用户名: 密码: 验证码:
EB-PVD制备的Ni-Co-Cr-Al合金薄板组织演化及高温氧化行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用X射线衍射(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和透射电子显微镜(TEM)以及力学测试方法深入系统地研究了采用电子束物理气相沉积(EB-PVD)制备的0.3mm厚的Ni20.3Cr4.6Co2.1Al合金薄板制备态和热处理态组织演变规律和力学性能。并研究了制备态和经800℃/16h处理的合金薄板在800℃、900℃和1000℃空气中的氧化行为,采用SEM对氧化试样的表面和截面形貌进行研究,采用小角XRD、XPS和EDAX对其相组成和成分分布进行分析。研究结果表明:
     制备态Ni20.3Cr4.6Co2.1Al合金薄板相组成为γ-Ni基固溶体,不存在第二相。组织致密均匀,晶粒尺寸为500nm左右;亚结构主要为孪晶,没有发现位错存在。制备态合金薄板的纳米硬度为5.57 GPa,弹性模量E为221.33GPa;常温拉伸抗拉强度σb为1033 MPa,合金薄板伸长率δ为0.6%,呈脆性断裂。800℃时拉伸抗拉强度σb为107 MPa,合金薄板伸长率δ为1.02%。
     经600℃长时间热处理后,Ni20.3Cr4.6Co2.1Al合金薄板仍为γ-Ni基固溶体单相组织,亚结构仍然为孪晶,没有发现位错存在。晶粒随保温时间的延长而长大,而TEM像中的应变条纹消失,XRD分析表明存在(220)晶面的择优生长。热处理温度达到800℃,晶粒明显长大,亚结构为孪晶和位错,1000℃处理后发现有第二相析出。
     薄板在600℃以下温度处理时,其断裂强度随处理温度升高而降低,其伸长率随温度升高而稍微有些增加。600℃处理16h,断裂强度σb为780 MPa,伸长率δ仅为4 %。800℃保温16h时,合金薄板的常温断裂强度σb增加到825 MPa,伸长率δ增加到14 %,属于延性断裂;随后其断裂强度随处理温度升高而降低,其伸长率随温度升高而稍微有些增加。
     合金薄板在不同温度下保温16h后,在800℃拉伸时,伸长率是随着保温温度的升高拉伸强度越来越大,其拉伸性能在800℃保温16h时的800℃拉伸强度σb值最高,为63 MPa,其伸长率δ达246 %。但在900℃保温16h处理后合金薄板的800℃拉伸强度σb却开始下降24 MPa,而伸长率δ却增加到336%,均为延性断裂。
     细晶Ni20.3Cr4.6Co2.1Al薄板高温氧化动力学与常规镍基合金的氧化动力学不同,800℃氧化时,初期氧化动力学近似符合抛物线规律,而长期氧化动力学符合立方规律;合金900℃氧化时,氧化初始阶段动力学符合三次方规律,而氧化后期动力学符合四次方规律;合金1000℃氧化时,氧化初始阶段动力学近似的近似符合抛物线规律,而氧化后期动力学近似符合立方规律。
     制备态Ni20.3Cr4.6Co2.1Al合金800℃初期氧化阶段的氧化产物主要是NiO和少量的Cr2O3;长时间氧化时氧化产物主要是NiO、NiCr_2O_4以及Cr2O3。合金900℃初始氧化阶段的氧化产物主要是NiO、Cr2O3和NiCr_2O_4;长时间氧化以后氧化膜外层的氧化产物主要是NiO,氧化初期在氧化膜的晶界处形成了富Al区域。合金1000℃初始氧化阶段的氧化产物主要是NiO和Cr2O3,而在长期氧化时氧化膜主要是由NiO为主,Cr2O3和NiCr_2O_4为辅的复合层。
     经800℃/16h退火处理后的细晶Ni20.3Cr4.6Co2.1Al合金薄板,在800℃空气中氧化动力学氧化初期符合四次方规律,随后氧化非常缓慢,长时间暴露后合金薄板氧化增重不明显。氧化产物主要是NiO、Cr2O3和NiCr_2O_4。900℃空气中氧化动力学符合立次规律,氧化产物主要是NiO、Cr2O3和NiCr_2O_4。1000℃空气中暴露时存在脱落,退火处理后薄板1000℃暴露空气中表面生成的氧化产物是单一的针状Al2O3。
     研究发现细晶Ni20.3Cr4.6Co2.1Al在800℃、900℃和1000℃空气中氧化动力学与经典的抛物线规律存在明显的偏差,主要由于细晶化后氧化物形核率极大提高,形成微晶态氧化膜,氧化膜中的扩散由晶格扩散为主变为以晶界短路扩散为主,改变了氧化膜的生长动力学,对细晶合金高温氧化动力学规律进行探讨,导出其遵守x2=At1-n.
The microstructure evolution and mechanical properties of Ni20.3Cr4.6Co2.1Al alloy sheet about 0.3mm thickness deposited by electron beam physical vapor deposition (EB-PVD) technology were systematically investigated by means of X-ray diffactometry (XRD), sanning electron microscopy (SEM), atom force microscopy (AFM) and transmission electron microscopy (TEM) as well as mechanical test method. In addition, oxidation behaviors of as-deposited and annealed Ni-Cr-Al alloys at 800°C, 900°C and 1000°C were investigated.
     The results show that the average sizes of as-deposited Ni20.3Cr4.6Co2.1Al alloy sheet composed only ofγphase was about 500nm.The substructures were (111) twins mainly without dislocations.
     For the as-deposited alloy sheet, the nano-hardness, elastic modulus E, room temperature tensile strengthσb and elongationδwas 5.57GPa, 221.33GPa, 1033MPa and 0.6%, respectively. Obviously, it was brittle fracture. Andσb tensile strength and elongation of as-deposited alloy sheet at 800℃was 107 MPa and 1.02%, respectively.
     The heat-treated Ni-11.5Cr-4.5Co-0.5Al sheet by EB-PVD at 600°C for different time consists ofγ-Ni-based single-phase with twins sub-structure and without dislocation. The grain size grows up with the extension of holding time. And the strain stripes disappear in TEM Micrograph. XRD analysis shows there is (220) crystal face of preferred orientation. When the heat-treatment temperature reaches 800°C, the grain grew up significantly, the sub-structure for the twins and dislocations. And the second phase precipitation was found when the sheet annealed at 1000℃.
     The Ni20.3Cr4.6Co2.1Al alloy sheet by EB-PVD annealed below 600°C, the fracture strength slightly reduced and the elongation slightly increased with temperature increasing. Annealed at 600℃for 16 h, the fracture strengthσb of sheet reduced to 780 MPa, and elongationδup to only 4%. Annealed at 800℃for 16 h, the room temperature tensile strengthσb and elongationδof alloy sheet increased to 825 MPa and 14%, respectively. The fracture belongs to ductile fracture. Subsequently the fracture strength slightly reduced and the elongation slightly increased with temperature increasing. The alloy sheet annealed at different temperature for 16 h, the 800°C tensile strength and elongationδof sheet annealed at 800℃for 16 reached 63 MPa and 246%, respectively. But annealed at 900℃for 16 h, the 800℃tensile strengthσb has begun to drop 24 MPa, and elongationδhas grown to 336%. And they were ductile fracture.
     The oxidation dynamics was different for the microcrystalline Ni20.3Cr4.6Co2.1Al sheet and conventional nickel-base alloy. Exposed at 800℃or 1000℃in air, the oxidation kinetics of microcrystalline Ni-11.5Cr-4.5Co-0.5Al alloy sheet followed a parabolic power law at initial oxidation stage and cubical power law for long oxidation terms. And the oxidation kinetics follows a cubical power law at initial oxidation stage and fourth power law for long oxidation terms at 900℃in air.
     As-deposited Ni20.3Cr4.6Co2.1Al alloy sheet exposed at 800℃in air, the oxidation products are mainly NiO and a small number of Cr2O3 at early stages, mainly NiO, NiCr_2O_4 and Cr2O3 after prolonged oxidation. Exposed at 900℃in air, the oxidation products are NiO, Cr2O3 and NiCr_2O_4 at initial stage. And the scale grain boundary formed Al-regional at the initial stage. After prolonged oxidation, the oxidation product is mainly NiO. The oxidation products are NiO and Cr2O3 at early stages, mainly by NiO, Cr2O3 and secondarily of NiCr_2O_4 composite layer after prolonged oxidation at 1000℃in air.
     After annealed of microcrystalline Ni20.3Cr4.6Co2.1Al sheet, the oxidation kinetic curves of alloy sheet at 800℃in air follow a fourth power rate law at initial oxidation stage, then very slow oxidation, and the final stage of the alloy sheet is almost not oxidized. The oxidation products are mainly NiO, Cr2O3 and NiCr_2O_4. The oxidation kinetic curves of alloy sheet at 900℃in air follow a cubic power rate law. And the oxidation products are mainly NiO, Cr2O3 and NiCr_2O_4. Exposed at 900℃in air of annealed sheet, the oxidation product is a single needle Al2O3, and Oxide layer peeling occurred.
     The oxidation kinetics of microcrystalline Ni20.3Cr4.6Co2.1Al failed to obey the parabolic law at 800°C、900°C and 1000°C in air. It was suggested that the oxide scale turned in to microcrystalline state since the nuclear probability of oxide was extremely increased for this kind of microcrystalline alloy. The short circuit diffusion through oxide scale was dominant. An expression, x2=At1-n has been derived for the oxidation kinetics of microcrystalline alloy based upon the model of short circuit diffusion.
引文
1 韩鸿硕编. 空天飞机的结构和材料. 航空航天部科技情报所, 1993: 99~110
    2 邱惠中. 美国空天飞机用先进材料最新进展. 宇航材料工艺. 1994,24(6):5~9
    3 范绪箕编. 气动加热与热防护系统. 科学技术出版社, 2004: 147-148
    4 陈国良编. 高温合金学, 冶金工业出版社, 1988:1~20
    5 M.J.Donachie. Superalloy Source Book, ASM, 1984: 4~10
    6 师昌绪, 陆达, 荣克编. 中国高温合金四十年. 中国科学技术出版社, 1996:3~9
    7 谢锡善. 我国高温合金的应用与发展. 机械工程材料. 2004,28(1):2~11
    8 S.J. Choe, J.H. Lee, C.Y. Jo, N.K. Park, H.M. Kim. An Overview of Superalloy Reseach and Development in Korea. Advanced Performance Materials. 1998,5(4):265~270
    9 夏德顺. 重复运载器金属热防护系统的述评. 导弹与航天运载技术. 2002,32(2):21~26
    10 W.D.Morris, N.H.White and C.E. Ebeling. Analysis of Shuttle Orbiter Reliability and Maintainability Data for Conceptual Studies. AIAA Space Programs and Technology Conference. Huntville,AL,Sept. 1996:43~62
    11 Donald M. Curry. Thermal Protection Systems Manned Spacecraft Flight Experience. NASA, 93-12449:19~41
    12 Williams, S.D. Curry, Donald M. Thermal Protection Materials, Thermophysical Property Data, NASA Reference Publication 1298,1992
    13 韩杰才, 陈贵清, 孟松鹤, 李晓海. 新型 ARMOR 热防护系统. 宇航学报. 2004,25(3):350~354
    14 Hinkle, Karrie A. Staszak, Paul R. and E. T. Watts. Advanced Ceramic Materials Development and Testing. AIAA Paper 96-1426, 37th Structures, Structure Dynamics, and Materials Conference. 1996:957~961
    15 王思青, 张长瑞, 周新贵等. 重复使用运载器陶瓷热防护系统. 导弹与航天运载技术. 2004,32(3):37~41
    16 曾昭焕. 可重复使用热防护系统防热结构. 宇航材料工艺. 1991, 21(4): 16~19
    17 Hinkle, Karrie A, Staszak, Paul. R and E. T. Watts. Advanced Ceramic Materials Development and Testing. AIAA Paper 96-1426, 37th Structures, Structure Dynamics, and Materials Conference. 1996:957~961
    18 Lu, I.Tina. TABI-The Lightweight Durable Thermal Protection System for Future Reusable Launch Vehicles. AIAA Paper 1996~1462
    19 L.R. Jackson and S.C. Dixon. A Design Assessment of Multiwall, Metallic Stand-off, and RSI Reusable Thermal Protection Systems Including Space Shuttle Application. NASA,TM X-81780,1980
    20 J.E. W.Blair, H.A. Meaney. Rosenthal. Fabrication of Prepackaged Superalloy Honeycomb Thermal Protection System (TPS) Panel. NASA, N87-29581:13~107
    21 M K. Gorton, J. L. Shideler, G. L.Webb. Static and Aerothermal Tests a Superalloy Honeycomb Prepackaged Thermal Protection System. NASA, TP-3257, 1993:50~51
    22 W.D. Brewer, Bird Keith, Wallace, Terryl. Alloys and Coating Development for Metal TPS for Reusable Lauch Vehicles. National Space & Missle Materials Symposium, San Diego CA,2000
    23 Max L. Blosser. Development of Metal Thermal Protection Systems for The Reusable Launch Vehicle, NASA, 1996,5: 1~21
    24 黄斌, 石原庆一, 新宫秀夫等. 重复压缩-轧制法制备纳米级金属多层材. 金属学报, 1998,34:455~458
    25 张绍贤, 薄板坯连铸连轧工艺技术发展的概况.炼钢.2000,16(1):50~55
    26 Was G S, Foecke T. Deformation and Fracture in Microlaminates. Thin Solid Films, 1996, 286:31~32
    27 赵连城, 李春峰. 精密热加工技术的现状与发展趋势. 先进制造与材料应用技术, 2005,(1):2~3
    28 郑运荣, 张德唐. 高温合金与钢的彩色金相研究. 国防工业出版社, 1999:1~4
    29 胡状麒, 镍基高温合金的发展. 航空发动机,2005,31(3):1~5
    30 陈荣章, 王罗宝,李建华. 铸造高温合金发展的回顾与展望.航空材料学报, 2000,20(1):55~5
    31 汤鑫,刘发信. K418 高温合金叶片铸造工艺的研究,铸造技术,1997,4:44~48
    32 刘发信, 杨爱德. 细晶铸造 K418 合金叶片,材料工程,1996,4:44~47
    33 S. E. Bold. Materials Technology for Aero Gas Turbines, Rolls-Rocyce Plc. Report in BUAA. May 1997
    34 Stenve A. High-Tech Coating for Turbine Blades. Mechanical Engineering, 1995,10:66~99
    35 陈荣章. 航空铸造涡轮叶片合金和工艺发展的回顾与展望. 航空制造技术. 2002,46(2):19~23
    36 常连华. 主要合金元素对镍基合金组织和性能的影响. 汽轮机技术, 2001(5):319~321
    37 K. Durst, M. Goken. Micromechanical Characterization of the Influence of Rhenium on the Mechanical Properties in Nickel-Base Superalloys. Materials Science and Engineering, 2004,A112:312~316
    38 陈石清. 陈容章译. 定向凝固高温材料. 航空工业出版社, 1988, 15~30
    39 黄乾尧. 李汉康. 高温合金. 冶金工业出版社, 2000:1~10
    40 Hael. Mughrabi,Michael Ott, Ulrich Tetzlaff. New Microstructual Concepts To Optimize The High-Temperature Strength of γ′–Hardened Monocrystalline Nickel-Based Supelloys. Materials Science and Engineering A. 1997, 440:434~437
    41 Angelinka Vennemann, Eckhard Langmaack, Eckhard Nembach. On the Temperature Dependence of the Critical Resolved Shear Stress of the –Strengthened Superalloy NIMONI PE16. Scripta Materialia, 2000,20:723~725
    42 王延庆. 镍基高温合金中γ′相的高温稳定性及筏状结构的形成. 钢铁研究学报, 1995, 6(1):61~63
    43 林化春. Cr 对镍基合金抗高温氧化性的影响. 热加工工艺, 1997,4: 10~13
    44 李金山,张万明,寇宏明. CMSX-2 合金组织细化对γ′定向粗化行为的作用研究. 材料热处理学报, 2002, 23(1):1~4
    45 Z.F.Peng, Z.F. Peng, Y.Y. Ren, Q.S. Mei. Directional Coarsening of γ′ Precitates in Typical Regions of Original Dendritic Structure of CMS-2. Scripta Materialia, 2000,42: 1059~1064
    46 Said Nategh, Said Nategh, Seyed Abdolkarim Sajjadi. Dislocation Network Formation during Creep in Ni-Base Superalloy GTD-11. Materials Science and Engineering, 2003,A339:103~108
    47 R.S.Moshtaghin, S. Asgari. Growth Kinetics of γ′ Precipitates in Superalloy IN-738LC during Long Term Aging. Materials and Design, 2003,24:325~330
    48 Pierre Caron, Tasadduq Khan. Evolution of Ni-Based Superalloy for Single Crystal Turbine Blade Applications. Aerosp.Sci.Technol, 1999,3:513~523
    49 Chen Ming, Li Xiaotian, Sun Fanghong. Studies on the Grinding Characteristics of Directionally Solidified Nickel-based Superalloy. Joumal of Mateals Processing Technology, 2001,116:165~169
    50 Chengbo Xiao, Yafang Han. Study on Precipitates in Ni-Al-Mo-B Alloy IC6 with Addition of Excess Amount of Yttrium. Scripta Materalia, 1999,41(5):475~480
    51 U.Bruckner, A. Epishin, T. Link, K. Dressel. The Influence of the Dendritic Structure on the γ/γ′-Lattice Misfit in the Single-Crystal Nickel-Base Superalloy CMSX-4. Materials Science and Engineering, 1998,A247:23~31
    52 M.Benyoucef, A.Coujou, B.Barbker. In Situ Deformation Experiments on a γ /γ′ Superalloy Strengthening Mechanisma. Materials Science and Engineering, 1997,A234:692~694
    53 F. Diologent, P. Caron, T. D. Almeida. The γ/γ′Mismatch in Ni Based Superalloys in Situ Measurements during a Creep Test. Nuclear Instruments and Methods in Physics Research, 2003,B200:346~351
    54 任英磊, 金涛, 管恒荣. 高温长期时效对镍基单晶高温合金γ′相形貌的影响. 机械工程材料,2004,28(3):10~14
    55 彭志方, 任遥遥,骆宇时. 镍基单晶合金 CMSX-2 高温蠕变后的显微组织及合金元素分布特征. 金属学报,2002,38(2):135~139
    56 刘丽荣, 金 涛,赵乃仁. 热处理对一种单晶高温合金微观组织和持久性能的影响. 稀有金属材料与工程,2006,35(5):712~714
    57 S. Ma, P. Rangaswamy, B.S. Majumdar. Microstress Evolution during in Situ Loading of a Superalloy Containing High Volume Fraction of γ′ Phase. Scripta Materialia, 2003,48:525~530
    58 孔 永 华 . 碳 在 Ni-Cr-W 铸 造 高 温 合 金 中 作 用 的 研 究 . 铸 造 技 术 , 2002,23(5):314~316
    59 郑亮. 凝固冷速对铸造镍基高温合金 K417G 显微组织的影响. 航空材料学报,2006,26(3):7~9
    60 A.O.F.Hayama, H.R.Z. Sandim, J.F.C.Lins, M.F.Hapalo, A.F.Padilha. Annealing Behavior of the ODS Nickel-Based Superalloy PM1000. Mater. Sci. Eng.A 2004,A371:198~209
    61 崔彤, 王继杰, 俞肇元, 王磊, 杨洪才, 赵光普. 长期时效对镍基合金的组织及高温拉伸性能的影响. 金属热处理. 2006,31(8):60~64
    62 崔彤, 王磊, 杨洪才, 赵光普. GH4586A 合金长期时效后的组织和性能. 材料热处理学报. 2005,26(1):53~57
    63 H. Singh, D. Puri, S. Prakash, Rabindranath Maiti. Characterization of Oxide Scales to Evaluate High Temperature Oxidation Behavior of Ni–20Cr Coated Superalloys. Materials Science and Engineering: A. 2007, In Press: Doi:10.1016/J.Msea.2007.1001.1088.
    64 T.S. Sidhu, S. Prakash, R.D. Agrawal. A Comparative Study of Hot Corrosion Resistance of HVOF Sprayed NiCrBSi and Stellite-6 Coated Ni-Based Superalloy at 900 0C. Materials Science and Engineering: A. 2007, 445-446: 210-218.
    65 ZIEBA, P. Diffusion along Migrating Grain Boundaries. Interface Science. 2003, 11: 51-58.
    66 M. J. STARINK, R. C. THOMSON. The Effect of High Temperature Exposure on Dendritic Segregation in a Conventionally Cast Ni Based Superalloy. Journal of Materials Science. 2001, 36: 5603 - 5608.
    67 A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser and W.J. Quadakkers. Effect of Surface Condition on the Oxidation Behaviour of MCrAlY Coatings. Surface and Coatings Technology. 2006, 201(7): 3824-3828.
    68 Hideto Kurokawa, Craig P. Jacobson, Lutgard C. Dejonghe and SteVen J. Visco. Chromium Vaporization of Bare and of Coated Iron–Chromium Alloys at 1073 K. Solid State Ionics. 2007, 178(3-4): 287-296.
    69 Guo Ji, Zhen Zhang, Yong Liu, Xiangdong Ding, Jun Sun and Xiaobing Ren. Effect of Surface Oxidation on Detwinning Stress and Transformation Temperature of Ti–50Ni Shape Memory Alloy Journal of Alloys and Compounds. 2006, In press: Doi: 10.1016/J. Jallcom. 2006. 1010.1024.
    70 T.J.Nijdam, C.Kwakernaak and W.G.Sloof. The Effects of Alloy Microstructure Refinement on the Short-Term Thermal Oxidation of NiCoCrAlY Alloys. Metallurgical and Materials Transactions. 2006, 37A (3): 683-693.
    71 Hampikian, J.M. The Effects of Reactive -Element, Ion-Implantation-Induced Amorphous Layers on the Oxidation of Co-12Cr and Ni-12Cr Alloys. Oxidation of Metals. 1998, 50(1/2): 123-138.
    72 Hefei Li, Shufeng Tao, Zhaohui Zhou, Lidong Sun, Hesnawi.A and Shengkai Gong. Element Diffusion during Fabrication of EB-PVD NiAl Coating and Its 1100 °C Isothermal Oxidation Behavior (II). Surface and Coatings Technology. 2007, 201(15): 6589-6592.
    73 J. Shi, A.M. Karlsson, B. Baufeld and M. Bartsch. Evolution of Surface Morphology of Thermo-mechanically Cycled NiCoCrAlY Bond Coats. Materials Science and Engineering: A. 2006, 434(1-2): 39-52.
    74 A. UlHamid, A.I. Mohammed, S.S. Al Jaroudi, H.M. Tawancy and N.M. Abbas. Evolution of Oxide Scale on a Ni–Mo–Cr Alloy at 900 °C. Materials Characterization. 2007, 58(1): 13-23.
    75 F. Pedraza, J.L. Grosseau Poussard, J.F. Dinhut. Evolution of Oxide Scales on an ODS FeAl Intermetallic Alloy during High Temperature Exposure in Air. Intermetallics. 2005, 13(27-33).
    76 李云, 袁超, 郭建亭, 杨洪才. 铸造镍基高温合金 K35 的氧化动力学.东北大学学报. 2003,24(1):77~79
    77 田素贵, 张禄廷, 炀洪才, 胡壮麒, 李铁藩. 镍基单晶合金高温氧化的动力学特征. 材料研究学报. 2002,16(2):183~186
    78 B. Kloss, M. Wenderoth, U. Glatzel and R. V¨Olkl. Fast Internal Oxidation of Ni–Zr–Y Alloys at Low Oxygen Pressure. Oxidation of Metals. 2004, 61(3/4): 239-251.
    79 Doilnitsyna, V.V. General Diffusion-Kinetic Model of Metallic Oxidation. Corrosion Science. 2002, 44: 1113-1131.
    80 V.P. Zhdanov , P.R. Norton. Growth of Oxide Films on Metal Surfaces: Transition from Parabolic To Linear Kinetics. Applied Surface Science. 1996, 99:205-211.
    81 D.B. Lee, M.L. Santella. High Temperature Oxidation of Ni3Al Alloy Containing Cr, Zr, Mo, and B. Materials Science and Engineering A. 2004, 374: 217-223.
    82 李美栓编. 金属的高温腐蚀. 冶金工业出版社. 2001:113
    83 M. Kemdehoundja, J.F. Dinhut, J.L. Grosseau-Poussard and M. Jeannin. High Temperature Oxidation of Ni70Cr30 Alloy: Determination of Oxidation Kinetics and Stress Evolution in Chromia Layers By Raman Spectroscopy Materials Science and Engineering: A. 2006, 435-436: 666-671.
    84 赵双群, 董建新, 张麦仓, 谢锡善. 新型镍基高温合金在 950℃和 1000℃的氧化行为. 稀有金属材料与工程. 2005, 34(2): 208-211.
    85 庞洪梅, 齐慧滨, 何业东, 王德仁. Ni220Cr2Y2O3 弥散氧化物微晶涂层及其高温氧化性能. 有色金属学报. 2001,11(2):187~190
    86 周浪. 金属高温氧化的计算模拟研究.腐蚀科学与防护技术. 2005,17(1):54~57
    87 徐前岗, 陆峰, 吴学仁, 唐建新. NiCoCrAlYHf EB-PVD 热障涂层的热循环氧化行为. 中国有色金属学报.2004,14(9):1519~1523
    88 Xin Ren, Fuhui Wang and Xin Wang. High-Temperature Oxidation and Hot Corrosion Behaviors of the NiCr–CrAl Coating on a Nickel-Based Superalloy. Surface and Coatings Technology. 2005, 198(1-3): 425-431.
    89 X.Y. Zhang, M.H. Shi, C. Li, N.F. Liu and Y.M. Wei. The Influence of Grain Size on the Corrosion Resistance of Nanocrystalline Zirconium Metal Materials Science and Engineering: A. 2007, 448(1-2): 259-263.
    90 Fengqun Lang, Zhiming Yu, Shalva GedeVanishvili, Seetharama C. DeeVi, Toshio Narita. Isothermal Oxidation Behavior of a Sheet Alloy of Fe–40at. %Al at Temperatures between 1073 and 1473 K. Intermetallics. 2003, 11: 697-705.
    91 D.T. Hoelzer, B.A. Pint, I.G. Wright. A Microstructural Study of the Oxide Scale Formation on ODS Fe-13Cr Steel. Journal of Nuclear Materials. 2000, 283-287: 1306-1310.
    92 陈国锋, 楼翰一. 溅射 N I-5Cr-5Al 纳米晶涂层高温氧化.腐蚀与防护. 2000,21(6):246~250
    93 Wang, Xin Ren and Fuhui. High-Temperature Oxidation and Hot-Corrosion Behavior of a Sputtered NiCrAlY Coating with and without Aluminizing Surface and Coatings Technology. 2006, 201(1-2): 30-37.
    94 Y. He, H. Pang, H. I, D. Wang, Z. Li, W. Gao. Micro-Crystalline Fe–Cr–Ni–Al–Y2O3 ODS Alloy Coatings Produced by High Frequency Electric-Spark Deposition. Materials Science and Engineering A. 2002, 334: 179-186.
    95 Chen, Chaur Jeng Wang and Shih-Ming. Microstructure and Cyclic Oxidation Behavior of Hot Dip Aluminized Coating on Ni-Base Superalloy Inconel 718 Surface and Coatings Technology. 2006, 201(7): 3862-3866.
    96 F.A. Khalid, N. Hussain, K.A. Shahid. Microstructure and Morphology of High Temperature Oxidation in Superalloys. Materials Science and Engineering: A. 1999, 265: 87-94.
    97 牛焱. Fe-Cu 二元双相合金于 600~800℃空气中的氧化. 腐蚀科学于防护技术. 1997,9(3):173~175
    98 岳 满 堂 , 杨 德 江 , 吴 隆 华 . 薄 板 坯 直 接 轧 制 的 组 织 性 能 . 钢 铁 . 1996,31(6):74~77
    99 章虎润. 薄板坯连铸连轧技术的比较及发展趋势.冶金信息.1998,6:14~18
    100 黄伯云, 周科朝, 李志友, 何双珍, 刘咏, 贺跃辉. 包套轧制制备 TiAl 基合金板材张俊红. 中国有色金属学报. 2001,11(6):1055~1058
    101 D.B. Zhang, S.K. Gong, H.B. Xu, H.B.Guo. Measurements of the Thermal Gradient over EB-PVD Thermal Barrier Coatings. Vacuum. 2003,70(1):11~16
    102 Hesnawi. A, Hefei Li, Zhaohui Zhou, Shengkai Gong and Huibin Xu. Effect of Surface Condition during Pre-oxidation Treatment on Isothermal Oxidation Behavior of MCrAlY Bond Coat Prepared by EB-PVD Surface and Coatings Technology. 2007, 201(15): 6793-6796.
    103 胡传顺, 王福会, 吴维. 热障涂层研究进展. 腐蚀科学与防护技术. 2000,12(3): 160~163
    104 U. Schulz, B. Saruhan, K. Fritscher, C. Leyens. Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications. International Journal of Applied Ceramic Technology. 2004,1(4):302~315
    105 M. Movchen, Y. Rudoy. Composition Structure and Properties of Gradient Thermal Barrier Coatings Produced by EB-PVD. Materials and Design. 1998,19: 253~258
    106 B. A. Movchen. EB-PVD Technology in the Gas Turbine Industry: Present and Future. JOM. 1996, (11): 40~45
    107 H.B. Guo, S.K. Gong and H.B. Xu. Evaluation of Hot-fatigue Behaviors of EB-PVD Gradient Thermal Barrier Coatings. Mater. Sci. Eng.A.2002,A325(1/2):261~269
    108 H.B. Guo, X.F. Bi, S.K. Gong and H.B. Xu. Microstructure Investigation on Gradient Porous Thermal Barrier Coating Prepared by EB-PVD. Scripta Materialia, 2001, 44(4): 683~687
    109 V.K. Tolpygo, D.R. Clarke, K.S. Murphy. Oxidation-induced Failure of EB-PVD Thermal Barrier Coatings. Surf. Coat. Tech. 2001,146/147:124~131
    110 田民波, 刘德令. 薄膜科学技术手册(上册). 机械工业出版社, 1991:31-53
    111 范玉殿主编. 电子束和离子束加工. 机械工业出版社, 1989: 21-35
    112 R.F. Bunshah, R. Nimmagadda, H.J. Doerr, Structure and Property Relationships in Microlaminate Ni-Cu and Fe-Cu Condensates. Thin Solid Film. 1980, 72(1/2): 261~275
    113 B. A. Movchen, Marinski G. S. Gradient Protective Coatings of Different Application Produced by EB-PVD. Surface & Coatings Technology. 1998, 100/101(1/3): 309~315
    114 宫声凯, 邓亮. 陶瓷热障涂层制备技术及发展趋势.材料导报.1999,13(6):31~34
    115 胡汉启. 金属凝固原理.机械工业出版社, 1991:184~190
    116 雷明凯. 高温氧化防护涂层寿命预测的基础理论问题. 腐蚀科学与防护技术. 2005, 17(1): 12-14.
    117 A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser and W.J. Quadakkers. Effect of Surface Condition on the Oxidation Behaviour of MCrAlY Coatings. Surface and Coatings Technology. 2006, 201(7): 3824-3828.
    118 Alam, D.K. Das and Z. Cyclic Oxidation Behaviour of Aluminide Coatings on Ti-Base Alloy IMI-834 at 750°C. Surface and Coatings Technology. 2006, 201(6): 3406-3414.
    119 G. Bamba, Y. Wouters, A. Galerie, F. Charlot and A. Dellali. Thermal Oxidation Kinetics and Oxide Scale Adhesion of Fe–15Cr Alloys as a Function of Their Silicon Content. Acta Materialia. 2006, 54(15): 3917-3922.
    120 Li Jian, Pu Jian, Hua Bing and Guangyuan Xie. Oxidation Kinetics of Haynes
    230 Alloy in Air at Temperatures Between 650 and 850°C. Journal of Power Sources. 2006, 159(1): 641-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700