用户名: 密码: 验证码:
基于结构可靠性的被动控制系统优化理论和应用方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在强风、地震以及海浪等自然灾害的作用下,结构的安全性已成为人们越来越关注的问题。增加结构刚度、承载力或材料强度等传统方法已经很难满足人们越来越高的要求。因此,结构抗灾控制理论与工程应用方法作为一种新的提高结构安全性、适用性和舒适性的途径,其研究与应用已日趋广泛。
     众所周知,在结构的适当部位合理安装一定数量的耗能减震装置或被动阻尼控制系统将会减小结构系统的地震响应。但结构系统的抗震控制效果对耗能减震装置或者被动阻尼控制系统的物理参数、设置数量以及空间分布等非常敏感,在没有较好的分析理论和设计方法时,最简便的办法就是在结构的所有层均匀布置耗能减震装置或被动阻尼控制系统。但这种布置并不能取得最佳减震效果,而且工程量大,造价高,影响了工程应用。目前对此方面的研究都是基于确定性目标进行优化,虽然在一定程度上找到了较优布置,取得了较好效果,但并非最优。另一方面,由于结构系统的复杂性、优化方法的局限性以及地震动的随机性等,使得结构抗震优化控制研究成为一个多学科交叉的课题。因此,深入研究被动阻尼控制系统在结构中的拓扑优化设计具有重要的理论意义和工程应用价值。
     本文首先分析了结构控制的各种理论与优化算法,接着对框架结构采用粘滞阻尼系统的拓扑优化设计进行了研究,解决了基于结构体系可靠度的粘滞阻尼系统的拓扑优化问题。主要研究内容和成果如下:
     (1)对遗传算法的编码规则、种群设定、适应度函数的选择以及遗传算子的设计和收敛准则等进行了探讨,特别是对交叉算子和变异算子进行了改进设计,自主编制形成了适合于设置粘滞阻尼系统框架结构的MATLAB工具箱函数。分析表明,文中所提改进后的遗传算法,能较快地寻找到最优个体,并不会导致早熟现象的发生。
     (2)采用文中建议改进的遗传算法,以确定性指标,如层间位移等作为结构优化控制的目标函数,确定了优化算法的关键参数,利用MATLAB编程软件,编制了地震作用下粘滞阻尼系统的拓扑优化程序(FSVDO);分别在Ⅱ类场地和Ⅲ类场地条件下,选用实际记录地震波和人工地震波,采用自编的FSVDO程序,进行了受控结构的最优拓扑分析,并将其结果与穷举法的优化结果进行了比较,两者吻合较好,证实文中所发展的算法是可靠有效的,可用于复杂结构的优化分析和设计。
     (3)地震动的随机性将导致即使在同样场地条件下,输入的地震波不同,受控结构的粘滞阻尼系统的最优拓扑形式也可能有所不同,这就是所谓的“样本冲突”。文中最优拓扑分析结果验证了该现象,这说明基于某个确定性指标进行粘滞阻尼系统位置的拓扑优化存在一定缺陷,因此在进行结构的拓扑优化分析时,需要考虑地震动随机性的影响。
     (4)采用概率密度演化方法和文中发展的优化算法,提出了以结构体系可靠度为目标函数时,粘滞阻尼系统空间拓扑优化的计算原理,编制了基于结构体系可靠度的粘滞阻尼系统拓扑优化分析程序(SRBTOVD),实现了基于结构体系可靠度的粘滞阻尼受控结构系统的最优拓扑优化,解决了上述的“样本冲突”问题。为了比较,分别计算了无控结构、均布粘滞阻尼系统结构以及最优布置粘滞阻尼系统结构的体系可靠度。结果表明,利用文中发展的优化算法进行粘滞阻尼系统的优化布置,不仅可明显提高结构体系的抗震可靠度,而且其值与传统的各层均布粘滞阻尼系统的体系抗震可靠度非常接近,然而设置的粘滞阻尼系统数量仅为传统方法的50%左右,反映出较好的经济性和实用性。
     (5)在实现结构体系抗震可靠度的迭代优化计算中,考虑到MATLAB计算效率不高,文中的计算核心程序采用C++语言编程,在MATLAB环境中调用C++程序计算结构的体系抗震可靠度,实现了文中的拓扑优化程序。结果表明,文中所提出的方法操作简单,计算效率高,具有较好的应用前景。
     (6)应用概率密度演化方法,在非平稳随机地震动激励下,分别获得了无控结构、均布粘滞阻尼系统的受控结构以及基于结构体系抗震可靠度的优化布置粘滞阻尼系统的受控结构的概率密度曲线随时间演化的全过程,进行了相应的概率密度演化分析,计算了各层的动力可靠度。分析结果表明,采用文中基于结构体系可靠度的粘滞阻尼系统受控结构具有可靠度高、成本低的优势。
Structural safety has gained more and more importance under disastrous loads such as strong winds, earthquakes and ocean waves, etc. It is hard for traditional methods, e.g. to increase the stiffness, bearing capacity and material strength, to meet the current requirement. Therefore, the theory and engineering applications of structural control, which can promote the safety, serviceability and/or comfortability of structures, have being increasingly paid attention to by researches and engineers.
     As we know, the responses of structures can be reduced effectively by energy dissipation devices or dampers. However, the effect of seismic control is very sensitive to the number, space distribution and the physical parameters of the energy dissipation devices or dampers. The easiest strategy is to install energy dissipation devices or dampers in each story. However, such a strategy cannot always obtain the best effect of seismic control, not to mention its high cost. Thus, it has not been widely applied as yet in the field of engineering. Actually, up to now, most researches on the system optimization of passive control devices are still limited to the deterministic objective function. Such methods may find optimal arrangement of the control devices in some sense, but it might not be the best arrangement if more realistic factors are involved. On the other hand, due to the complexity of structures, the limitation of optimization methods and the randomness of earthquakes, optimization of structural control under earthquake becomes a multidisciplinary topic. Therefore, the study on topological optimization of the structures with dampers is of very significance and application value for civil engineering.
     Firstly, the most widely used theories for structural control and optimization algorithm are discussed in this paper. Then the topological optimization method for arrangement of the viscous dampers installed on frame structures is specially studied. Based on the system reliability of structures, the topological optimization of the viscous dampers is solved. The main research contents and results are shown as follows:
     (1) The encoding rules, population settings, selection of the fitness function, design of genetic operator and the convergence criterion of the genetic algorithm are further studied in this paper. Especially, some MATLAB toolbox functions are developed for the frame structures installed with viscous dampers. The analysis indicates that the improved genetic algorithm can quickly find the optimal individual without precocity phenomena.
     (2) Setting the deterministic indices, e.g. the inter-floor drift, as the objective function of the structural control, and using the improved genetic algorithm, the parameters of the optimization algorithm are defined. Then, the program for topological optimization of the viscous dampers installed in the frame structure is developed in MATLAB, in short as FSVDO. To the situations of classification II and III of the site soil, using the FSVDO program, the topological optimization analyses of the structures are carried out under realistic earthquakes and artificial earthquake. The result is consistent to that obtained by the method of exhaustion, which means that the Improved Genetic Algorithm (IGA) is very effective and reliable, and can be used in the optimization analysis and design of similar structures.
     (3) Even in the same classification of site soil, due to the randomness of earthquake, the optimal topology of the viscous dampers in the fame stru ctures can be different to different earthquake inputs, and such phenomenon can be referred to as "samples conflict". The analysis in this thesis also shows this phenomenon, which means the randomness of earthquakes has obvious effect on the topology of dampers. In other words, topological optimization of dampers with deterministic indices exhibits some defects, whereas the randomness of earthquakes can not be ignored.
     (4) With the probability density evolution method and the improved genetic algorithm, setting the reliability of structure as the objective function, a novel method which can solve the problem of "samples conflict" for topological optimization of dampers is proposed. The program is developed in MATALB, named as SRBTOVD. For comparison, the reliabilities of the un-controlled structure, the structure installed dampers in every floor and the structure installed topologically optimized dampers are calculated, respectively. The result indicates that, with the proposed IGA, not only the reliability of the structure system can be improved obviously, but the reliability is also very close to the structure installed dampers in every floor, whereas the number of dampers can be reduced to 50% of the traditional arrangement, which shows the advantage on economy and applications.
     (5) Due to the low efficiency of MATLAB, for the iteration calculation of topological optimization, C++ was employed as the programming language in the computing kernel program. With the C++ program, the system reliability of the structures with dampers can be obtained, and then the topological optimization analysis can be performed in the environment of MATLAB. The results of analysis indicate that, due to its high efficiency and practicability, the proposed method can be widely used in the civil engineering.
     (6) Using the probability density evolution method, under non-stationary random earthquake excitations, the evolution processes of the probability density of the uncontrolled structure, the controlled structure installed with dampers in each floor and the controlled structure installed with the topological optimized dampers are obtained, respectively. With the analysis on the processes of the probability density, dynamic reliabilities are evaluated and compared, which shows that, in the three cases, the controlled structure installed with dampers via topological optimization has the highest reliability and lowest cost.
引文
[1.1]J.T.P.Yao. Concept of structure control [J]. ASCE, Journal of Structural Division,1972,98(7): 1567-1574
    [1.2]Soong TT. Active structural control:Theory and practice [M]. Longman Scientific& Technical, New york,1990
    [1.3]Soong TT, Dargush GF. Passive energy dissipation systems in structural engineering [M]. State University of New York at Buffalo.1997
    [1.4]Chu SY, Soong TT, Reinhorm AM. Active, hybrid and semi-active structural control [M]. John Wiley& Sons, New York.2005
    [1.5]Housner GW, Bergman LA, Caughey TK, et al. Structrual control:past, present, and future[J]. ASCE, Journal of Engineering Mechanics,1997,123(9):897-971
    [1.6]Zhang RH, Soong TT, Mahmoodi P. Seismic response of steel frame structures with added viscoelastic dampers [J]. Earthquake Engineering and Structural Dynamics,1989,18:389-396
    [1.7]Zhang RH, Soong TT. Seismic design of viscoelastic dampers for structural applications [J]. ASCE Journal of Structural Engineering,1992,118(5):1375-1391
    [1.8]Shen KL, Soong TT, Chang KC, et al. Seismic behaviour of reinforced concrete frame with added viscoelastic dampers [J]. Engineering Structures,1995,17(5):372-380
    [1.9]Palmeri A, Ricciardelli F. Fatigue analyses of buildings with viscoelastic dampers [J]. Journal of Wind Engineering and Industrial Aerodynamics,2006,94:377-395
    [1.10]Xu ZD. Earthquake mitigation study on viscoelastic dampers for reinforced concrete structures [J]. Journal of Vibration and Control,2007,13(1):29-43
    [1.11]Constantinou MC, Symans MD, Tsopelas P, et al. Fluid viscous dampers in applications of seismic energy dissipation and seismic isolation [C]. Proceedings of Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, Applied Technology Council, Palo Alto, USA No. ATC-17-1.,1993, Vol.2,581-592
    [1.12]Reinhorn AM, Li C, Constantinou MC. Experimental and analytical investigation of seismic retrofit of structures with supplemental damping:part 1-fluid viscous damping devices [R]. NCEER Report 95-0001, State University of New York at Buffalo, Buffalo, New York., 1995
    [1.13]Pall AS, Marsh C. Response of friction damped braced frames [J]. ASCE Journal of Structural Division,1982,108(6):1313-1323
    [1.14]Qu WL, Chen ZH, Xu YL. Dynamic analysis of wind-excited truss tower with friction dampers [J]. Computers& Structures,2001,79:2817-2831
    [1.15]Li C, Reinhorn AM. Experimental and analytical investigation of seismic retrofit of structures with supplemental damping:part 2-friction devices [R]. NCEER Report 95-0009, State University of New York at Buffalo, Buffalo, New York,1995
    [1.16]Kelly JM, Skinner RI, Heine AJ. Mechanisms of energy absorption in special devices for use in earthquake-resistant structures [R]. Bulletin of the New Zealand National Society for Earthquake Engineering,1972,5(3):63-88
    [1.17]Skinner RI, Kelly JM, Heine AJ. Hysteresis dampers for earthquake-resistant structures [J]. Earthquake Engineering and Structural Dynamics,1975,3:287-296
    [1.18]Villaverde R. Seismic control of structures with damped resonant appendages [C]. Proceedings of 1st World Conference on Structural Control,1994, Vol.1, WP4-113-WP4-122
    [1.19]Wong Kevin KF, Johnson J. Seismic energy dissipation of inelastic structures with multiple tuned mass dampers [J]. ASCE Journal of Engineering Mechanics,2009,135(4):265-275
    [1.20]Setareh M. Use of the doubly-tuned mass dampers for passive vibration control [C].183 Proceedings of 1st World Conference on Structural Control,1994, Vol.1, WP4-12-WP4-21
    [1.21]Li C. Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration [J]. Earthquake Engineering and Structural Dynamics,2000,29:1405-1421
    [1.22]Guo YQ, Chen WQ. Dynamic analysis of space structures with multiple tuned mass dampers [J]. Engineering Structures,2007,29:3390-3403
    [1.23]Tait MJ, Isyumov N, EI Damatty AA. Performance of tuned liquid dampers [J].185 ASCE Journal of Engineering Mechanics,2008,134(5):417-427
    [1.24]Tamura Y, Fujii K, Ohtsuki T, et al. Koshaka R. Effectiveness of tuned liquid dampers under wind excitations [J]. Engineering Structures,1995,17:609-621
    [1.25]Wakahara T, Ohyama T, Fujii K. Suppression of wind-induced vibration of a tall building using tuned liquid damper [J]. Journal of Wind Engineering and Industrial 186 Aerodynamics, 1992,41-44:1895-1906
    [1.26]De Silva CW. An algorithm for the optimal design of passive vibration controllers for flexible systems [J]. Journal of Sound& Vibration.1981,75(4):495-502
    [1.27]GiirgOze MC, and Muller PC. Optimal positioning of dampers in multi-body system [J]. Journal of Sound& Vibration,1992,158(3):517-530
    [1.28]Zhang RH, Soong TT. Seismic design of viscoelastic dampers for structural applications [J]. ASCE Journal of Structural Engineering,1992,118(5):1375-1392
    [1.29]欧进萍.结构振动控制主动、半主动和智能控制[M].北京:科学出版社,2003
    [1.30]Kim J, Choi H, Min KW. Performance-based design of added viscous dampers using capacity spectrum method [J]. ASCE Journal of Earthquake Engineering,2003,7(1):1-24
    [1.31]Park KS, Koh HM, Hahm D. Integrated optimum design of viscoelastically damped structural systems [J]. Engineering Structures,2004,26:581-591
    [1.32]Chang James CH, Soong TT. Structural control using active tuned mass dampers [J]. ASCE Journal of Engineering Mechanics,1980,106(6):1091-1098
    [1.33]Spencer Jr. BF, Nagarajaiah S. State of the art of structural control [J]. Journal of Structural Engineering,2003, pp:845-856
    [1.34]Roorda J. Tendon control in tall structures [J]. Journal of Structural Division,1975,101(3): 505-521
    [1.35]Soong TT, Reinhorn AM, Yang JN. Active response control of building structures under seismic excitation [C]. Proceedings of 9th World Conference on Earthquake Engineering, Tokyo/Kyoto, Japan,1988,8:453-458
    [1.36]Chung LL, Lin RC, Soong TT, Reinhorn AM. Experiments on active control of MDOF seismic structures [J]. Journal of Engineering Mechanics,1989,115(8):1609-1627
    [1.37]刘季,周云.结构抗震控制的研究与应用状况(下)——主动控制、混合控制及半主动控制[J].哈尔滨建筑大学学报,1995,28(5):1-6
    [1.38]Kobori T, Takahashi M, Nasu T. Experimental study on active variable stiffness system-active seismic response controlled structure [C]. Proceedings of 4th World Congress Council on Tall Buildings and Urban Habitat, Hong Kong,1990, pp:561-572
    [1.39]Kawashima K, Unjoh S, Iida H, Mukai H. Effectiveness of the variable damper for reducing seismic response of highway bridge [C]. Proceedings of Second US-Japan Workshop on Earthquake Protective Systems for Bridges, PWRI, Tsukuba Science City, Japan,1992, 479-493
    [1.40]Patten WN. New life for the Walnut Creek Bridge via semi-active vibration control [C]. Newsletter of the International Association for Structural Control,1997,2(1):4-5
    [1.41]Kobori T. Past, present and future in seismic response control in civil engineering structures [C]. Proceedings of 3rd World Conference on Structures Control, Wiley, New York,2003, 9-14
    [1.42]Spencer Jr. BF, Sain MK, Carlson JD. Dynamical model of a magnetorheological damper[C]. Proceedings of Structures Congress XIV, ASE, Chicago, IL, USA,1996, pp:361-370
    [1.43]Spencer Jr. BF, Sain MK, Carlson JD. Phenomenological model of magnetorheological damper [J]. ASCE Journal of Engineering Mechanics,1997,123(3):230-238
    [1.44]欧进萍,关新春,吴斌等.智能型压电-摩擦耗能器[J].地震工程与工程振动,2000,20(1):81-86
    [1.45]周福霖.工程结构减震控制[M].北京:地震出版社,1997
    [1.46]周云,徐赵东,赵鸿铁.粘弹性阻尼结构的性能、分析方法及工程应用[J].地震工程与工 程振动.1998,18(3):96-107
    [1.47]刘棣华.粘弹性阻尼减振降噪技术[M].北京:宇航出版社,1990
    [1.48]Lai ML, Lu P, Lunsford DA, et al. Viscoelastic damper:a damper with linear or nonlinear material [C]. Eleventh World Conference on Earthquake Engineering,1996
    [1.49]Chang KC, Lai ML, Soong TT, et al. Seismic behavior and design guideline for steel frame structures with added viscoelastic dampers [R]. Technical Report No.NCEER-93-0009, State University of New York at Buffalo.1993
    [1.50]徐赵东,周洲,赵鸿铁等.粘弹性阻尼器的计算模型[J].工程力学,2001,18(6):88-93
    [1.51]李刚,于经,冯秀梅等.粘弹性阻尼器的计算模型及分析[J].青岛农业大学学报(自然科学版),2007,24(2):140-142
    [1.52]周光泉,刘孝敏.粘弹性理论[M].中国科技大学出版社,1996
    [1.53]Lai ML, Lu P, Lunsford DA, et al. Viscoelastic damper:a damper with linear or nonlinear material [C]. Eleventh World Conference on Earthquake Engineering,1996
    [1.54]Inaudi JA, Blondet M, Kelly JM. Heat generation effects on viscoelastic dampers in structure [C]. Eleventh World Conference on Earthquake Engineering,1996
    [1.55]Kasai K, Munshi JA, Lai ML et al. Viscoelastic damper hysterestic model:theory, experiment and application [C]. Proceedings of ATC-17-1 on Seismic Isolation, Energy Dissipation and Active control,1993,2:521-532
    [1.56]Tsai CS. Temperature effect of viscoelastic dampers during earthquakes [J]. Journal of Structural Engineering,1994,120(2):394-409
    [1.57]Miyazaki M, Arima F, Kidata Y, et al. Earthquake response control design of building using viscous damping walls [C]. In:Proc.1st East Asian Conference on Structeral Engineering and Construction, Bangkok,1986,1882-1891
    [1.58]Arima F, Miyazaki M, Tanaka H, et al. A study on buildings with large damping using viscous damping walls [R]. The Ninth World Conf. Earthquake Engrg., Tokyo,1988, 821-826
    [1.59]Constantinou MC, and Symans MD. Experimental and analytical investigation of seismic response of strcuctures with supplemental fluid viscous dampers [R]. NCEER Report-92-0032, State University of New York at Buffalo,1992
    [1.60]Reinhorn AM, Li C, Constantinou MC. Experimental and analytical investigation of seismic retrofit of structures with supplemental damping part Ⅰ-fluid viscous damping devices [R].
    Technical Report NCEER-95-0001, National Center for Earthquake Engineering Research, Buffalo, New York,1995
    [1.61]Frahm H. Device for damped vibrations of bodies [P]. U.S. Patent No.989958, Oct.30,1909
    [1.62]Den Hartog JP. Mechanical vibrations [M].4th Edition, McGraw-Hill, NY,1956
    [1.63]龙复兴,张旭,顾平等.调谐质量阻尼器系统控制结构地震反应的若干问题[J].地震工程与工程振动,1996,16(2):87-94
    [1.64]Wirsching PH, and Campbell GW. Minimal structural response under random excitation using the vibration absorbers [J]. Earthquake Eng. Struct. Dyn.1974,2:303-312
    [1.65]McNamara RJ. Tuned mass dampers for buildings [J]. J. Struct. Div., ASCE,1977,103(9): 1785-1789
    [1.66]Luft RW. Optimal tuned mass dampers for buildings [J]. J. Struct. Div., ASCE,1979, 105(12):2766-2772
    [1.67]Warburton GB. Optimal absorber parameters for various combinations of response and excitation parameters [J]. Earthquake Eng. Struct. Dyn.,1982,10:381-401
    [1.68]ENR. Tower cables handle wind, water tank dampers. Engineering News-Record,1971
    [1.69]Kwok KC, and Macdonald PA. Wind-induced response of Sydney Tower [C]. Proc. First National Struct. Eng. Conf.,1987,19-24
    [1.70]Pall AS, Marsh C. Response of friction damped braced frames [J]. ASCE Journal of Structural Division,1982,108(6):1313-1323
    [1.71]Qu WL, Chen ZH, Xu YL. Dynamic analysis of wind-excited truss tower with friction dampers [J]. Computers& Structures,2001,79:2817-2831
    [1.72]Li C, Reinhorn AM. Experimental and analytical investigation of seismic retrofit of structures with supplemental damping:part 2-friction devices [R]. NCEER Report95-0009, State University of New York at Buffalo, Buffalo, New York.1995
    [1.73]Bhaskararao AV, Jangid RS. Seismic analysis of structures connected with friction dampers [J]. Engineering Structures,2006,28:690-703
    [1.74]Ehrgott RC, Masri SF. Use of electrorheological materials in intelligent systems [C]. Proceedings of US-Italy-Japan Workshop/Symposium on Structural Control and Intelligent Systems, Sorrento, Italy,1992,87-100
    [1.75]Gavin HP, Ortiz DS, Hanson RD. Testing and Modeling of a proto-type ER damper for seismic structural response control [C]. Proceedings of International Workshop on Structural Control, Honolulu, USA,1993,166-180
    [1.76]Aiken ID, Nims DK, Whittaker AS, Kelly JM. Testing of passive energy dissipation systems[J]. Earthquake Spectra,1993,9(3):335-368
    [1.77]Dolce M, Cardone D, Marnetto R. Implementation and testing of passive control devices based on shape memory alloys [J]. Earthquake Engineering and Structural Dynamics,2000, 29:945-968
    [1.78]李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究[J].地震工程与工程振动,2003,23(1):133-139
    [1.79]毛晨曦,李惠,欧进萍.形状记忆合金被动阻尼器及结构地震反应控制试验研究与分析[J].建筑结构学报,2005,26(3):38-44
    [1.80]倪立锋,李秋胜,李爱群等.新型形状记忆合金阻尼器的试验研究[J].地震工程与工程振动,2002,22(3):145-148
    [1.81]薛素铎,董军辉,卞晓芳.一种新型形状记忆合金阻尼器[J].世界地震工程,2005,22(2):1-6
    [1.82]Chan Ricky WK, Albermani F. Experimental study of steel slit damper for passive energy dissipation [J]. Engineering Structures,2008,30(4):1058-1066
    [1.83]Chu SY, Soong TT, Reinhorn AM. Active, hybrid and semi-active structural control [J]. John Wiley& Sons, New York,2005
    [1.84]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006
    [1.85]邹天一.结构可靠度[M].北京:人民交通出版社,1998
    [1.86]Freudenthal, AM. The safety of structures [J]. Trans., ASCE,1947,112:125-128
    [1.87]董聪.现代结构系统可靠度理论及应用[M].北京:科学出版社,2001
    [1.88]Cornell, C. A. A probability-based structural code [S]. J. ACI,1969,66(12):974-958
    [1.89]Lind, NC. Consistent partial safety factors [J]. J. Struct. Div., ASCE,1971,97(6):1651-1669
    [1.90]Hasofer AM, Lind NC. An exact and invariant first order reliability format [J]. J Eng Mech Div ASCE,1974,100(EM1):111-21
    [1.91]赵国藩.结构可靠度的实用分析方法[J].建筑结构学报,1984,1-10
    [1.92]Cornell CA. Bounds on the reliability of structural systems [J]. ASCE Journal of Structural Division,1967,93(1):171-200
    [1.93]Ditlevsen O. Narrow reliability bounds for structural systems [J]. J Struct Mech 1979,7(4): 453-72
    [1.94]Rice, S. O. Mathematical Analysis of Random Noise [J]. Bell System Technical Journal, 1944,23:282-332.
    [1.95]Coleman JJ. Reliability of aircraft structures in resisting chance failure. Operations Research, 1959,7(5):639-645
    [1.96]Cramer H. On the intersections between the trajectries of a normal stationary stochastic process and a high level [J]. Arkiv Fuer mathematic,1966,13:27-40
    [1.97]Caughey TK. Equivalent linearization techniques [J]. Journal of the Acoustical Society of America,1963,35:1706-1711
    [1.98]Crandall SH. Perturbation techniques for random vibration of nonlinear systems [J]. Journal of the Acoustical Society of America,1963,35:1700-1705
    [1.99]Shinozuka M, Jan CM. Digital simulation of random processes and its applications [J]. J. Sound and Vibration,1972,25(1):111-128
    [1.100]Rosenbluth. E., Bustamante.J. Distribution of structural response to earthquakes [J]. J. Eng. Mach. Div. ASCE,1962,88(3):75-106
    [1.101]刘锡荟.现行抗震规范设计方法安全度的评价及工程参数的确定[J].地震工程与工程振动,1982,2(1):21-22
    [1.102]Shan, H.C. Dong, W.M. Reliability assessment of existing buildings subjected to probabilistic earthquake loadings [J]. Soil Dynamics and Earthquake Engineering,1984, 3(1):35-41
    [1.103]高小旺,鲍蔼斌.地震作用的概率模型与统计参数[J].地震工程与工程振动,1985,5(1):13-22
    [1.104]韦承基,魏琏等.结构抗震弹塑性变形可靠度分析[J].工程力学,1986,3(1):60-70
    [1.105]陈虬,赵雷.随机参数结构的地震可靠度分析[J].工程力学增刊,1997,519-523
    [1.106]张新培.抗震结构变形能力可靠度的时程分析法[J].工程力学,1996,13(4):82-88
    [1.107]李杰.随机结构动力分析的扩阶系统分析方法[J].工程力学,1996,13(1):93-102
    [1.108]李杰,陈建兵.随机结构非线性动力响应的概率密度演化方法[J].力学学报,2003,35(6):716-722
    [1.109]李杰,陈建兵.随机结构动力可靠度分析的概率密度演化方法[J].振动工程学报,2004,17(2):121-125
    [1.110]李杰,陈建兵.随机动力系统中的广义密度演化方程[J].自然科学进展,2006,16(6):712-719
    [1.111]Haftka RT, and Adelman HM. Selection of actuator locations for static shape control of large space structures by heuristic integer programming [J]. Computers and Structures,1985, 20(1-3):578-582
    [1.112]李杰,江建华.地震次生火灾动态危险性分析方法研究[J].自然灾害学报,2001,10(2):31-36
    [1.113]Holland J.H. Adaptation in natural artificial systems [M]. Ann Arbor, Michigan:University of Michigan Press:Ann Arbor, MI,1975
    [1.114]Goldberg DE. Genetic algorithm in search, optimization and machine learning. Addison-Wesley:Reading, MA,1989
    [1.115]Metropolis N, Rosenbluth A, Rosenbluth M et al. Equation of state calculations by fast computing machines [J]. Journal of Chemical Physics,1953,21:1087-1092
    [1.116]Constantinou MC, and Symans MD. Experimental study of seismic response of buildings with supplemental fluid dampers [J]. Struct. Design Tall Buildings,1993,2:93-132
    [1.117]Reinhorn AM, Li C, Constantinou MC. Experimental and analytical investigation of seismic retrofit of structures with supplemental damping part Ⅰ-fluid viscous damping devices [R]. Technical Report NCEER-95-0001, National Center for Earthquake Engineering Research, Buffalo, New York,1995
    [1.118]刘伟庆,葛卫,陆伟东.消能支撑-方钢管混凝土框架结构抗震性能试验研究[J].地震工程与工程振动,2004,24(4):106-109
    [1.119]Miyazaki M, Arima F, Kidata Y, and Hristov I. Earthquake response control design of building using viscous damping walls [C]. In:Proc.1st East Asian Conference on Structeral Engineering and Construction. Bangkok,1986,1882-1891
    [1.120]Miyazaki M, Mitsusaka Y. Design of a building with 20% or greater damping [J]. Proceeding of 10th World Conference on Earthquake Engineering,1992,4143-4148
    [1.121]Arima F, Miyazaki M, Tanaka H, and Yamazaki Y. A study on buildings with large damping using viscous damping walls [C]. The Ninth World Conf. Earthquake Engrg., Tokyo,V.1988,821-826
    [1.122]Yeung N, Pan, A D E. The Effectiveness of viscous-damping walls for controlling wind vibrations in multi-story buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,77-78
    [1.123]章振涛.粘滞阻尼墙及其动力性能试验研究[D].南京工业大学硕士学位论文,2003
    [1.124]张方,潘德恩.含转动干扰粘滞阻尼墙的阻尼特性试验研究[J].振动工程学报,2002,16(1):85-88
    [1.125]Ngai Yeung. Viscous-damping walls for controlling wind-induced vibrations in buildings[D]. Ph.D. Thesis. Hong Kong:The University of Hong Kong,2000
    [1.126]Kim J, Choi H, Min KW. Performance-based design of added viscous dampers using capacity spectrum method [J]. Journal of Earthquake Engineering,2003,7(1):1-24
    [1.127]Chiarugi A, Melegrai A, and Spinelli P. On the dynamic behavior of bridge dampers under seismic excitation [C]. Proc. of the 8th European Conference on Earthquake Engineering. Lisbon:Elsevier Science Ltd,1986,73-80
    [1.128]宋智斌.粘滞消能减震技术在结构抗震加固中的研究与应用[D].硕士学位论文,北京:中国建筑科学研究院,2001
    [1.129]陈道政,李爱群,张志强等.西安某科研楼顶钢结构塔楼减震控制研究[J].建筑科学,2004,20(3):、18-28
    [1.130]叶正强,李爱群,程文瀼等.采用粘滞流体阻尼器的工程结构减振设计研究[J].建筑结构学报,2001,22(4):61-66
    [1.131]叶正强,李爱群,徐幼麟.工程结构粘滞流体阻尼器减振新技术及其应用[J].东南大学学报(自然科学版),2002,32(3):466-473
    [1.132]杨国华,李爱群,程文瀼等.工程结构粘滞流体阻尼器的减振机制与控振分析[J].东南大学学报,2001,31(1):57-61
    [1.133]杨国华,李爱群,程文瀼等.结构抗震设计中流体阻尼器的指数选择与控制系统设计[J].工业建筑,2003,33(6):3-6
    [1.134]阎维明,谭平,周福霖.HEDC控制体系的参数优化设计[J].世界地震工程,1998,14(2):29-35
    [1.135]Ashour SA, Hanson RD. Elastic response of buildings with supplemental damping [R]. Report UMCE 87-1, Dept. of Civ. Engrg., University of Michigan, Ann Arbor, Mich.1987
    [1.136]Ashour SA, and Hanson RD. Effect of added dampers on the seismic response of multi-storey buildings [J]. Arabian Journal for Science and Engineering,1987,19(3): 389-402
    [1.137]Agrawal A K, Yang J N. Optimal placement of passive dampers on seismic and wind-excited building using combinatorial optimization [J]. Journal of Intelligent Material Systems and Structures,1999,10(12):997-1014
    [1.138]Gluck N, Reinhorn AM, Gluck J, Levy R. Design of supplemental dampers for control of structures [J]. Joural of Structural Engineering (ASCE),1996,122(12):1394-1399
    [1.139]Takewaki I. Optimal Damper placement for minimum transfer functions [J]. Earthquake Engineering and Structural Dynamics,1997,26(11):1113-1124
    [1.140]Tsuji M. and Nakamura T. Optimum viscous dampers for stiffness design of shear buildings [J]. The Structuralt Design of Tall Buildings,1996,5:217-234
    [1.141]Martinez-Rodrigo M, Romero ML. An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications [J]. Engineering Structures, 2003,25:913-925
    [1.142]Lopez Garcia D, Soong TT. Efficiency of a simple approach to damper allocation in MDOF structures [J]. Journal of Structural Control,2002,9:19-30
    [1.143]Lopez Garcia D. A simple method for the design of optimal damper configurations in MDOF structures [J]. Earthquake Spectra,2001,17(3),387-398
    [1.144]Attard TL. Controlling all interstory displacements in highly nonlinear steel buildings using optimal viscous damping [J]. Journal of Structural Engineering,2007,133(9):1331-1340
    [1.145]Chen GS, Robin JB, and Salama M. Optimal placement of active/passive members in truss structures using simulated annealing [J]. AIAA Journal,1991,29(8):1327-1334
    [1.146]Moreschi LM, Singh MP. Optimal placement of dampers for passive response control [J]. Earthquake Engineering and Structural Dynamics,2002,31:955-976
    [1.147]Singh MP, and Moreschi LM. Optimal placement of dampers for passive response control [J]. Earthquake engineering and structural dynamics,2002,31:955-976
    [1.148]周星德,彭宣茂.基于遗传算法的建筑结构最优阻尼研究[J].计算力学学报,2005,22(6):780-784
    [1.149]Fu Y, and Kasai K. Comparative study of frames using viscoelastic and viscous dampers[J]. Journal of Engineering Mechanics,1998,124(5):513-522
    [1.150]Takewaki I, and Yoshitomi S. Effects of support stiffnesses on optimal damper placement for a planar building frame [J]. The Structural Design of Tall Buildings,1998,7(4): 323-336
    [1.151]欧进萍,吴斌,龙旭.结构被动耗能减震效果的参数影响[J].地震工程与工程振动,1998,18(1):65-70
    [1.152]冼巧玲,周福霖,成文山.框架结构消能支撑的减震优化方法[J].世界地震工程,1999, 15(2):49-55
    [1.153]蒋通,贺磊.非线性粘滞阻尼器消能结构减振效果分析[J].世界地震工程,2005,21(2):57-63
    [1.154]李宝华,魏建国,刘京红.非线性粘滞阻尼器减震结构的参数研究[J].山西建筑,2006,32(20):7-8
    [2.1]陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社,1996
    [2.2]李杰,江建华.地震次生火灾动态危险性分析方法研究[J].自然灾害学报,2001,10(2):31-36
    [2.3]Holland J.H. Adaptation in natural artificial systems [M]. Ann Arbor, Michigan:University of Michigan Press:Ann Arbor, MI,1975
    [2.4]Goldberg DE. Genetic algorithm in search, optimization and machine learning. Addison-Wesley:Reading, MA,1989
    [2.5]周明,孙树栋编著.遗传算法原理及应用[M].北京:国防工业出版社,1999
    [2.6]李敏强,寇纪淞等.遗传算法的基本理论语应用[J].北京:科学出版社,2002
    [2.7]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005
    [2.8]De Jong, K.A. An analysis of the behavior of class on genetic adaptive systems [D]. Ph.D Dissertation, University Microfilms.University of Michigan, Ann Arber.1975,76-938
    [2.9]Brindle A. Genetic algorithoms for function optimization [D]. Doctoral Dissertation, Univ. of Alberta,1981
    [2.10]Back, T. The interaction of mutation rate, selection and self-adapation within a genetic algorithom [J]. in Parallel Problem Solving from Nature,2, Amsterdam:North Holland,1992, 84-94
    [2.11]Grefenstette J.J, Gopal R, Rosmaita B, et al. Genetic algorithom for the traveling salesman problem [C]. Proc. of intern. Conf. on Genetic Algorithoms and Their Applications. Grefenstette, J.J Ed. Lawrence Earlbaum,1985,160-168
    [2.12]恽为民.基于遗传的机器人运动规划[D].上海交通大学博士论文,1995
    [2.13]Cavicchio D J. Reproductive adaptive plans [C]. Proc. Of the ACM 1972 Annual Conf.,1972, 1-11
    [2.14]Booker L B, Goldberg D E, and Holland J H. Classifier systems and genetic algorithoms[J]. Artificial Intelligence,1989,40:235-282
    [2.15]Syswerda G. Uniform crossover in genetic algorithoms [C]. Int. Conf. on Genetic Algorithoms,1989,2-9
    [2.16]Whitley D. Genitor II:A distributed genetic algorithom [J]. J. Expt. Ther. Intell.,1990,2: 189-214
    [2.17]Pears W M, DeJong K A. An analysis of multi-point crossover [J]. Foundations of Genetic Algorithoms,1991,301-315
    [2.18]Goldberg D E, Lingle R, Alleles, et al. The traveling salesman problem [C]. Proc. of Intern. Conf. on Genetic Algorithoms and Their Aplications,1985,154-159
    [2.19]Michalewicz Z, et al. Genetic algorithoms and optimal control problems [C]. Proc.29th IEEE Conf. Dicision and Control.1990,1664-1666
    [2.20]Michalewicz Z, et al. A modified genetic algorithom for optimal control problems [J]. Computers Math. Applic.,1992,23(12):83-94
    [2.21]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [3.1]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992
    [3.2]叶正强,李爱群,程文瀼等.采用粘滞流体阻尼器的工程结构减振设计研究[J].建筑结构学报,2001,22(4):61-66
    [3.3]叶正强,李爱群,徐幼麟.工程结构粘滞流体阻尼器减振新技术及其应用[J].东南大学学报(自然科学版).2002,32(3):466-473
    [3.4]杨国华,李爱群,程文瀼等.工程结构粘滞流体阻尼器的减振机制与控振分析[J].东南大学学报(自然科学版),2001,31(1):57-61
    [3.5]Reinhorn AM, Li C, Constantinou MC. Experimental and analytical investigation of seismic retrofit of structures with supplemental damping part Ⅰ-fluid viscous damping devices [R]. Technical Report NCEER-95-0001, National Center for Earthquake Engineering Research, Buffalo, New York,1995
    [3.6]Soong TT, Dargush GF. Passive energy dissipation systems in structural engineering [R]. State University of New York at Buffalo,1997
    [3.7]Makris N, Constantinou MC. Fractional-derivative Maxwell model for viscous dampers [J]. Journal of Structural Engineering,1991,117(9):2708-2724
    [3.8]Makris N, Constantinou MC. Models of viscoelasticity with complex order derivatives [J]. Journal of Structural EngineeringMechanics. ASCE.1993,119(7):1453-1464
    [3.9]Makris N, Dargush GF, and Constantinou MC. Dynamic analysis of generalized viscoelastic fluids [J]. Journal of Structural Mechanics, ASCE.1993,119(8):1663-1679
    [3.10]Makris N, Constantinou MC and Dargush GF. Analytical Model of viscoelastic fluid dampers [J]. Journal of Structural Engineering,1993,119(11):3310-3325
    [3.11]Gemant A. A method of analyzing experimental results obtained from elastoviscous bodies[J]. Physics.1936,7(8):311-317
    [3.12]Bagley R, and Torvik PJ. Fractional calculus-A different approach to the analysis of viscoelastically damped structures [J]. AIAA Journal.1983,21(5):742-748
    [3.13]常巍等.MATLAB R2007基础与提高[M]..北京:电子工业出版社,2007
    [3.14]刘慧颖.MATLAB R2007基础教程[M].北京:清华大学出版社,2008
    [3.15]亨塞尔曼.精通MATLAB 7[M]北京:清华大学出版社,2006
    [3.16]克拉夫,彭津.结构动力学(第二版)[M].北京:高等教育出版社,2006
    [3.17]Yang JN, Akbarpour A, Ghaemmaghami P. New optimal control algorithms for structural control [J]. ASCE Journal of Engineering Mechanics,1987,113(9):1369-1386.
    [3.18]Goldberg DE. Genetic algorithm in search, optimization and machine learning [M]. Addison-Wesley:Reading, MA,1989
    [3.19]Powel. Influence of analysis and design assumption on computed inelastic response of moderately tall frames [R]. Report No. UBC/EERC 76/11. California:EERC, University of California Berkeley,1976,39-45
    [3.20]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [3.21]杨溥.基于位移的结构地震反应分析方法研究[D].重庆建筑大学博士学位论文.重庆:重庆建筑大学建筑工程学院,1999,35-55
    [4.1]胡聿贤.地震工程学[M].北京:地震出版社,1988
    [4.2]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992
    [4.3]Dowrick DJ. Earthquake Risk Reduction [M]. John Wiley& Sons, Ltd.,2003
    [4.4]李杰,艾晓秋.基于物理的随机地震动模型研究[J].地震工程与工程振动,2006,26(5):21-26
    [4.5]李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283
    [4.6]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001
    [4.7]Chen JB, Li J. Strategy for selecting representative points via tangent spheres in the probability density evolution method [J]. International Journal for Numerical Methods in Engineering,2008,74(13):1988-2014
    [4.8]朱位秋.随机振动[M].北京:科学出版社,1998
    [4.9]Chen JB, Li J. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters [J]. Structural Safety,2007,29:77-93
    [4.10]Li J, Chen JB, Fan WL. The equivalent extreme-value event and evaluation of the structural system reliability [J]. Structural Safety,2007,29:112-131
    [4.11]Gardiner CW. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (2nd Edition) [M],1983, Springer, Berlin
    [4.12]Kolmogorov AN. Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung [J]. Mathematische Annalen,1931,104:415-458
    [4.13]Dostupov BG, Pugachev VS. The equation for the integral of a system of ordinary differential equations containing random parameters [J]. Automatika i Telemekhanika,1957,18:620-630
    [4.14]Li J, Chen JB. The principle of preservation of probability and the generalized density evolution equation [J]. Structural Safty,2006, doi:10.1016/j.strusafe.2006.08.001
    [4.15]Li J, Chen JB. The probability density evolution method for dynamic response analysis of nonlinear stochastic structures [J]. International Journal for Numerical Methods in Engineering,2006,65:882-903
    [4.16]Li J, Chen JB. Generalized density evolution in stochastic systems [J]. Progress in Natural Science,2006,16(6):712-719
    [4.17]Li J, Chen JB. The dimension-reduction strategy via mapping for probability density evolution analysis of nonlinear stochastic systems [J]. Probobilistic Engineering Mechanis, 2006,21(4):442-453
    [4.18]陈建兵.随机结构非线性反应概率密度演化分析[D].同济大学优秀博士论文文库,上海:同济大学出版社,2007
    [4.19]陈建兵,李杰.随机结构静力反应概率密度演化方法的差分方法[J].力学季刊,2004,25(1):21-28
    [4.20]Thomas J W. Numerical partial differential equations finite differience methods [M]. New York:Springer-Verlag New York Inc,1995
    [5.1]李杰,艾晓秋.基于物理的随机地震动模型研究[J].地震工程与工程振动,2006,26(5):21-26
    [5.2]Chen JB, Li J. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters [J]. Structural Safety,2007,29:77-93
    [5.3]Chen JB, Li J. The extreme value distribution and reliability analysis of nonlinear stochastic structures [J]. Earthquake Engineering and Engineering Vibration,2005,4(2):275-286
    [5.4]陈建兵,李杰.随机结构静力反应概率密度演化方法的差分方法[J].力学季刊,2004,25(1):21-28
    [5.5]刘慧颖.MATLAB R2007基础教程[M].北京:清华大学出版社,2008
    [5.6]亨塞尔曼.精通MATLAB 7[M].北京:清华大学出版社,2006
    [5.7]钱能.C++程序设计教程(第二版)[M].北京:清华大学出版社,2005
    [5.8]林锐,韩永泉.高质量程序设计指南-C++/C语言[M].北京:电子工业出版社,2007
    [5.9]刘锐宁,宋坤.VisualC++从入门到精通[M].北京:清华大学出版社,2008
    [5.10]Li J, Chen JB. The probability density evolution method for dynamic response analysis of nonlinear stochastic structures [J]. International Journal for Numerical Methods in Engineering,2006,65:882-903
    [5.11]Li J, Chen JB. Probability density evolution method for dynamic response analysis of structures with uncertain parameters [J]. Comput. Mech.,2004,34:400-409
    [5.12]Chen JB, Li J. Dynamic response and reliability analysis of nonlinear stochastic structures[J]. Probab. Eng. Mech.,2005,20(1):33-44
    [5.13]Chen JB, Li J. Strategy for selecting representative points via tangent spheres in the probability density evolution method [J]. International Journal for Numerical Methods in Engineering,2008,74(13):1988-2014
    [6.1]Chen JB, Li J. Dynamic response and reliability analysis of nonlinear stochastic structures [J]. Probab. Eng. Mech.,2005,20(1):33-44
    [6.2]Li J, Chen JB. Probability density evolution method for dynamic response analysis of structures with uncertain parameters [J]. Comput. Mech.,2004,34:400-409
    [6.3]Li J, Chen JB. The probability density evolution method for dynamic response analysis of nonlinear stochastic structures [J]. International Journal for Numerical Methods in Engineering, 2006,65:882-903

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700