用户名: 密码: 验证码:
岩石拉、压蠕变特性研究及其在地下大空间洞室施工控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石的蠕变是岩石类材料重要的工程特性,是研究岩石流变力学最为重要的内容之一。在多数情况下,岩石工程特别是大型地下洞室因开挖施工引起的围岩变形失稳破坏与岩石的蠕变有着密切的联系,由岩石蠕变引起的实际工程问题已得到国内外众多学者的广泛关注,并取得了很大的进展,特别是在利用实测试验资料反演蠕变模型的参数,进而应用到工程预测等领域。但是岩石蠕变理论、蠕变试验以及蠕变特性工程应用等方面至今尚未形成完整的理论体系,特别是岩石在拉、压应力条件下的蠕变特性与本构模型仍是研究的重点和难点问题。为此,本文在研究现有岩石蠕变特性研究成果的基础上,采用试验研究、理论分析与数值模拟计算相结合的方法,基于岩石单轴直接拉伸蠕变、单轴压缩蠕变以及三轴压缩蠕变试验,运用岩石非线性理论,探讨了岩石的蠕变特性,建立了岩石非线性拉、压蠕变模型,并将岩石蠕变特性的研究成果应用到地下大空间洞室的施工控制当中。
     论文的主要研究工作如下:
     ①设计加工了岩石单轴直接拉伸试验仪,应用该试验仪和岩石材料刚性伺服试验机(MTS)对红砂岩的单轴拉伸、单轴压缩以及三轴压缩等瞬时力学特性进行了研究,分析了岩石瞬时拉、压变形规律,获得了拉、压作用下的瞬时力学参数,探讨了压缩作用下岩石屈服强度,比较了两种不同尺寸标准试件单轴压缩作用下的强度特性,分析了不同力学响应机制下岩石瞬时破坏的机理。
     ②采用自行设计加工的岩石挂重型直接拉伸蠕变仪以及实验室岩石全自动流变伺服仪,对红砂岩进行了单轴直接拉伸、单轴压缩以及三轴压缩蠕变试验,研究单轴直接作用下岩石轴向应变以及侧向应变随时间变化的规律以及压缩条件下岩石轴向变形随时间变化的规律,探讨了各力学响应机制下蠕变速率的变化趋势。为更好的认识岩石拉、压蠕变机理,对红砂岩蠕变进行了短时、长时以及卸荷蠕变特性试验分析,得到了拉伸作用下岩石的长期强度变化规律。
     ③基于岩石拉、压蠕变试验结果,比较H-K模型与Burgers蠕变模型得出Burgers蠕变模型能更好地反映荷载小于岩石长期强度(短时压缩蠕变为屈服强度)时的岩石蠕变特性。基于岩石拉、压作用下加速蠕变试验结果,推导了可表示岩石加速蠕变特性的二元件粘塑性模型的非线性本构,将该模型与Burgers蠕变模型串联建立了一个新的岩石非线性粘弹塑性拉、压蠕变模型。介绍了该非线性粘弹塑性蠕变模型在拉、压应力状态下的蠕变特征,并采用基于MATLAB程序的quasi-Newton算法(BFGS算法)对红砂岩拉、压状态下的蠕变全过程试验曲线进行了参数的直接辨识。
     ④基于拉格朗日有限差分理论,推导了非线性粘弹塑性拉、压蠕变模型的有限差分形式,以Mohr-Coulomb为屈服准则并结合FLAC3D良好的二次开发环境对构建的非线性粘弹塑性拉、压蠕变模型的进行了二次开发研究。通过拉、压蠕变试验与该模型模拟试验对比验证了模型二次开发的正确性,并结合工程实例现场监测、Cvisc模型模拟计算、Mohr-Coulomb本构模拟计算与该模型计算结果对比验证了非线性粘弹塑性拉、压蠕变模型的工程适用性。
     ⑤将非线性粘弹塑性拉、压蠕变模型应用于深圳市某地三连拱地下水工泵站蓄水池施工控制当中,讨论了最佳开挖支护方案,分析了最佳开挖方案下施工过程中围岩变形稳定性和支护结构的变形及受力特性,探讨了最优的施工方案以及最佳方案下的合理支护时机,为岩石工程的长期稳定与安全性提供了合理的评价与建议。
Creep is one of the most important mechanical properties to the study the rock rheology in rock mass material. In most cases, the deformation instability and failure of rock engineering is closely related to the rock creep behaviors, the practical engineering problem that caused by creep of rock has been widely concerned by many scholars at home and abroad, and achieved great progress, particularly in the that used by measured test data and then apply to the project forecast. But the creep theory, creep test instruments and the creep properties of engineering applications today is not very perfect, and construction of many major projects have still posed a serious challenge for study of rock creep, especially in rock rheological properties that under tension and compression and constitutive model still is the key study point and hot issue.
     In view of this, based on the well known research achievements this thesis will use a combination method including experimental research, theoretical analysis and numerical simulation. Based on uniaxial direct tensile creep test, uniaxial compression and triaxial compression creep tests; the non-linear theory was used to study the creep characteristics of the rock and established a non-linear tensile and compressive creep model. Results of creep mechanical properties were applied to the construction control of large underground arch cavern.
     In this dissertation, the main investigation work foruses on the following:
     ①Designed and fabricated a rock direct tensile testing device, based on this device and rock materials serving compression machine, the uniaxial direct tension, uniaxial compression and triaxial compression short-term mechanical characteristics of red sandstone were studied, analysis of the law of rock deformation under direct tensile and compressive, discussed the yield strength under compression, compares uniaxial compression strength properties of two kinds of different measurement standard specimens, the short-term mechanical parameters of rocks under tension and compression has been obtained, finally, the mechanical short-term failure mechanism under corresponding mechanisms was analyzed.
     ②The self-designed and developed rock hang weight type directly creep instrument and laboratory rock rheology automatic servo device were used to test the direct uniaxial tension, uniaxial compression and triaxial compression creep of red sandstone. The law of axial strain and lateral strain under direct uniaxial tension and the axial deformation of rocks under compression were studied. The creep rate under corresponding mechanism was also discussed. To better understand the mechanism of rock tensile and compressive creep, the creep was short-term, long-term and unloading creep behaviors of red sandstone were analysis, obtained t the long-term tensile strength.
     ③Based on the rock tension and compression creep test results this dissertation compared with HK model and Burgers creep model and obtained that Burgers creep model can reflect rock creep characteristics which load is less than the long-term strength of rock (short-term creep compression is yield strength). And on the basis of the rock tension and compression accelerated creep results it was deduced two elements nonlinear visco-plastic constitutive mode that can be better reflect accelerated creep of rock, the model and the Burgers creep model series established a nonlinear visco-elastic plastic creep model. The creep behaviors of the nonlinear visco-elastic plastic creep mode in tension and compression stress was studied, and red sandstone under tension and compression creep test curve parameters were directly identified by MATLAB program which based on quasi-Newton algorithm (BFGS algorithm).
     ④Based on Lagrangian finite difference theory this dissertation derived the finite difference form of nonlinear visco-elastic plastic creep the model which in tension and compression. The Mohr-Coulomb yield criterion was used to the establishment a complex non-linear visco-elastic plastic model in tension and compression, and combined with secondary development environment of FLAC3D the composite model was secondary developed. By tension and compression creep test and composite model to simulate experimental verified the correctness of the model secondary development. Later, comparison with monitoring results, the Cvisc model simulation calculate results and Mohr-Coulomb constitutive model calculate results of an engineering example, the applicability of the nonlinear visco-elastic plastic model was verified.
     ⑤The composite tensile and compressive nonlinear visco-elastic plastic creep model is applied to construction control of the three-arch cavern of groundwater reservoir pumping stations that located in a certain place in Shenzhen, the stability of surrounding rock deformation during excavation and supporting structure deformation and carrying capability were analyzed. Finally, the long-term stability of rock engineering under complex stress state is predicted, which brings forward reasonable evaluation and suggestion for long-term stability and safety of rock engineering.
引文
[1]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999,12.
    [2]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001.
    [3]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990.
    [4] Martin P.J. Schopfer, Gemold Zulauf. Strain-dependent rheology and the memory of plasticine [J]. Tectonophysics, 2002, 354(1/2): 85-99.
    [5] Kazuhiko Miura, Yoshiaki Okui, Hideyuki Horii. Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system [J]. Mechanics of Materials, 2003, 35(3/6): 587-601.
    [6] J.Sli2owski, L. Lankof. Salt-mudstones and rock-salt suitabilities for radioactive-waste storage systems: rheological properties [J]. Applied Energy, 2003, 75(1/2): 137-144.
    [7]陈宗基.根据流变学与地球动力学观点研究新奥法[J].岩石力学与工程学报, 1988, 7(2): 97-106.
    [8] Maranini E, Brignoli M.Creep behaviour of a weak rock: experimental characterization [J].Int. J. Rock. Mech. Min.Sci., 1999, 36(1): 127-138.
    [9]孙钧.迎接新世纪的岩石力学若干进展[A].第五届全国岩石力学与工程大会论文集[C].上海:中国科学技术出版社, 1998:1-10.
    [10]孙钧.岩石力学在我国的若干进展[J].西部探矿工程,1999,11(l):l-5.
    [11] Sun Jun, Wang Sijing. Rock mechanies and roek engineering in China:developments and current state-of-the-art[J]. Int.J.RockMeeh.Min.Sei., 2000(37):447-465.
    [12]阎岩,王思敬,王恩志.基于西原模型的变参数蠕变方程[J].岩土力学,2010,31(10):3025-3035.
    [13]刘保国,崔少东.泥岩蠕变损伤试验研究[J].岩石力学与工程学报, 2010, 29(10): 2127-2133.
    [14] Yong Ye, Xinhua Yang, Chuanyao Chen. Experimental researches on visco-elastoplastic constitutive model of asphalt mastic [J]. Construction and Building Materials 2009 (23):3161–3165.
    [15] E. Maranini, M. Brignoli. Creep behaviour of a weak rock: experimental characterization [J]. International Journal of Rock Mechanics and Mining Sciences 1999 (36):127-138.
    [16]周小平,张永兴,朱可善.单轴拉伸条件下岩石本构理论研究[J].岩土力学,2003,24(增2):143-147.
    [17]王来贵,王泳嘉.岩石拉伸流变失稳模型及其应用[J].矿山压力与顶板管理,1993,3(4):3-6.
    [18]范厚斌,樊志华,陆耀忠.基于层叠模型的岩土材料流变本构关系识别[J].岩石力学与工程学报, 2005, 24(5): 768-773.
    [19] Griggs,D.T. Creep of rocks[J]. Journal of Geology.1939,47:225-251.
    [20] Chunhe Yang, J.J.K. Daemen, Jian-Hua Yin. Experimental investigation of creep behavior of salt rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 1999,36:233-242.
    [21] Pierre Berest, Pierre Antoine Blumb, Jean Pierre Charpentier, Hakim Gharbi, Frederic Vales. Very slow creep tests on rock samples [J]. International Journal of Rock Mechanics & Mining Sciences, 2005,42: 569–576.
    [22] A. Rouabhi, M.Tijani, A. Rejeb. Triaxial behaviour of transversely isotropic materials: Application to sedimentary rocks [J]. Int. J. Numer. Anal. Meth. Geomech. 2007, 31:1517–1535.
    [23] YANG Shengqi, JIANG Yuzhou. Triaxial mechanical creep behavior of sandstone[J]. Mining Science and Technology, 2010,20:0339–0349.
    [24]徐卫亚,杨圣奇,杨松林等.绿片岩三轴流变力学特性的研究(I):试验结果[J].岩土力学,2005,26(4):531-537.
    [25]熊良宵,杨林德,张尧.绿片岩的单轴压缩各向异性蠕变试验研究[J].同济大学学报(自然科学版),2010,38(11):1568-1573.
    [26] Fukui.Katsunori, Okubo.Seisuke et al. Creep behavior of rock under uniaxial compression [J]. Shigen to sozai,1995, 37(7): 521-526.
    [27]万玲,彭向和,杨春和,郭开元.泥岩蠕变行为的实验研究及其描述[J].岩土力学,2005,26(6):924-928.
    [28]张永安,李峰.红层泥岩的剪切蠕变试验研究[J].工程勘察,2010,4:23-26.
    [29] Li Yongsheng, XiaCaichu.Time-dependent tests on intact rocks in uniaxial compression[J]. Int.J.Rock Mech. Mine Sci. and Geomech. Abstr 2000,37:467-475.
    [30]李良权,王伟.粉砂质泥岩流变力学参数的试验研究[J].三峡大学学报(自然科学版),2009,31(6):45-49.
    [31]梁玉雷,冯夏庭,周辉,房敬年.温度周期作用下大理岩三轴蠕变试验与理论模型研究[J].岩土力学, 2010, 31(10): 3107-3113.
    [32]陈卫忠,谭贤君,吕森鹏等.深部软岩大型三轴压缩流变试验及本构模型研究[J].岩石力学与工程学报,2009,29(9):1735-1744.
    [33]赵永辉,何之民,沈明荣.润扬大桥北锚旋岩石流变特性的试验研究[J].岩土力学,2003, 24(4): 583-586.
    [34]施行觉,赵闯,李成波,温丹.岩石蠕变破裂过程及其响应比变化的实验研究[J].地震学报,2010,32(3): 332-339.
    [18]范厚斌,樊志华,陆耀忠.基于层叠模型的岩土材料流变本构关系识别[J].岩石力学与工程学报, 2005, 24(5): 768-773.
    [19] Griggs,D.T. Creep of rocks[J]. Journal of Geology.1939,47:225-251.
    [20] Chunhe Yang, J.J.K. Daemen, Jian-Hua Yin. Experimental investigation of creep behavior of salt rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 1999,36:233-242.
    [21] Pierre Berest, Pierre Antoine Blumb, Jean Pierre Charpentier, Hakim Gharbi, Frederic Vales. Very slow creep tests on rock samples [J]. International Journal of Rock Mechanics & Mining Sciences, 2005,42: 569–576.
    [22] A. Rouabhi, M.Tijani, A. Rejeb. Triaxial behaviour of transversely isotropic materials: Application to sedimentary rocks [J]. Int. J. Numer. Anal. Meth. Geomech. 2007, 31:1517–1535.
    [23] YANG Shengqi, JIANG Yuzhou. Triaxial mechanical creep behavior of sandstone[J]. Mining Science and Technology, 2010,20:0339–0349.
    [24]徐卫亚,杨圣奇,杨松林等.绿片岩三轴流变力学特性的研究(I):试验结果[J].岩土力学,2005,26(4):531-537.
    [25]熊良宵,杨林德,张尧.绿片岩的单轴压缩各向异性蠕变试验研究[J].同济大学学报(自然科学版),2010,38(11):1568-1573.
    [26] Fukui.Katsunori, Okubo.Seisuke et al. Creep behavior of rock under uniaxial compression [J]. Shigen to sozai,1995, 37(7): 521-526.
    [27]万玲,彭向和,杨春和,郭开元.泥岩蠕变行为的实验研究及其描述[J].岩土力学,2005,26(6):924-928.
    [28]张永安,李峰.红层泥岩的剪切蠕变试验研究[J].工程勘察,2010,4:23-26.
    [29] Li Yongsheng, XiaCaichu.Time-dependent tests on intact rocks in uniaxial compression[J]. Int.J.Rock Mech. Mine Sci. and Geomech. Abstr 2000,37:467-475.
    [30]李良权,王伟.粉砂质泥岩流变力学参数的试验研究[J].三峡大学学报(自然科学版),2009,31(6):45-49.
    [31]梁玉雷,冯夏庭,周辉,房敬年.温度周期作用下大理岩三轴蠕变试验与理论模型研究[J].岩土力学, 2010, 31(10): 3107-3113.
    [32]陈卫忠,谭贤君,吕森鹏等.深部软岩大型三轴压缩流变试验及本构模型研究[J].岩石力学与工程学报,2009,29(9):1735-1744.
    [33]赵永辉,何之民,沈明荣.润扬大桥北锚旋岩石流变特性的试验研究[J].岩土力学,2003, 24(4): 583-586.
    [34]施行觉,赵闯,李成波,温丹.岩石蠕变破裂过程及其响应比变化的实验研究[J].地震学报,2010,32(3): 332-339.炭学报,2007,32(12):1264-1268.
    [53]吕培苓,吴开统,焦远碧.岩石蠕变过程中声发射活动的实验研究[J].地震学报, 1991, 13(1): 104 -112.
    [54]王军,曹平,赵延林,林杭.岩石非线性粘滞系数的蠕变数值试验分析[J]矿冶工程,2009,29(5):16-19.
    [55] Sun Jun, Hu Y Y. Time-dependent effects on the tensile strength of saturated granite at Three Gorges Project in China[J]. Int. J. Rock Mech. Mine Sci.,1997, 34:381-381.
    [56] Ito H, Sasajima S. Aten year creep experiment on small rock specimens[J]. Int. Rock Mech.Mine. Sci. and Geomech.Abst.r.,1987,24(2).
    [57]陈有亮,孙钧.岩石的流变断裂特性[J].岩石力学与工程学报,1996, 1996 (15): 323-327.
    [58]陈有亮,孙钧.岩石的蠕变断裂特性分析[J].同济大学学报,1996,24(5):504-508.
    [59]陈有亮,刘涛.岩石流变断裂扩展的力学分析[J].上海大学学报(自然科学版),2000,6(6):491-496.
    [60]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,35(4):480-484.
    [61]周德培.岩石单向拉伸的蠕变特性[J].西南交通大学学报,1988, 69 (3):21-29.
    [62]吴立新,王金庄,孟胜利.煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997,3(3):29-35.
    [63]张向东,李永靖,张树光等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004, 23(10): 1635-1639.
    [64]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版),1999,22(s):99-103.
    [65]宋飞,赵法锁,李亚兰.石膏角砾岩蠕变特性试验研究[J].水文地质工程地质2005,32(3):94-96.
    [66] D.M.Cruden. A technique for estimating the complete creep curve of asub-bituminous coal under uniaxial compression [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1987, 24(4):265-269.
    [67]徐素国,梁卫国,郤保平,赵阳升.钙芒硝盐岩蠕变特性的研究[J].岩石力学与工程学报,2008, 27(增2): 3516-3520.
    [68]余宏明,于怀昌,陈银生.分级加载条件下紫红色泥岩蠕变特性试验研究[J].公路交通科技, 2010, 69(9):67-70.
    [69]刘光廷,胡昱,陈凤岐,等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报, 2004, 23(8): 1237-1241.
    [70]陈文玲,赵法锁.云母石英片岩蠕变模型参数选择研究[J].地球科学与环境学报,2010,32(2):200-204.
    [71]陶波,伍法权,郭改梅,等.西原模型对岩石流变特性的适应性及其参数确定[J] .岩石力学与工程学报,2005 ,24 (17) :3165-3171.
    [72]龚晓南,袁静,益德清.岩土流变模型研究的现状与展望[A]第九届全国结构工程学术会议特邀报告[C].工程力学,2000(增):145-155.
    [73]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1991
    [74]邓雨天.岩石力学的弹塑黏性理论基础[M].北京:煤炭工业出版社,1988
    [75]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001
    [76]刘雄.岩石流变学概论[M].北京:地质出版社,1994
    [77]黄小华,冯夏庭,陈炳瑞.广义黏弹组合模型的等效性及其基本性质[J].力学学报,2010,42(1):65-73.
    [78]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1993
    [79]王怡,王芝银,韩冰.岩石三轴蠕变试验黏弹性解析级参数识别[J].力学与实践, 2008, 30( 4) : 20-23, 43.
    [80]冒海军,杨春和,刘江,等.板岩蠕变特性试验研究与模拟分析[J] .岩石力学与工程学报,2006 ,25 (6) :1204-1209.
    [81]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996,21(5): 498-503.
    [82]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].同济大学学报,1991,19(4):395-401.
    [83]宋德彰,.岩质材料非线性粘塑性蠕变属性的研究[J].同济大学学报,1993,21(1):27-34.
    [84]熊良宵,杨林德,张尧.岩石的非定常Burgers模型[J].中南大学学报(自然科学版), 2010,41(2):680-684.
    [85]王来贵,何峰,刘向峰等.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报, 2004, 23(10): 1640-1642.
    [86]伍国军,陈卫忠,曹俊杰,谭贤君.工程岩体非线性蠕变损伤力学模型及其应用[J].岩石力学与工程学报,2010,29(6):1184-1191.
    [87]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632–634.
    [88]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报,2008 27(4):832-839.
    [89]邓荣贵,周德培,张悼元等.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6): 780-784.
    [90]贾善坡,陈卫忠,杨建平,陈培帅.基于修正Mohr-Coulomb准则的弹塑性本构模型及其数值实施[J].岩土力学, 2010, 31(7): 2051-2058.
    [91]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3): 432-447.
    [92]熊良宵,杨林德.硬脆岩的非线性粘弹塑性流变模型[J].同济大学学报, 2010,38(2): 188-193.
    [93]陈沅江,潘长良,曹平,等.一种软岩流变模型[J] .岩土力学,2003 ,24 (2) :209-215.
    [94]王维忠,尹光志,王登科,秦虎.三轴压缩下突出煤粘弹塑性蠕变模型[J].重庆大学学报,2010 ,33 (1) :99-103.
    [95]宋飞,赵法锁,卢全中.石膏角砾岩流变特性及流变模型研究[J].岩石力学与工程学报.2005, 24(15): 2659-2664.
    [96]佘成学,崔旋.岩石非线性蠕变模型[J].武汉大学学报(工学版),2009,42(1):25-28.
    [97]袁海平,曹平,许万忠,等.岩体粘弹塑性本构关系及改进Burgers蠕变模型[J].岩土工程学报, 2006, 28(6): 796-799.
    [98]余永强,熊芳斌,李华茂.厦门翔安海底隧道开挖围岩应力与位移监测分析[J].施工技术,2010, 39(1):36-37.
    [99]谢强等.特大断面隧道长期运营预警值的研究[J].地下空间与工程学报,2009,5(1):3186-3192.
    [100]沈良帅,贺少辉.复杂环境条件上跨下穿同一既有地铁隧道的变形控制分析及施工方案优化[J].岩石力学与工程学报,2008,27(增1):2893–2900.
    [101]璩继立,许英姿.盾构施工引起的地表横向沉降槽分析[J].岩土力学,2006,27(2):313–316,322.
    [102]黄腾,孙景领,陶建岳,等.地铁隧道结构沉降监测及分析[J].东南大学学报(自然科学版),2006,36(2):262-266.
    [103]戴宏伟,陈仁鹏,陈云敏.地面新施工荷载对临近地铁隧道纵向变形的影响分析研究[J].岩土工程学报,2006,28(3):312-316.
    [104]张成平,张顶立,吴介普,骆建军.暗挖地铁车站下穿既有地铁隧道施工控制[J].中国铁道科学, 2009,(30)1:69-73.
    [105]李东海等.盾构隧道斜交下穿地铁车站的影响与监测研究[J].岩石力学与工程学报, 2009,28(增1):3187–3192.
    [106]杨林德.岩土工程问题的反演理论与工程实践[M],北京:科学出版社, 1999.
    [107]陈秋南,张永兴,任伯帜等.地下洞室地表非线性沉降模型参数确定新方法[J],岩土工程学报,2005,27(1):55-58.
    [108]李晓红,靳晓光,亢会明,卢义玉.隧道位移智能化反分析及其应用[J],地下空间,2001, 21(4): 301-307.
    [109]靳晓光,李晓红,高咒,亢会明.隧道围岩位移的灰色优化模型预测[J].重庆大学学报,2002, 25 (1): 1-5.
    [110]谭冠军.GM (1, 1)模型的背景值构造方法和应用(I)[J].系统工程理论与实践,2000,4:98-103.
    [111]谭冠军.GM (1, 1)模型的背景值构造方法和应用(II)[J].系统工程理论与实践,2000,5:125-128.
    [112]任松,王新胜,姜德义等.隧道长期安全监测及评价模型[J].重庆大学学报, 2009,32(11):1345-1351.
    [113] T. Kimura, R. J. Mair, Centrifugal testing of model tunnels in soft clay[A], Proc. of 10th Int. Conf. Soil Mechanics&Foundation Engineering[C]. Stockholm, Balkema, 1981.
    [114] Dhar B B, Ratan S, Sharma D K, et al. Model study of fracture around underground excavations[J]. Proceedings of the International Symposium on Weak Rock,1981:267-274.
    [115] Atkinson J H, Potts D M. Subsidence above shallow tunnels in soft Ground[J]. J. Geotech. Engrg., ASCE, 1977,103:307-325.
    [116] Cording E J, Hansmire W H, Macpherson H H, et al. Displacement around tunnels in Soils[R]. Report prepared for department of transportation, Urbana: University of Illinois, 1976.
    [117] Potts D M. Behaviours of lined and unlined tunnels in sands[D]. England: Aambridge University, 1976.
    [118] Gutter U, Stoffers U. Investigation of the deformation and collapse behaviour of circular lined tunnels in centrifuge model tests[A]. Centrifuge in Soil Mechanics[C]. Rotterdam: Balkema, 1988:183-186.
    [119] ,Shinichiro Imamura, Toshiyuki Hagiwara, Kenji Mito, et al. Settlement through above a model shield observed in a centrifuge[A]. Centrifuge 98[C].Tokyo, 1998:71-719.
    [120] Wu B R, Chiou S Y, Lee C J, et al. Soil movements around parallel tunnels in soft ground[A]. Centrifuge 98[C].Tokyo, 1988:739-744.
    [121] Toshi Nomoto, Shinichiro Imamura, et al, Shield tunnel construction in centrifuge[J].J.of Geotechnical and Geoenvironmental Engineering[J].1999,125(4):289-299.
    [122] Takao Shimada et al,隧道开挖中的地表下沉模型试验[J].隧道译从,1983(1).
    [123] Kimura T, Takemura J, Hiro-oka A, et al. Stability of unsupported and supported vertical cuts in soft caly[A].Proc 11 th Southwest Asian Geo Cont[C],Singapore,1993:61-70.
    [124] Loh C K, Tan T S, Lee F H. Three-dimensional excavation test[A]. Centrifuge 1998.85-90.
    [125]蒋树解,刘洪洲,鲜学福.大跨度扁坦隧道动态施工的相似模拟与数值分析研究[J].岩石力学与工程学报, 2000,19(5):567-572.
    [126]蒋树屏,黄伦海,宋从军.利用相似模拟方法研究公路隧道施工力学形态[J].岩石力学与工程学报, 2002, 21(5):662-666.
    [127]黄伦海,刘伟,吴梦军.单洞4车道公路隧道开挖模型试验研究[J].公路隧道, 2007.4:10-15.
    [128]黄伦海,蒋树屏.相似模拟研究在环境复杂公路隧道结构施工的应用[J].公路隧道, 2007,4:6-9.
    [129]黄伦海,刘伟,蒋树屏.小净距公路隧道模型试验研究[J].公路隧道, 2007,4:21-25.
    [130]周生国,黄伦海,蒋树屏,刘新荣.黄土连拱隧道施工方法模型试验研究[J].地下空间与工程学报, 2005.1(2):188-191.
    [131]杨秀竹,雷金山,阳军生,苏伟.岩溶区地铁隧道相似模拟试验研究[J].铁道科学与工程学报,2009,6(4):40-45.
    [132]冷伍明等.基槽开挖引起沉管隧道竖井变型的模型试验研究[J].土木工程学报, 2000, 33(4):105-110.
    [133]赵瑜,卢义玉,陈浩.深埋隧道三心拱洞室平面应变模型试验研究[J].土木工程学报, 2010,43(3):68-74.
    [134]刘新荣,郭子红等.交错新建隧道施工力学特性模型试验[J].重庆大学学报, 2010,33 (12):54-59.
    [135]王汉鹏,李术才,张强勇.分岔隧道模型试验与数值模拟超载安全度研究[J].岩石力学与工程学报,1997. VoL 16(2):162-170.
    [136]凌昊,仇文革,孙兵等.双孔盾构隧道近接施工离心模型试验研究[J].岩土力学,2010,31(98): 2849-2853.
    [137] Soliman E, Duddeck H, Ahrens H 2 and 3-D analysis of closely spaced double tunnel[J]. Tunneling and underground space technology, 1993, 8(1): 13-l8.
    [138] Renato E.B.&Kael R.Tunnel design and construction in extremely difficult ground conditions [J]. Tunne1,1998(8):23-31.
    [139] N. Loganathan, H.G. Poulos, Analytical prediction for tunnel induced ground movementsin clays[J]. J. of Geotechnical and Geoenviro- nmental Enginnering, 1998,124(9):846-856.
    [140] Mair R J. Ground movement around shallow tunnels in soft clay[J]. Tunnels and Tunneling, 1982(6):33-38.
    [141]丁文其,袁森林,高小庆等.电力隧道超大直径顶管施工扰动特性研究[J].岩土力学, 2010, 31(9): 2901-2906.
    [142]胡剑兵等.分岔隧道施工三维数值仿真模拟研究[J].公路, 2009,3:193-199.
    [143]郭群,李江腾,赵延林.地下洞室围岩劈裂破坏判据及数值模拟研究[J].中南大学学报(自然科学版), 2010, 41(4): 1535-1539.
    [144]张会刚,姜志玲,章玉伟.深圳地铁隧道邻接施工沉降数值模拟研究[J].中国铁道科学, 2009, 133(10):55-63.
    [145]吴波,刘维宁,索晓明,等.地铁施工近邻桥基加固效果三维数值分析[J].铁道工程程学报,2005(5): 48- 52.
    [146]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社, 1999.
    [147]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社, 1996.
    [148]孙辉,刘新荣,陈晓江等.黄土连拱隧道施工过程的数值模拟和方案优化[J].地下空间与工程学报,2005, 1(5):737-781.
    [149] F. Hage Chehade, I. Shahrour. Numerical analysis of the interaction between twin-tunnels: In?uence of the relative position and construction procedure [J]. Tunnelling and Underground Space Technology, 2008, 23:210 -214.
    [150] C. Carranza-Torres, M. Diederichs. Mechanical analysis of circular liners with particular reference to composite supports. For example, liners consisting of shotcrete and steel sets [J]. Tunnelling and Underground Space Technology, 2009, 24:506-532.
    [151] Galli Cz Grimaldi A, Leonardi A. Three-dimensional modeling of tunnel excavation and lining[J], Computers and Geotechnics,2004, 31:171-183.
    [152] Chungsik Yoo. Performance of multi-faced tunnelling - A 3D numerical investigation [J]. Tunnelling and Underground Space Technology, 2009,24: 562-573.
    [153]王铁男,郝哲. FLAC在地铁隧道数值模拟中的应用[J].沈阳大学学报,2010,22(1):11-14.
    [154]郝哲,王来贵.大跨度公路隧道有限元模拟研究[J].沈阳大学学报,2006, 18(2): 50-53.
    [155] M. Cai. In?uence of stress path on tunnel excavation response - Numerical tool selection and modeling strategy [J]. Tunnelling and Underground Space Technology, 2008,23: 618-628.
    [156]徐林生.财神梁隧道台阶法开挖施工数值模拟研究[J].重庆交通大学学报(自然科学版)2008, 27(4):548-550.
    [157] Karakus M. Appraising the method accounting for 3D tunneling effects in 2D plane strain FE analysis [J]. Tunneling and Underground Space Technology, 2007,22 (1):47-56.
    [158] Denise Bernaud, Samir Maghous, Patrick de Buhan, Eduardo Couto. A numerical approach for design of bolt-supported tunnels regarded as homogenized structures [J], Tunnelling and Underground Space Technology, 2009,24: 533-546.
    [159] Moorak Son, Edward J. Cording. Ground–liner interaction in rock tunneling [J]. Tunnelling and Underground Space Technology, 2007,22: 1-9.
    [160] S.Y. Min, T.K. Kim, J.S. Lee, H.H. Einstein. Design and construction of a road tunnel in Korea including application of the Decision Aids for Tunneling - A case study [J]. Tunnelling and Underground Space Technology, 2008,23: 91-102.
    [161] F. Pellet, M. Roosefid, F. Deleruyelle. On the 3D numerical modelling of the time-dependent development of the damage zone around underground galleries during and after excavation [J]. Tunnelling and Underground Space Technology, 2009, 24: 665-674.
    [162]周德培、毛坚强,隧道流变特性的模型试验与分析计算[A].计算机方法在岩石力学及工程的应用国际学术讨论会论文集[C],西安: 1993, 541-549.
    [163] Sulem J,Panet M,Guenot A,An Analytical Solution for time-dependent Displacement in A Circular Tunnel,Int.J.Rock Mcch.Sci. &Geomech.Abstr.1987,24(3):155-164.
    [164]郭小红,梁巍,于洪丹,曹俊杰.跨海峡海底隧道风化槽围岩力学特性研究[J].岩土力学, 2010, 31(12): 3778-3783.
    [165]朱杰兵.高应力下岩石卸荷及其流变特性研究[D].中国科学院研究生院(武汉岩土力学研究所)博士论文,2009.
    [166] Yoshida H,Horii H.A. Micromechanics-based model for creep behavior of rock[J]. Appl.Mech. Rev., 1992,45(8):294-303.
    [167]戴永浩,陈卫忠,伍国军,周喜德.非饱和岩体弹塑性损伤模型研究与应用[J].岩石力学与工程学报, 2008,27(4):728-735.
    [168]王俊光,梁冰.油页岩地下开采巷道围岩的流变特性及工程应用[J].防灾减灾工程学报,2010,30(6):685-690.
    [169]蓝航,姚建国,张华兴,徐乃忠.基于FLAC~(3D)的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报, 2008,27(3):572-579.
    [170] Boukharov G N,Chanda M W,Boukharov N G.The three processes of brittle crystalline rock creep[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr.,1995,32(4):325-335.
    [171]陈卫忠,王者超,伍国军,杨建平,张保平.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报, 2007,26(3):467-472.
    [172]姜永东,鲜学福,杨春和.巷道岩体蠕变断裂失稳区预测研究[J].岩土工程学报, 2008,30(6):906-910.
    [173]朱素平,周楚良.地下圆形隧道围岩稳定性的粘弹性力学分析[J].同济大学学报,1994,23(3):329-333.
    [174] Drozdov A D,Kolmanovskii V B.Stability in viscoelasticity,North-Holland Series in Applied Mathematics and Mechanics[J],North-Holland,1994.
    [175] Cristescu N D.A general constitutive equation for transient and stationary creep of rock salt. Int.J.Rock Mech.Min.Sci.Geomech[J].1993,30(2):125-140.
    [176] Zhang xiaochun,Yang Tingqing,A time-dependent study for rockburst in coal mines[C],In: The 1st International Conference on Advance Structural Engineering&Mechanics , Seoul, Korea August,1999,l0-13.
    [177]张晓春,杨挺青.岩石板梁结构时间相关变形的稳定性分析[J],武汉交通大学学报,1999,32(2):158-160.
    [178]谢锋,蒋树屏,李建军.蠕变围岩隧道二次衬砌支护时间的研究[J].地下空间与工程学报,2006,2(5):805-808.
    [179]王中文,方建勤,夏才初等.考虑围岩蠕变特性的隧道二衬合理支护时机确定方法[J].岩石力学与工程学报2010,29(增1):3241-3246.
    [180]黄湖星,徐林生.隧道损伤围岩的蠕变特性研究[J].公路隧道, 2008,61(1):4-6.
    [181]王永刚,任伟中.软弱围岩的蠕变损伤特性及最佳支护时间[J].中国铁道科学, 2007,28(1):50-55.
    [182]蒋呈州,徐卫亚,王瑞红等.水电站大型地下洞室长期稳定性数值分析[J].岩土力学, 2008,29(增):52-58.
    [183]刘刚,靖洪文.深井软岩巷道变形和加固对策[J].矿冶工程,2005,25(3):5-7.
    [184]王波,高延法,王军.流变扰动效应引起围岩应力场演变规律分析[J].煤炭学报,2010,35(9):1446-1450.
    [185]任松,姜德义,杨春和,藤宏伟.共和隧道开裂段页岩蠕变本构试验及离散元数值模拟研究[J].岩土力学,31(2):416-422.
    [186]吴德伦,黄质宏,赵明阶.岩石力学[M].重庆:重庆大学出版社,2002:73.
    [187]李地元,李夕兵,LI C CHARLIE. 2种岩石直接拉压作用下的力学性能试验研究[J].岩石力学与工程学报,2010,29(3):624-632.
    [188]余贤斌等.岩石直接拉伸与压缩变形的试验研究[J].岩土力学,2008,29(1):18-22.
    [189]长江水利委员会长江科学院主编.水利水电工程岩石试验规程[S].北京:中国水利水电出版社, 2001.
    [190]王明洋,严东晋,周早生,钱七虎.岩石单轴试验全程应力应变曲线讨论[J].岩石力学与工程学报,1998,17(1):101-106.
    [191]张庆,侯爱军,贠小有,杨小林.岩石双轴压缩试验及装置研究进展[J].河南理工大学学报(自然科学版),2007,26(4):440-445.
    [192]章清叙,葛修润,黄铭,孙红.周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J].岩石力学与工程学报,2006,25(3):473-478.
    [193]易达,刘洁荣,葛修润.岩石三轴压缩任意围压下应力–应变曲线的预测方法研究[J].岩土工程学报,2008,30(7):1062-1065.
    [194]尤明庆,苏承东.平台圆盘巴西劈裂和岩石抗拉强度的试验研究[J].岩石力学与工程学报, 2004,23(18):3106-3112.
    [195]代高飞,夏才初,晏成.龙滩工程岩石试件在拉伸条件下的变形特性试验研究[J].岩石力学与工程学报,2005,24(3):384-388.
    [196] HAWKES I, MELLOR M, GARIEPY S. Deformation of rocks under uniaxial tension [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1973, 10(6): 493-507.
    [197]王学滨.岩样单轴拉伸应变局部化及全程应力-应变曲线[J].岩石力学与工程学报,2005,24(增2):5784-5788.
    [198]陶履衫,夏才初,何之民.花岗岩拉伸全过程变形特性的试验研究[J].同济大学学报,1997,25(1):34-38.
    [199] Faihurst C E, Hudson J A. Draft ISRM suggest method for the complete stress-strain curve for intact rock in uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3):279-289.
    [200]林为人,高桥学.稻田花岗岩单轴拉伸强度和变形各向异性特征[J].岩石力学与工程学报,2008.,27(12):2464-2472.
    [201]赵宝云.深部岩体的蠕变损伤特性研究[D].西华大学硕士学位论文,成都, 2008.
    [202]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2008.
    [203]刘雄.岩石流变学概论[M].北京:地质出版社, 1994.
    [204]耶格JC,库克NGW.岩石力学基础[M].中国科学院工程力学研究所译.北京:科学出版社,1981:382-403
    [205]杨挺青,罗文波,徐平,等.粘弹性理论与应用[M].北京:科学出版社,2004.
    [206]李守巨,张军,刘迎曦,姜锋.基于优化算法的岩体初始应力场随机识别方法[J].岩石力学与工程学报, 2004, 23(23): 4012-4016.
    [207]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报, 2007, 26(6): 1081-1106.
    [208]杨圣奇.岩石流变力学特性的研究及其工程应用[D].河海大学博士论文,2006.
    [209]褚卫江,徐卫亚,杨圣奇,周维垣.基于FLAC3D岩石黏弹塑性流变模型的二次开发研究[J].岩土力学,2006,27(11):2005-2010.
    [210]徐平,李云鹏,丁秀丽,王芝银.FLAC3D粘弹性模型的二次开发及其应用[J].长江科学院院报, 2004,21(2):10-13.
    [211]卫军,李昊,杨曼娟,朱玉.基于ABAQUS平台的四渡河悬索桥隧道锚固围岩稳定性分析[J].岩石力学与工程学报,2005,24(增1):4894-4899.
    [212]刘文彬.岩石蠕变本构模型的辨识及应用[D].北京交通大学博士论文,2009.
    [213] Itasca Consulting Group. Fast Lagrangian analysis of continua in 3 dimensions[M].MN, USA: Itasca Consulting Group, Minneapolis, 2002 .
    [214]陈育民,徐鼎平编著.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008
    [215]杨文东.坝基软弱岩体的非线性蠕变损伤本构模型及其工程应用[D].济南:山东大学,2008.
    [216]杨文东,张强勇,张建国,贺如平,曾纪全.基于FLAC~(3D)的改进Burgers蠕变损伤模型的二次开发研究[J].岩土力学, 2010, 31(6): 1956-1961.
    [217]黄明.含水泥质粉砂岩蠕变特性及其在软岩隧道稳定性分析中的应用研究[D].重庆大学博士论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700