用户名: 密码: 验证码:
TA15合金经微弧氧化后的腐蚀与疲劳性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用三种电解液体系(Al-P2、Al-P3-B和Al-P3-Si)中在TA15合金(Ti6Al2Zr1Mo1V)表面制备了微弧氧化陶瓷涂层。利用XRD、SEM和EDS等分析方法和极化曲线、交流阻抗谱、盐雾试验和电偶试验等腐蚀测试方法研究了涂层的组织结构和耐腐蚀性能。采用不对称拉伸疲劳试验研究了微弧氧化涂层对TA15合金疲劳寿命的影响规律。
     结果表明,涂层可以分为内外两层,内层致密,外层疏松多微孔。随着氧化时间的延长,涂层厚度逐渐增加,内层变得更加致密,但由于涂层向局部基体过度生长,导致涂层与基体的结合面逐渐变的凹凸不平。涂层结构取决于电解液组成,Al-P2和Al-P3-B涂层以Al2TiO5为主,Al-P3-Si涂层以金红石型TiO2为主,还含有少量的非晶相。
     与TA15合金相比,Al-P2、Al-P3-B及Al-P3-Si涂层的自腐蚀电位分别提高了0.636V、0.58V和0.692V。随氧化时间延长,Al-P3-Si涂层厚度增加,自腐蚀电位提高,自腐蚀电流增大。涂层的阻抗值大于TA15合金取决于致密的内层,随氧化时间的增加,Al-P3-Si涂层内层阻抗值增大,分别为1.16×106?·cm2 (10min)、1.2×106?·cm2 (30min)、3.8×106?·cm2 (50min)。在浓度为5%的NaCl盐雾条件下腐蚀720h后,TA15合金与Al-P3-Si涂层(30min)的质量损失率分别为1.5625mg/(h·m2)和0.43403mg/(h·m2),涂层的质量损失率明显低于TA15合金。在浓度为3.5%的NaCl溶液中进行电偶试验15天后,钢/TA5合金及钢/Al-P3-Si涂层(30min)偶联时的平均电偶电流密度分别为1.5683(μA/cm2)和0.2467(μA/cm2),后者明显低于前者,涂层良好的绝缘性能,降低了电偶腐蚀敏感度。
     微弧氧化30min的Al-P3-Si涂层试样,随疲劳应力由550MPa增加至750MPa,疲劳寿命由9.834×104周次减小至3.005×104周次。疲劳应力水平σmax=750MPa时,基体的疲劳寿命为2.08×106周次,而涂层试样氧化10min时的疲劳寿命为2.57×104周次,氧化30min时为3×104周次,涂层试样的疲劳寿命低于TA15合金。TA15合金先喷砂再微弧氧化可提高涂层试样的疲劳寿命,σmax=750MPa时前者的疲劳寿命是后者的2.7倍。
     TA15合金表面涂层的生长降低了基体的疲劳寿命,主要原因在于涂层向局部基体过度生长区域引起的应力集中和基体近界面处的残余拉应力的作用。火花在局部基体处持续放电,该处基体过度氧化,形成深入基体的缺陷区,它是疲劳裂纹源萌生的主要区域。将涂层试样等效为表面缺口试样,缺口半径R≈30μm,可以计算出缺口处的复合应力集中系数K′t≈2.4,疲劳缺口敏感度q≈0.63,涂层试样的疲劳极限σ-1n≈290 MPa。
Ceramic coatings were fabricated on Ti6Al2Zr1Mo1V (TA15) alloy by microarc oxidation (MAO) in three differenct electrolytes (Al-P2, Al-P3-B, and Al-P3-Si). XRD and SEM techniques were employed to investigate the microstructure, phase and chemical composition of the coatings. The corrosion properties were determined using polarization curve, electrochemical impedance spectroscopy, salt fog corrosion and galvanic corrosion measearment technologies. Fatigue properties of coated specimens were examined by tensile fatigue testing at room temperature.
     MAO coating is compact in the inner layer, puff in the outer layer, with many micropores (pore size 1~10μm) on the surface. With the increasing oxidation time, the coating thickness increases accompanied with the more compact inner layer. While, the over growth of the coating into the substrate at the local sites leads to the formation of more rough interface between coating and substrate. The microstructure of coatings depends mainly on the type of electrolyte. Al-P2 and Al-P3-B coatings are mainly composed of Al2TiO5. The Al-P3-Si coating mainly consists of rutile and anatase TiO2, with a small amount of amorphous phase.
     Compared with TA15 alloy, the self-corrosion potential rises by 0.636V, 0.58V, and 0.692V for Al-P2, Al-P3-B and Al-P3-Si coatings, respectively. With increasing oxidation time, the self-corrosion potential of coatings rises accompanying the increasing current density. The electrochemical impedance of Al-P3-Si coating, determined mainly by the compact inner layer, rises with the increasing of oxidation time and registers as 1.161×106?·cm2, 1.201×106?·cm2 and 3.806×106 ?·cm2 for 10min, 20min and 30min, respectively.
     After corrosion in 5% NaCl slat fog for 720 hours, visible etching pits are observed on TA15 alloy surface, while perfect on coatings. The mass loss rate of TA15 alloy and Al-P3-Si coating (30min) is 1.5625mg/h·m2 and 0.4 mg/h·m2, respectively. When coupled with steel in 3.5%NaCl for 15 days, the current density of TA15 alloy and Al-P3-Si coating (30min) is 1.5683μA/cm2 and 0.2467μA/cm2, respectively. The dense inner layer of the coatings can hinder the movement of electrons, which leads to the lower susceptive of coupled current corrosion.
     The fatigue life of the Al-P3-Si coated specimen with oxidation time of 30minutes decreases from 9.834×104 cycles to 3.005×104 cycles when subjected to the fatigue stress ranging from 550MPa to 750MPa. At 750 MPa, the fatigue life of coated specimen is lower than that of TA15 alloy. The uncoated specimen could withstand a maximum cyclic stress of 750 MPa for 2.08×106 cycles, while the coated specimen fails after 2.57×104 and 3×104 cycles for 10 and 30 minutes oxidized coating, respectively. The duplex process of sand blasting treatment before MAO on the TA15 alloy surface enables to improve the fatigue life of coated specimen. In contrast to the unblasted specimen, the fatigue life of the blasted specimen increases by 170%.
     The growth of coating on TA15 alloy surface causes the decline of fatigue life of the underlined substrate, which can be attributed to the stress concentration at the over-growth area of coating into the substrate and the tensile residual stress existed in the substrate adjacent to the coating. As a result of persistent sparks discharging, the over-growth area of coating along the interface forms, which is considered as the potential site of crack initiation. The specimen with over-grown area of coating can be simulated as notched specimen. In that case, the notch’s radius is R≈30μm, mechanical parameters of coated sample are drawn with theoretical stress concentration factor Kt≈2.7, fatigue strength reduction factor Kf≈2.1 and fatigue notch sensitive factor q≈0.63, and finally the fatigue limit is calculated asσ-1n≈290MPa.
引文
1李兴元,沙爱学,张旺峰,储俊鹏,马济民.TAl5合金及其在飞机结构中的应用前景.钛工业进展.2003,20 (4-5):90~94
    2王桂生.Ti-6Al-2Zr-1Mo-1V合金组织与性能的研究.稀有金属.1995,19(5):352-356
    3 A.L.Yerokhin,X.Nie,A.Leyland,A.Matthews,S.J.Dowey.PlasmaElectrolysis for Surface Engineering.Surface and Coatings Technology.1999,122:73-93
    4 [苏]姆.纳.福金著,丁振威译.钛和钛合金在化学工业上的应用.上海科学技术文献出版社.1981:1~22
    5 G.D.Hao.Z.P.Yao.Z.H.Jiang.Salt Spray Corrosion Test of Micro-plasmaOxidation Ceramic Coatings on Ti Alloy.Rare Metals.2007,26(6):560~564
    6谭晓华,徐晖.α,钛合金(Ti-Al-Zr)在360℃水,400℃蒸汽条件下的静水腐蚀行为.上海大学学报.2000,6(4):367~370
    7李松梅,蒋唯沧,刘建华,孙忠志.新型航空T231钛合金导管连接件在模拟服役环境中的抗腐蚀性能研究.材料工程.2004,2:32~36
    8张晓云,孙志华,汤智慧,刘明辉,李斌.TA5钛合金与铝合金和结构钢接触腐蚀与防护研究.材料工程.2004,2:26~31
    9赵树萍,吕双坤,郝文杰.钛合金及其表面处理.哈尔滨工业大学出版社.2003:121-254
    10王亚明.Ti6Al4V合金微弧氧化涂层的形成机制与摩擦学行为.哈尔滨工业大学博士学位论文.2006:49~79
    11 O.P.Terleeva,V.I.Belevantsev,A.I.Slonova,D.L.Boguta,V.S.Udnev.Comparison Analysis of Formation and Some Characteristics of MicroplasmaCoatings on Aluminum and Titanium Alloys.Protection of Metals.2006,42(3):272--279
    12 Y.K.Shin,W.S.Chae,Y.W.Song,Y.M.Sung.Formation of TitaniaPhotocatalyst Films by Microarc Oxidation of Ti and Ti-6Al-4V Alloys.Electrochemistry Communications.2006,8:465~470
    13 H.J.Song,M.K.Kim,G.C.Jung,M.S.Vang,Y.J.Park.The Effects ofSparkAnodizing Treatment of Pure Titanium Metals and Titanium Alloys onCorrosion Characteristics.Surface&Coatings Technology.2006.doi:10.1016/i.surfcoat.2006.11.022
    14 J.Baszkiewicz,D.Krupa,J.Mizera,J.W.Sobczak,A.Bilin’ski.Corrosion Resistance of the Surface Layers Formed on Titanium by Plasma Electrolytic Oxidation and Hydrothermal Treatment.Vacuum.2005.78:143-147
    15曹京霞,黄旭,李臻熙.TA15合金的高周疲劳性能和断裂特征.材料工程.2004,3:28-31
    16金磊,苏彬.TA15合金低周疲劳性能研究.航空材料学报.2005,25(2):16~19
    17 A.L.Yerokhin,A.Shatrov,V.Samsonov,P.Shashkov,A.Leyland,A.Matthews.Fatigue Properties of Keronite Coatings on A Magnesium Alloy.Surface&Coatings Technology.2004.182:78-84
    18 D.T.Asquith,A.L.Yerokhin,J.R.Yates,A.Matthews.Effect of CombinedShot Peening and PEO Treatment on Fatigue Life of 2024 Al Alloy.Thin SolidFilms.2006.515:1187-1191
    19 B.Rajasekaran,S.G.S.Raman,L.R.Krishna,S.V.Joshi,G.Sundararajan.Influence of Microarc Oxidation and Hard Anodizing on Plain Fatigue and Fretting Fatigue Behaviour of Al-Mg-Si Alloy.Surface&Coatings Technology.2008,202:1462-1469
    20 B.Lonyuk.I.Apachitei.J.Duszczyk.The Effect of Oxide Coatings on FatigueProperties of 7475-T6 Aluminum Alloy.Surface&Coatings Technology.2007.201:8688-8694
    21 G.Amsel.D.Samuel.The Mechanism of Anodic Oxidation.J.Phys.Chem.Solids.1962.23:1707-1718
    22 P.Gupta,G.Tenhundfeld,E.O.Daigle,D.Ryabkov.Electrolytic PlasmaTechnology:Science and Engineering-An Overview.Surface&CoatingsTechnology.2007,201:8746~8760
    23 A.L.Yerokhin,L.O.Snizhkob,N.L.Gurevinab,A.Leylanda,A.Pilkingtona,A.Matthews.Spatial Characteristics of Discharge Phenomena in Plasma Electrolytic Oxidation of Aluminum Alloy.Surface and Coatings Technology.2004,(177-178):779~783
    24 G.Sundararajan,L.R.Krishna.Mechanisms Underlying the Formation of ThickAlumina Coatings Through the MAO Coating Technology.Surface andCoatings Technology.2003.167:269-277
    25 E.Matykina,A.Berkani,P.Skeldon,G.E.Thompson.Real-Time Imaging of Coating Growth During Plasma Electrolytic Oxidation of Titanium.Electrochemical Acta.2007.53:1987-1994
    26薛文斌,邓志威,李永良,陈如意,张通和.Ti-6Al-4V在NaAlO2溶液中的微弧氧化陶瓷膜的组织结构研究.材料科学与工艺.2000,8(3):41~45
    27李新梅,李银锁,憨勇.溶液配比及电参数对钛阴极微弧电沉积氧化铝涂层的影响.硅酸盐学报.2005,33(7):800~805
    28Ⅱ.S.Park,T.G.WOO,W.Y.Jeon,H.H.Park,M.H.Lee,T.S.Baea,K.W.Seol.Surface Characteristics of Titanium Anodized in the Four Different Types of Electrolyte.Electrochemical Acta.2007.53:863-870
    29 S.V.Gnedenkov,O.A.Khrisanfova,A.G.Zavidnaya,S.L.Sinebrvukhov,V.V.Kon’shin.S.B.Bulanova.P.S.Gordienko.Complex Formation in Electrolyte Solutions in the Course of Plating Protective Coatings on Titanium.Russian Journal of Applied Chemistry.2003.76(1):23-28
    30 Y.M.Wang,B.L.Jiang,T.Q.Lei,L.X.Guo.Microarc Oxidation andSpraying Graphite Duplex Coating Formed on Titanium Alloy for AntifrictionPurpose.Applied Surface Science.2005.246:214-221
    31薛文斌,王超,马辉,谢孟峡,陈如意,邓志威.TA2纯钛表面微弧氧化膜的成分和相结构分析.稀有金属材料与工程.2002,31(5):345~348
    32 J.A.M.D.Camargo,H.J.Cornelis,V.M.O.H.Cioffi,M.Y.P.Cost.Coating Residual Stress Effects on Fatigue Performance of 7050-T7451 Aluminum Alloy.Surface&Coatings Technology.2007,doi:10.1016/i.surfcoat.2007.03.032
    33 R.H.U.Khan,A.L.Yerokhin,T.Pilkington,A.Leyland,A.Matthews.Residual Stresses in Plasma Electrolytic Oxidation Coatings on Al Alloy Produced by Pulsed Unipolar Current.Surface&Coatings Technology.2005.200:1580-1586
    34 B.Raiasekaran,S.G.S.Raman,S.V.Joshi,G.Sundararaian.Effect ofMicroarc Oxidised Layer Thickness on Plain Fatigue and Fretting Fatigue Behaviour of Al-Mg-Si Alloy.International Journal of Fatigue.2007.doi:10.1016/i.ijfatigue.2007.08.014
    35 D.J.Buchanan.R.Johna.Relaxation of Shot-Peened Residual Stresses UnderCreep Loading.Scripta Materialia.2008,doi:10.1016/j.scriptamat.2008.03.021
    36 A.Ghasemi,V.S.Raja,C.Blawert,W.Dietzel,K.U.Kainer.Study of theStructure and Corrosion Behavior of PEO Coatings on AM50 Magnesium Alloyby Electrochemical Impedance Spectroscopy.Surface&Coatings Technology.2008,202:3513-3518
    37张华,张卫文,夏伟,李元元.高强耐磨变形铝青铜的热处理工艺.华南理工大学学报.2002,30(2):91~93
    38尹延国,焦明华,解挺,郑治祥,刘煜,俞建卫,田明.滑动轴承材料的研究进展.润滑与密封.2006,5:184~186
    39胡宗纯,谢发勤,吴向清.不同控制方式下占空比对钛合金微弧氧化膜的影响.电镀与环保.2006,26(5):23~25
    40王亚明,蒋百灵,雷廷权,郭立新,曹跃平.电参数对Ti6Al4V合金微弧氧化陶瓷膜结构特性的影响.无机材料学报.2003,18(6):1325~1330
    41 Y.M.Wang,D.C.Jia,L.X.Guo,T.Q.Lei,B.L.Jiang.Effect of DischargePulsating on Microarc Oxidation Coatings Formed on Ti6Al4V Alloy.MaterialsChemistry and Physics.2005,90:128~133
    42 V.Anita.N.Saito.O.Takai.Microarc Plasma Treatment of Titanium andAluminum Surfaces in Electrolytes.Thin Solid Films.2006,506-507:364~368
    43孙跃,胡津.金属腐蚀与控制.哈尔滨工业大学出版社.2003:33~36
    44曹楚南,张鉴清.电化学阻抗谱导论.科学出版社.2002:1~24
    45刘永辉,张佩芬.金属腐蚀学原理.航空业出版社.1993:151~169
    46胡本润,吴学仁,丁传富.Ti-6Al-4V钛合金疲劳小裂纹扩展行为的研究.航空材料学报.2000.20(3):33~37
    47郑修麟.材料的力学性能.西北工业大学出版社.2000:60~67
    48才庆魁.金属疲劳断裂理论.东北工学院出版社.2002:150~154
    49胡本润,刘建中,陈剑峰.疲劳缺口系数Kf与理论应力集中系数Kt之间的关系.材料工程.2007,7:70~73
    50航空工业部科学技术委员会.应力集中系数手册.高等教育出版社.1990:58-59
    51周玉.陶瓷材料学.科学出版社.2004:16
    52王零森.特种陶瓷.中南大学出版社.2005:357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700