.
    [53] Youngseon Lee, Junghwan Lee, Yongnam Kwon, et al. Modeling approach to estimate the elastic characteristics of workpiece and shrink-fited die for cold forging[J]. Jounral of Materials Processing Technology, 2004, (147): 102-110.
    [54] Muammer Koc, Mehmet A.Arslan. Design and finite element analysis of innovative tooling elemenst (sertss Pins) to prolong die life and imporve dimensional tolerances in percision fomring porcesses[J]. Jounral of Mateirals processing Technology, 2003, (142): 773-785.
    [55] A. Sons?z, A.E.. Tekkaya. Service life estimation of extrusion dies by numerical simulation of fatigue-crack -growth[J]. International Journal of Mechanical Sciences, 1996, 38(5): 527-538.
    [56]白佳声,章文宝.硬质合金材料的性能特点及其发展应用前景[J].上海金属, 2001, 23(06): 10-13.
    [57]王明杰,朱辉,王建华,等.SKD11钢与20CrMo钢高温性能研究[J].模具制造, 2007, (01): 69.
    [58]雍治文. SCM435合金冷墩钢线材研制[J].金属制品, 2007, 33(6): 44
    [59]阮雪榆,萧文斌,徐祖禄.冷挤压技术[M].上海:上海科学技术出版社,1963, 6
    [60]周飞,彭颖红,阮雪榆. DEFORMTM有限元分析系统及其在塑性加工中的应用[J].模具技术, 1997,(4): 20-21.
    [61]张敏.支撑轴挤压模具有限元分析及组合凹模优化[D][硕士论文].山东大学, 2007.
    [62] P.V.Marcal, I.D.King. Elastic-Plastic Analysis of Two-Dimensional Stress Systems by the Finite Element Method[J]. Internatinal Journal of Mechanical S cience, 1967, (9): 143-155.
    [63] Y.Yamada, N.Yoshimura, T.Sakurai. Plastic Stress-Strain Matrix and Its Application for the Solution of Elastic-Plastic Problems by the Element Method[J]. International Journal of Mechanical Science, 1967, (10): 343-354.
    [64] R.Hill.Some Basic Principles in the Mechanics of Solids without a Natural Time[J]. Journal of Mechanical Physics Solids, 1959, (7): 200-209.
    [65] H.D.Hibbit, P.V.Marcal. A Finite Element Formulation for Problems of Large Strain andLarge Displacement[J]. International Journal of Solid Structure, 1970, (6): 1069-1080.
    [66] R.M.McMeeking. Finite Element Formulation for Problems of Large Elastic-Plastic Deformation[J]. International Journal of Structure, 1975, (11): 601-620.
    [67]徐虹.汽车件的冷挤压工艺与疲劳寿命智能分析系统的研究[D][博士学位论文].吉林大学, 2005.
    [68] Lee Young-Seon, Lee Jung-Hwan, Choi Jong-Ung, etal. Experimental and analytical evaluation for elastic deformation behaviors of cold forging tool[J]. Journal of Materials processing Teehnology, 2002, (127): 73-82.
    [69] Pedersen Thomas Orts. Numerieal modeling of cyclic plasticity and fatigue damage in cold-forging tools[J]. Intemational Journal of Meehanical Seiences, 2000, 42(4): 799-818.
    [70]李海峰,谢志毅,赵晓平.模具在工件反挤压过程中的变形模拟研究[J].金属成形工艺, 2003, (5): 19-22.
    [71] Gadala M S, Wang J. Computational implementation of stress integration in FE analysis of elasto-Plastic large deformation Problems[J]. Finite Elements in Analysis and Design, 2000, 35(4): 379-39.
    [72] I.M.Austen.工程中的一体化疲劳耐久管理[J].中国机械工程, 1998, 9(11): 3-7.
    [73]结构疲劳强度设计[M].中国机械工程手册,北京:机械工业出版社,2版,1996, 784.
    [74]董月香,高增梁.疲劳寿命预测方法综述[J].大型铸锻件, 2006, (03): 39-41.
    [75]韩杨.两种常用疲劳寿命估算方法的可靠性对比[J].山西建筑, 2008, 34(31): 90-91.
    [76] Tucker L E, Landgraf R W, Brose W R. Technical report on fatigue properties[C]. SAE J1099, 1979.
    [77]赵少汴.局部应力应变法的推广应用[J].机械强度, 2000, 22(3): 11-12.
    [78]曾春华,邹十践编译.疲劳分析方法及应用[M],北京:国防工业出版社, 1991.
    [79]宁志良.压铸模具温度场热应力场及热疲劳行为的研究[D][博士学位论文].哈尔滨工业大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700