用户名: 密码: 验证码:
油封结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用有限元方法对旋转运动油封的密封机理进行理论研究。结合前人总结出的一些密封理论,将油封密封机理的有限元分析分两部分进行,一部分是静态分析,另一部分是动态分析。
     油封密封机理的静态分析属于接触问题,本文中使用的ANSYS有限元软件采用的是罚单元法描述的该接触问题。根据油封结构的特点,建立了油封的二维轴对称有限元模型,在有无弹簧两种情况下,分析了油封的腰厚、密封圈唇口平面到弹簧槽中心平面的距离R以及过盈量S和唇前角四种重要参数对最大接触压力及其分布情况的影响。采用该模型计算得到的结果与实际情况有良好的一致性。
     动态条件下,将油封的表面效应和结构效应的动密封理论作为理论基础,借助大型有限元软件ANSYS CFX对密封介质在密封间隙中的流动情况进行了模拟。分析了油封唇口表层材料弹性皱纹的反旋段和顺旋段的差值(ΔL)以及轴的转速对表面效应引起的泵吸率的影响,以及转速对结构效应引起的泵吸率的影响。结果表明:由表面效应引起的泵吸率随ΔL值的增加及轴转速的提高而增大,由结构效应引起的泵吸率随轴转速的提高而增大;模拟结果与实验结果有较好的一致性,证实了利用有限元方法进行该流体分析的可行性。
Finite element method was used to study the sealing mechanism of radial shaft seal. Combining with the sealing theories summed up by the pioneer, the process of finite element analysis was divided into two steps, one step was static analysis, the other step was dynamic analysis.
     The static analysis of sealing mechanism of oil seal was belonged to contact problem, finite element software ANSYS used in this thesis adopted penalty element method to describe this problem. Based on the characteristic of the structure of oil seal, two-dimensional axisymmetric finite element model of oil seal was established, the finite elements analysis was carried out for the influence of four important parameters on the maximum contact pressure and its distribution which were the width of the waist, the distance between lip surface, the surface of garter spring groove center, the difference in lip and shaft diameter as well as the contact surface angle. The results obtained with this model had established the essential coincidence between computation and practical condition.
     In dynamic condition, the dynamic sealing mechanism of surface effect and structure effect of the oil seal is used as the theory base, and used a finite element software ANSYS CFX to simulate the flow of sealing medium in the sealing clearance. The difference( A L) between reverse segment and clockwise rotating segment and rotational frequency of the shaft influencing on the reverse pumping brought by the surface effect and the rotational frequency of the shaft influencing on the reverse pumping brought by the structure effect are analyzed. As a result, the reverse pumping brought by surface effect will increase with the increase of A L value and the rotational frequency of the shaft, and the reverse pumping brought by structure effect will increase with the increase of the rotational frequency of the shaft. The simulation result has a well consistency with the experiment result, it proves the feasibility of the finite element method in analyzing the liquid.
引文
[1] 李照成.密封件非线性变形与轴承密封性能研究[D].青岛:中国海洋大学,2004
    [2] 管荣根,顾玲,机械中油封的失效与对策[J],扬州大学学报·自然科学版,1999年2月,第2卷第1期,75—78
    [3] 金振邦,液压泵和马达用旋转轴动密封装置的设计与应用[J].液压气动与密封,2002年4月,第2期(总第92期),23-25
    [4] 高福年.汽车发动机氟橡胶气门阀杆油封的研制[J].橡胶工业,2003,50:298-301;
    [5] 高福年,李思婉,骨架油封自润滑性的提高及其机理的探讨[J].特种橡胶制品,1995年,第16卷第3期,23—26
    [6] 刘桂明,宋跃茹,张伯洪,骨架轴唇密封圈及模具概况[J].橡胶工业,2004年第51卷第2期 93-96;
    [7] J. -M. Degrange, M. Thomine, Ph. Kapsa, J. M. Pelletier, L. Chazeau, G. Vigier, G. Dudragne, L. Guerb'e Influence of viscoelasticity on the tribological behaviour of carbon black filled nitrile rubber(NBR) for lip seal application[J]. Wear 259(2005), 684-692
    [8] 于政武,孙邦俊.油封旋转密封的动态过程[J].河北工学院学报.1994,23(3):89-95.
    [9] 于政武.影响车辆油封动密封的因素和解决方法[J].河北工学院学报.1992,21(2):110-117.
    [10] 郑洪喜,多腔氟橡胶油封[J].世界橡胶工业,2001年,第28卷,第5期,16-19
    [11] 金山,冯永梅,鲁选才,殷国华,捷达车前减震器油封的研制与开发[J].特种橡胶制品,2001年,第22卷,第5期,29—34
    [12] 高久好,龚烈航,陆过胜,CFRP螺旋回流槽油封密封机理的分析[J].机床与液压,2004年,第8期,178-179
    [13] 屈盛官,徐元利,杨圣东,孙自树,刘小平,大功率柴油机曲轴油封的研制[J].特种橡胶制品,2001年,第22卷,第5期,35-49
    [14] James Walker, Lip seals to work in steaming hot chemicals[J]. Sealing Technology, February 2005, 92-94
    [15] 张建斌,郦华兴,姜敏.,提高旋转轴油封性能的方法[J].橡胶工业,2001年,第48卷,第9期,548-551
    [16] 陈登隆,国内汽车油封生产技术[J].中国橡胶,2003年,第19卷,第17期,23-24
    [17] 陈登隆.汽车用油封胶料的进展[J].中国橡胶,20(17):11-12
    [18] 张振英.高分子密封材料的研究[J].高分子材料科学与工程,1993,2:122-127.
    [19] 曹阳.浅谈国外橡胶密封材料及制品的应用现状[J].特种橡胶制品,1999,20(1):31~34.
    [20] 王立彦.丁腈橡胶的应用[J].弹性体,2000,10(3):41-44.
    [21] 禹权,黄承亚,叶素娟.氢化丁腈橡胶的研究进展[J].特种橡胶制品,2006,27(2):56-62.
    [22] Choudhury NR, Bhowmick AK. Thermostable insulating thermoplastic elatomers from rubber polycarbonate blends[J]. Jornal of Elastomers and Plastics, 1996, 28(2): 161-168.
    [23] 张防,郭强.氢化丁腈橡胶及其应用研究进展[J].特种橡胶制品,2001,22(2):54-57.
    [24] 张在利,曾子敏,李嘉.氟橡胶性能、应用及我国氟橡胶工业发展现状[J].化工新型材料.2003,31(2):9-12.
    [25] 秦伟程.氟橡胶生产、应用现状与发展趋势[J].化学推进剂与高分子材料,2005,3(4):25-29.
    [26] 张在利,曾子敏,李嘉.我国氟、硅橡胶工业发展现状及建议[J].现代化工,2005,25(2):1-5.
    [27] 刘杰,丁英萍,崔秀丽等.国内氟硅橡胶的研究进展[J].弹性体,2006,16(2):46-50.
    [28] 谢忠麟.特种橡胶的一些技术发展[J].新材料产业,2000,11:56-65.
    [29] 彭宽平.聚氨酯材料在橡塑组合密封中的应用[J].液压与气动,2006,6:79-80
    [30] 姚莹.聚氨酯弹性体材料现状与展望[J].化学推进剂与高分子材料,2003,1(4):29-31
    [31] 范清,胡泽华.聚四氟乙烯与橡胶组合密封应用浅析[J].特种橡胶制品,2003,24(6):42-44.
    [32] 邹德广,杜华太,张斌.影响油封密封性能的材料结构因素分析[J].特种橡胶制品,2000,21(1):21-24
    [33] 许国俊,李德培.轴用油封的密封原理及影响密封性能的因素[J].当代汽车,199l,1:18-22
    [34] 邵蕴秋.ANSYS 8.0有限元分析实例导航[M].北京:中国铁道出版社,2004
    [35] 左正兴,廖日东.12150柴油机橡胶密封圈的有限元分析[J].内燃机工程,1996,17(2):46-49
    [36] 穆志韬,邢耀国.固体发动机工况中密封圈大变形接触应力分析[J].机械强度,2004,26(5):560-563
    [37] 陈国定,HaiserH,HaasW,LechnerG.O形密封圈的有限元力学分析[J].机械科学与技术,2000,19(5):74-742
    [38] 刘溪涓,刘承宗,林钧毅等.一种含超弹性接触问题的密封结构的有限元求解方法[J].中国机械工程,2001,12(11):1211~1213
    [39] Chung Kyun Kim, Woo Jeon Shim. Analysis of contact force and thermal behaviour of lip seals[J]. Tribology International, 1996, 2, 113-119
    [40] Chun-Ying Lee, Chao-Sung Lin~b, Rui-Quan Jian, Chih-Yung Wen. Simulation and experimentation on the contact width and pressure distribution of lip seals[J]. Tribology International. 2005.
    [41] Jagger ET. Rotary shaft seals: the sealing mechanism of synthetic rubber seals running at atmospheric pressure[J]. Proc Instn Mech Engrs 1957; 171: 597-616
    [42] 陆克久.汽车油封的密封机理及对使用寿命的影响因素[J].汽车与配件,1998,9:18~19
    [43] Mohamed Hajjam, Dominique Bonneau. Influence of the roughness model on the thermoelastohydrodynamic performances of lip seals[J]. Tribology International. 2006; 39: 198~205.
    [44] Dr. -Ing. Eberhard Book, et al. New radial shaft seal concepts for sealing hydraulic pumps and motors[J]. Sealing Technology, 2003; 9: 6-10
    [45] Salant RF. Modelling rotary lip seals[J]. Wear, 1997, 207, 92-99
    [46] Mohamed Hajjam, Dominique Bonneau. A transient finite element cavitation algorithm with application to radial lip seals[J]. Tribology International, 2007; 40, 1258-1269
    [47] C. A. Vionnet. Numerical investigation of the sealing capacity of centrifugal instabilities in shaft seals[J]. Int. J. Heat and Fluid Flow, 1995; 16, 254-262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700