用户名: 密码: 验证码:
钛合金表面规则微形态对成纤维细胞生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金(Titanium alloys)材料以其良好的生物相容性、机械性能、耐腐蚀性等在矫形外科和毗邻学科中得到广泛应用。目前商业用钛合金材料存在两个突出问题:其一是材料表面与骨组织或软组织界面难以充分整合的问题;其二是材料弹性模量较高产生应力遮挡的问题。为解决界面问题而进行表面改性是提高材料生物相容性的一种可靠方法,已有研究显示,经表面理化改性后钛合金材料植入物更易与骨组织、软组织有效整合,其中表面形态学改性因其突出的接触导向作用和表面稳定性而被广泛关注;材料弹性模量的改进则需制作工艺的提高。目前国内外尚未有在钛合金表面进行规则微形态改性处理后观察组织细胞相容性的实验研究报道。本研究拟通过观察兔腱膜成纤维细胞在不同微形态钛合金表面生物学行为的不同表现,探讨钛合金材料表面规则微形态与机体软组织早期整合的机制。
     1.兔腱膜成纤维细胞的培养、纯化及其生长特性的研究
     目的建立一种获得高纯度成纤维细胞的简便可靠的培养方法,研究其体外实验条件下的生长及增殖特点。方法采用组织块法培养原代兔跟腱腱膜成纤维细胞并纯化、传代后,观察细胞的生长状态及形态,绘制生长曲线并计算细胞倍增时间。结果通过该方法可获得的纯度高、性状稳定、增殖能力强的成纤维细胞。结论组织块培养法是一种简便、可行的培养方法,能够为成纤维细胞的相关研究提供稳定可靠的种子细胞来源。
     2.钛合金材料表面规则微形态对体外兔成纤维细胞生物学行为影响的研究
     目的通过体外细胞实验,评价不同表面微形态钛合金对兔腱膜成纤维细胞生物学行为及软组织整合的影响。方法在钛金属试片上制备4种表面微观形态:光滑(Smooth),喷砂(Sandblast),微沟嵴(Microgroove)和螺纹(Thread)。进行体外实验,比较4种表面形态对成纤维细胞增殖和贴附的影响:通过MTT比色法、扫描电镜等技术,观察细胞在不同微形态钛合金表面的增殖和贴附状况。结果腱膜成纤维细胞在光滑组、喷砂组、微沟嵴组、螺纹组表面增殖的光吸收值均数分布有规律,两两比较大都有统计学意义(P<0.05);扫描电镜下观察,光滑对照组表面细胞贴附无明显定向性,不规则的喷砂表面细胞的贴附无规律性,而两种规则微形态表面细胞贴附均按照材料纹理走行的方向贴附,4组样本表面细胞的生长均大致呈长梭形,喷砂表面的细胞表现为部分不规则,细胞间连接丰富,高倍镜下实验组均可见微绒毛清晰的细胞。结论钛合金的微形态表面处理比光滑表面更利于动物成纤维细胞的增殖和附着,喷砂表面细胞增殖最快但细胞贴附杂乱,而规则微沟嵴的表面细胞增殖较快且细胞贴附规律,更适合于软组织生理功能的需求。
Titanium alloys have been widely used in orthopedic and adjacent subjects because of their favourable biocompatibility, mechanical funcation and corrosion resistance. At present,there are two prodominant problems exist in commercial titanium alloys: one of them is the difficulty of effective integrate between the interface of biomatierals and bone or soft tissues;the other is the stress shield created by the high elastic modulus of implants.Reshaping the suface to improve the biocompatibility of implants is a reliable method in order to solve the interface problem, sudies have showed that the titanium alloy implants treated with surface reshaping would be good to integrate with bone and soft tissues, among these methods surface morphology reshaping was widely concerned for it’s excellent contact guidance effect and surface stability. Certainly we should improve our manufactural technical to upgrade the modulus of biomaterials. There is no report of histiocyte compatibility reseaches about the titanium alloys with regular microtopographied surface.Our study plans to observe the Effect of titanium alloy’s different surface microtopography on the biological behavior of rabbit fibroblast,and investigate the early integrate mechanism of these alloy’s regular surface microtopography with soft tissues.
     1. The study about the culture,puration and growth character of rabbit lacertus fibroblast
     Objective Finding a convenient and reliable cultivation to obtain pure fibroblasts, and study their character of growth and proliferation in vitro. Methods Cultured by methods of explant and passaged after purition, rabbit lacertus fibroblast’s growth condition and cell morphous were observed,growth curve was drew and the cell’s doubling time was calculated. Results By methods of explant, stable and pure fibroblasts with high reproductive activity were obtained. Conclusion Explant is a convenient and feasible method for cell culture,by this mean we can get enough seeds of fibroblast to afford the correlate research.
     2. Effect of titanium alloy’s ragular surface microtopography on the biological behavior of rabbits’lacertus fibroblast in vitro
     Objective To study the effect of different surface microtopography of titanium alloy on biological behavior and soft tissue integration of the rabbits’lacertus fibroblast. Methods The lacertus fibroblasts of Achilles tendon of rabbits were cultured and inoculated on the surface of smooth control group and sand blast、microgrooves、thread Ti-flakes. The cell’s growth ratio and attaching status of different surface were examined by MTT test and scanning electron microscope(SEM).Results The rabbits’lacertus fibroblasts proliferated regularly on the smooth、sand blast、microgrooves and thread surface, their intercomparison were statistical significance(P<0.05),this indicated that different surface microtopography had different effect on cell’s proliferation; By the observation of SEM ,the cells had not obvious directivity on smooth surface,they attached irregular on sand blast surface but oriented regularly along the texture of the other two group of samples. Cells were almost shuttle-like on the four kind of surface except for a part of irregular cells on sand blast surface, and there were plentiful cell-cell junctions. Under high power lens ,we could find cells with limpid microvillus in experiment samples. Conclusion The microtopography surface of titanium alloy was suitable for proliferation and adherence of fibroblasts of rabbit, cells proliferated the fastest on the sand blast surface but their attachment were disordered,however, the regular microgrooved surface was more suitable for the requirement of the soft tissues’physiological function because of the cell’s fast proliferation and regular attachment.
引文
1. 于振涛,周廉,王克光等.生物医用 β 型钛合金的设计与开发.稀有金 属快报,2004,23(1):5-10.
    2. Wolke JG, van der Waerden JP,et al. In vivo dissolution behavior of various RF magnetron-sputtered Ca-P coatings on roughened titanium implants. Biomaterials. 2003 Jul;24(15):2623-29.
    3. Park BS, Heo SJ, Kim CS, et al. Effects of adhesion molecules on the behavior of osteoblast-like cells and normal human fibroblasts on different titanium surfaces.J Biomed Mater Res A. 2005 Sep 15;74(4):640-51.
    4. Areva S, Paldan H, Peltola T,et al. Use of sol-gel-derived titania coating for direct soft tissue attachment.J Biomed Mater Res A. 2004 Aug 1;70(2):169-78.
    5. 姜红江,王玉林.医用钛合金的表面改性.生物骨科材料与临床研究,2005,2(4):28-30.
    6. Czarnowska E, Wierzchon T,et al. Improvement of titanium alloy for biomedical applications by nitriding and carbonitriding processes under glow discharge conditions.J Mater Sci Mater Med. 2000 Feb;11(2):73-81.
    7. Oates T W,Maller SC,West J,et al.Human Gingival Fibroblast Integrin Subunit Expression on Titanium Implant Surfaces. J Periodontol.2005 Oct;76(10):1743-1750.
    8. Jain R,Von Recum AF.Fibroblast attachment to smooth and microtextured PET and thin cp-Ti films. J Biomed Mater Res A. 2004 Feb 1;68(2):296-304.
    9. Jain R,Von Recum AF.Effect of titanium surface texture on the cell-biomaterial interface. J Invest Surg. 2003 Sep-Oct;16(5):263-73.
    10. Silvia Spriano,Michela Bosetti, et al.Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. Spariano S, Bosetti M, et al.Biomaterials.2005 Apr; 26(11):1219-29.
    11. Abrahamsson I, Zitzmann NU, et al. Bone and soft tissue integration to titanium implants with different surface topography: an experimental study in the dog.Int J Oral Maxillofac Implants. 2001 May-Jun;16(3):323-32.
    12. Shtansky DV, Gloushankova NA, Sheveiko AN, et al.Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications. Biomaterials. 2005;26(16):2909.
    13. Jan Eirik Ellingsen, Peter Thomsen, S. Petter Lyngstadaas. Advances in dental implant materials and tissue regeneration. Periodontol 2000. 2006;41(1):136.
    14. Harris LG, Patterson LM, Bacon C,et al. Assessment of the cytocompatibility of different coated titanium surfaces to fibroblasts and osteoblasts. J Biomed Mater Res A. 2005 ;73(1):12.
    15. 赵永康,姚阳,张力等.Ti-Nb-Zr-Sn 系合金对牙龈成纤维细胞生物学行为的影响.中国医科大学学报,2005,6(34):544-546.
    16. 曾晟宇,赵乃勤,崔振铎等.金属生物材料表面改性研究的进展.材料保护.2000 Jan;33(1):5-8.
    17. 李青,王华,张立新.人工关节用金属材料的表面处理.中国医疗器械杂志.2002;26(1):44-47.
    18. 邓迟,李秀芬,邓敏等.生物材料表面改性的研究进展.乐山师范学院学报.2004 May;19(5):78-81.
    19. 康浩方,冯颖芳.钛合金植入物材料的表面改性研究进展.钛工业进展.2003 Mar;20(4-5):53-55.
    20. Ram I. Sharma, Marian Pereira, Jean E. Schwarzbauer, et al. Albumin-derived nanocarriers: Substrates for enhanced cell adhesive ligand display and cell motility. Biomaterials. 27 (2006) 3589–3598.
    21. 温广明.成纤维细胞的生物学特性及其成骨作用的研究进展.中国临床解剖学杂志.2000;18(1):79-81.
    22. Eisenbarth E,Meyle J,Nachtigall W,et al.Influence of the surface structure of titanium materials on the adhesion of fibroblasts.Biomaterials.1996 Jun; 17(14): 1399-1403.
    23. 张涌泉,郭征.钛金属材料表面微观形态对成骨细胞的影响. 生物骨科材 料与临床研究,2005,2(5):23-25.
    24. Sammons RL, Lumbikanonda N, Gross M, Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study. Clin Oral Implants Res. 2005 Dec;16(6):657-666.
    25. Frenkel SR, Simon J, Alexander H, et al. Osseointegration on metallic implant surfaces: effects of microgeometry and growth factor treatment. J Biomed Mater Res. 2002;63(6):706-713.
    26. Groessner-Schreiber B, Neubert A,et,al. Fibroblast growth on surface-modified dental implants: an in vitro study. J Biomed Mater Res A. 2003 Mar 15; 64(4):591-599.
    27. Citeau A, Guicheux J, Vinatier C, et al.In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials. 2005 Jan;26(2):157-165.
    28. 战德松,赵宝红,田维明等.RGD 修饰纯钛表面对人牙龈成纤维细胞生物学行为的影响.材料研究学报,2005,19(3):320-324.
    29. Brunette DM, Chehroudi B. The effects of the surface topography ofmicromachined titanium substrata on cell behavior in vitro and in vivo. J Biomech Eng. 1999 Feb;121(1):49-57.
    30. Ohara PT, Buck RC. Contact guidance in vitro. A light, transmission,and scanning electron microscopic study. Exp Cell Res.1979;121:235–249.
    31. Brunette DM. Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions. Exp Cell Res.1986;164:11–26.
    32. Picha GJ, Drake RF. Pillared-surface microtexture and soft-tissue implants: effect of implant site and fixation. J Biomed Mater Res.1996;30:305–312.
    33. von Recum AF, Van Kooten TG. The influence of micro-topography on cellular response and the implications for silicone implants.J Biomater Sci Polym Ed. 1995;7:181–198.
    34. Von Recum AF, Shannon CE, Cannon CE, et al. Surface roughness, porosity, and texture as modifiers of cellular adhesion. Tiss Eng. 1996;2:241–253.
    35. Singhvi R, Stephanopoulos G,Wang DIC. Review: effects of substratum morphology on cell physiology. Biotechnol Bioeng.1994;43:764–771.
    36. Curtis ASG,Wilkinson C. Topographical control of cells. Biomaterials. 1997; 18:1573–1583.
    37. Curtis ASG, Clark P. The effects of topographic and mechanical properties of materials on cell behavior. Crit Rev Biocomp.1990;5:343–362.
    38. Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell.1997;88:39–48.
    39. Janmey PA. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 1998;78:763–781.
    40. Bigerelle M.Anselme K,Noel B,et al.Improvement in the morphology of Ti-based surface:a new process to increase in vitro human osteoblast response.Biomaterial 2002;23:1563-1577.
    41. Hacking SA,EJ Harvey,M Tanzer,et al.Acid-etched microtexture for enhancement of bone growth into porous-coated implants.J Bone Jiont Surg [Br] 2003;85-B:1182-1189.
    42. Engqvist H,Schultz-Walz JE,Loof J,et al.Chemical and biological intergration of a mouldable bioactive ceramic material capable of forming apatite in vivo in teeth. Biomaterials. 2004 Jun;25(14):2781-2787.
    43. 司徒镇强,吴军正,主编.细胞培养.修订版.西安:世界图书出版西安公 司,2004:160-163.
    44. X. F. Walboomers, J. A. Jansen. Cell and tissue behavior micro-grooved surfaces. Odontology.2001;89(1):2.
    45. Dunn GA, Brown, AF. Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J Cell Sci 1986; 83: 313–340.
    46. Oakley C, Brunette DM. The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. Journal of Cell Science 106, 343-354 (1993).
    47. Oakley C, Brunette DM.Topographic compensation: guidance and directed locomotion of fibroblasts on grooved micromachined substrata in the absence of microtubules. Cell Motil Cytoskeleton.1995;31:45–58.
    48. Oakley C, Jaeger NA, Brunette DM. Sensitivity of fibroblasts and their cytoskeletons to substratum topographies: topographic guidance and topographic compensation by micromachined grooves of different dimensions. Exp Cell Res. 1997;234:413–424.
    49. Zhao G, Schwartz Z, Wieland M, et al. High surface energy enhances cell response to titanium substrate microstructure.J Biomed Mater Res A. 2005 Jul 1;74(1):49-58.
    50. XF Walboomers, HJ Croes, LA Ginsel, et al. Contact guidance of rat fibroblasts on various implant materials. J Biomed Mater Res, November 1, 1999; 47(2): 204-212.
    51. Monsees TK, Barth K, Tippelt S, et al. Effects of Different Titanium Alloys and Nanosize Surface Patterning on Adhesion, Differentiation,and Orientation of Osteoblast-Like Cells. Cells Tissues Organs. 2005; 180(2): 81-95.
    52. Eisenbarth E, Linez P, Biehl V, et al. Cell orientation and cytoskeleton organisation on ground titanium surfaces. Biomol Eng. 2002 Aug;19(2-6):233-237.
    53. Hamdan M, Blanco L, Khraisat A, et al. Influence of titanium surface charge on fibroblast adhesion. Clin Implant Dent Relat Res. 2006; 8(1): 32-38.
    54. Hao YL, Li SJ, Sun SY, Zheng CY, Hu QM, Yang R. Super-elastic titanium alloy with unstable plastic deformation. Applied Physics Letter. 2005; 87, 091906.
    55. Nazzal A, Lozano-Calderon S, Jupiter JB, et al. A histologic analysis of the effects of stainless steel and titanium implants adjacent to tendons: an experimental rabbit study. J Hand Surg [Am]. 2006;31(7):1123.
    56. Bickels J, Wittig JC, Kollender Y, et al. Distal femur resection with endoprosthetic reconstruction: a long-term followup study. Clin Orthop Relat Res. 2002;(400):225-235.
    57. Dana R. Swalla and Richard W. Neu. Fretting damage assessment of titanium alloys using orientation imaging microscopy . Tribology International, 2006;39(10): 1016.
    58. L. Scheideler, J. Geis-Gerstorfer, D. Kern, et al. Investigation of cell reactions to microstructured implant surfaces. Materials Science andEngineering. 2003 ;23(3): 455.
    59. 成令忠,钟翠平,蔡文琴,主编.现代组织学.上海科学技术文献出版社,2003:79.
    60. 刘献祥,尉禹,王志彬等,主编.骨伤科生物力学研究.北京科学技术出版社.2006:111-128.
    61. Anke Eckardt , Harold M , Aberman, et al.Biological fixation of hydroxyapatite-coated versus grit-blasted titanium hip stems: a canine study. Arch Orthop Trauma Surg 2003;123(1):28–35.
    62. Ye-Yeon won, Lawrencw D. Dorr, Zhinian Wan. Comparison of Proximal Porous-Coated and Grit-Blasted Surfaces of Hydroxyapatite-Coated Stems. The Journal of Bone and Joint Surgery.2004;86 (1):124-128.
    63. C. Wirth, V. Comte, C. Lagneau, et al. Nitinol surface roughness modulates in vitro cell response: a comparison between fibroblasts and osteoblasts . Materials Science and Engineering, 2005; 25(1):
    64. Schuler M, Owen GR, Hamilton DW, et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials. 2006;27(21):4003.
    65. Abrahamsson I, Zitzmann NU, Berglundh T, et al. The mucosal attachment to titanium implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol. 2002;29(5):448.
    66. Spriano S, Bosetti M, Bronzoni M, et al. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. Biomaterials. 2005;26(11):1219.
    67. L. Ponsonnet, K. Reybier, N. Jaffrezic, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour . Materials Science and Engineering. 2003; 23(4): 551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700